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ABSTRACT 

The ECMWF Ensemble of Data Assimilations (EDA) is a Monte Carlo system which aims to estimate the 
analysis and background errors of the deterministic ECMWF 4D-Var assimilation system. The underlying idea 
is to represent, in a stochastic way, all relevant sources of uncertainty present in the deterministic analysis cycle 
and derive from the ensemble sample statistics estimates of the errors of the operational assimilation system. An 
important source of uncertainty is due to the fact that the forecast model is not perfect. In the EDA this is 
accounted for through the use of a model error parameterization scheme.  

Two different model error parameterizations have been developed at ECMWF and their impact on the EDA 
sample error statistics is evaluated by comparing the estimated error distribution with the perceived error 
distribution. Results show that both model error parameterizations have a positive, synergistic effect on the 
ability of the EDA to represent the variance of the background error. On the other hand, a preliminary analysis 
of the effect of model error parameterizations on the EDA estimates of background error covariances has given 
mixed results, pointing to the need for closer inspection of the issue.  
 

1. Introduction 

The ECMWF Ensemble of Data Assimilations (EDA) is a system of N (N=10 in June 2011) 
independent, reduced resolution, assimilation cycles which differ by perturbing observations, sea-
surface temperature fields and model physics. A theoretical analysis shows that  if the perturbations 
are drawn from the true distributions of observation and model error, then the spread of the EDA 
about the control (unperturbed) analysis will be representative of the analysis error (Isaksen et al., 
2010). This is the first system implemented at ECMWF which provides estimates of analysis 
uncertainty, taking observational information and non-linear model dynamics into account. The use of 
EDA perturbations has already proved to have a beneficial impact on the representation of initial 
uncertainties in the ECMWF Ensemble Prediction System (EPS) and on the estimation of flow-
dependent background errors in the deterministic 4D-Var assimilation system (Isaksen et al., 2010).  

The ability of the EDA to correctly capture the analysis and background errors of the reference 
analysis relies on an accurate and, as far as possible, complete representation of all the relevant 
sources of uncertainty in the deterministic analysis cycle: observation error, errors in the boundary 
conditions and model error. This is done with physically plausible Monte Carlo realizations of the 
error sources, known as stochastic parameterizations, in a similar way as to what is done in the 
context of ensemble prediction; not through a specified covariance matrix (as is usual in Kalman 
Filter theory and Weak-constraint 4D-Var; see Tremolet, 2007; Tremolet, 2011, in this proceedings). 
Because the EDA is only used for error estimation a stochastic parameterization of model error is 
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sufficient. Proper characterization of the model error covariance matrix in 4D-Var is a very difficult 
and yet unsolved problem.  

Stochastic parameterizations have been used in the ECMWF EPS system for many years (Buizza et 
al., 1999; Palmer et al., 2009) showing a positive impact in terms of the forecast ensemble reliability 
and probabilistic skill scores. However to design a stochastic parameterization that improves the EDA 
sample error statistics by representing the true sources of model error is arguably a more stringent test. 
In an assimilation system the effects of using a certain model error representation accumulate in time 
due to the cycling of information in the analysis, so any shortcomings in the formulation become more 
apparent. EDA also provides a means to confront the model error scheme with observational reality, 
both directly and through the EDA sampled background error statistics which are then used in the 
deterministic analysis. A further distinction is that in an EPS context one is typically concerned with 
the verification and use of univariate probability distributions (pdf) at a given lead time and location 
(i.e., what is the chance of rain tomorrow in Reading?). On the other hand, one of the main uses of an 
EDA is to diagnose spatial and multivariate covariances, both to have a climatological estimate of 
background errors (Fisher, 2003; Belo Pereira and Berre, 2006) and, more recently, to derive flow-
dependent estimates (Varella et al., 2011). Finally, background errors (i.e., forecast errors at typically 
6-12 hours lead times) have been shown (Wei and Toth, 2003) to span a much larger portion of the 
error space than errors at longer forecast lead times, since they have not condensed yet on the 
dominant modes of instability of the system. This obviously makes their estimation a more 
challenging problem. 

This paper presents the results of an initial investigation of the impact of model error 
parameterizations in the context of the ECMWF EDA system. In section 2 we briefly describe the 
model error schemes developed at ECMWF and the setup of the EDA experiments designed to test 
their impact. In section 3 we describe the impact of model error parameterizations on the climatology 
of EDA variances. In section 4 we present diagnostics in both observation and model space of the 
model error impact on EDA variances. In section 5 we show preliminary results of the impact of 
model error parameterizations on EDA covariances. Conclusions and suggestions for further research 
are offered in section 6. 

2. Experimental setup 

The first model error parameterization developed and implemented at ECMWF (Buizza et al., 1999), 
known as ‘stochastic physics’, consisted in the application of spatially piecewise homogeneous 
random perturbations to the total forecast tendencies of the physical parameterized processes. This 
technique has been revised significantly in September 2009 (details in M. Leutbecher’s contribution 
to these proceedings). We will refer to this as Stochastically Perturbed Parameterization Tendencies 
(SPPT). 

While the SPPT technique aims at representing model uncertainty arising from un-/mis-represented 
physical parameterizations processes, it has been recognized that the dynamical part of the forecast 
model can also be the source of non negligible model error. In particular, energy dissipation due to 
unresolved scales, numerical dissipation in the semi-Lagrangian semi-implicit integration scheme, 
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implicit energy dissipation in the mountain wave drag and convection parameterization schemes, are 
deemed to be significant sources of energy dissipation which need to be represented. The a Stochastic 
Kinetic Energy Backscatter (SKEB) scheme (also known as SPBS; see Shutts, 2005 and Berner et al, 
2008) aims to simulate these types of errors by introducing random vorticity perturbations on the 
resolved scales of the flow, whose magnitude is proportional to the estimated total rate of energy 
dissipation.   

From this short description it should be apparent that the two model error parameterizations to some 
extent target different aspects of the model uncertainties and should thus have partially 
complementary effects. 

To investigate the impact of the different model error schemes, three 10 member EDA experiments 
have been run at T399L91 resolution (this is the same resolution at which the EDA system is run 
operationally at ECMWF). A baseline experiment (fgk7) has been run without any model error 
parameterization; a second experiment (fi8s) has only the SPPT scheme activated (this is the current 
EDA operational configuration); the third experiment (fgk6) has both the SPPT and SKEB schemes 
active. All experiments are using the Integrated Forecasting System cycle 36R4. The experiments 
have been run for the month of April 2010 and results presented here have been computed on a 21 day 
period (20100405-20100425).  

3. Average impact on EDA variances 

The first aspect to consider is the time-averaged effect the different model error representations have 
on the EDA sample statistics. The globally averaged vertical profiles of temperature and vorticity 
spread of the EDA short range (t+12h) forecasts (Fig.1) show that both model error parameterizations 
act to increase the EDA background standard deviation. The incremental effect of the SKEB 
parameterization is small in terms of temperature spread but comparable to the SPPT impact for the 
wind field. Using both parameterizations results in an increment of around 25% of the temperature 
spread and of around 40% of the vorticity spread with respect to the baseline configuration. 

 
Figure 1: Average vertical profiles of the EDA short range (t+12h) temperature (left plot) and vorticity 
(right plot) forecast spread for an EDA without model error parameterization ( fgk7, black lines); an 
EDA experiment with the  SPPT parameterizations (fi8s, red lines); an EDA experiment with both the 
SPPT and SKEB parameterizations active (fgk6, blue line). Mean values over a 21 day period 
(20100405-20100425). 
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Figure 2: Longitudinal average of the EDA short range (t+12h) temperature forecast spread for an EDA 
without model error parameterization (first line);increase in temperature spread due to the use of SPPT 
(second line); further increase in temperature spread due to the use of SKEB (third line). Mean values 
over a 21 day period (20100405-20100425). Latitudes on the x axis from 90N (left) to 90S (right). Model 
levels on the y axis from 1 (top) to 91(bottom). Unit: K. 
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Figure 3: Longitudinal average of the EDA short range (t+12h) vorticity forecast spread for an EDA 
without model error parameterization (first line);increase in vorticity spread due to the use of SPPT 
(second line); further increase in vorticity spread due to the use of SKEB (third line). Mean values over a 
21 day period (20100405-20100425). Latitudes on the x axis from 90N (left) to 90S (right). Model levels 
on the y axis from 1 (top) to 91(bottom).Unit: s-1. 
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In Fig. 2 meridional cross sections of the longitudinally and time averaged spread of the EDA 
temperature t+12h forecasts are shown. The first line refers to the EDA experiment where no model 
error parameterization is used (fgk7). The second line shows the additional spread which is introduced 
in the EDA by the use of the SPPT scheme. The third line shows the additional spread which is 
introduced in the EDA by the use of the SKEB scheme. Fig.3 presents the same plots for the vorticity 
fields.  

The main effect of the SPPT parameterization in the lower stratosphere and in the troposphere is 
visible in the extra tropics between model levels 40 (~100 hPa) and 50 (~210 hPa) and in the 
boundary layer, below model level 75 (~800 hPa); in the tropics in the middle troposphere (in the 
300-700 hPa layer). The position of these relative maxima suggests that the main sources of model 
uncertainties that the SPPT scheme captures are those related to the convective parameterization 
(particularly in the tropics), the gravity wave drag and the radiative parameterizations. This is 
confirmed by a geographical map of the additional temperature spread induced by the SPPT at model 
level 49 (~200 hPa; Fig.4, first line) and at model level 78 (~850 hPa; Fig.4, second line). The 
increase in EDA spread is particularly apparent in the cyclonic tracks of both hemispheres, downwind 
of significant mountain ranges, in the ITCZ, and in the oceanic regions with extensive stratocumulus 
decks. The effect of the SKEB scheme is, on the other hand, smaller by a factor of three for the EDA 
temperature spread, consistent with the fact that SKEB acts on the temperature field only indirectly 
(through the mass-wind balance and the cycling). It is however comparable in magnitude to that of the 
SPPT scheme for the wind field (Fig.3, second and third line) but with a different distribution in 
height and latitude: there are relative maxima in the extra-tropics between model levels 30-40 (~50-
100 hPa layer) and in both the tropics and in the extra-tropics between model levels 70-80 (~700-900 
hPa). A geographical map of the additional vorticity spread induced by the SKEB at model level 30 
(~50 hPa; Fig.5, first line) and at model level 78 (~850 hPa; Fig.5, second line) confirms that the 
scheme mainly captures model uncertainty linked to the gravity wave drag parameterizations and, to a 
lesser extent, convection. This is not surprising, considering the fact that in synoptic situations of 
intense flow impinging on perpendicular mountain ranges, the background forecasts tend to show 
considerable errors (Fig. 6 shows an example).  
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Figure 4:Map of the time-averaged (21 day period, 20100405-20100425) increase of EDA short 
range (t+12h) temperature forecast spread due to the use of the SPPT scheme: model level 49 
(~200 hPa) on the first line, model level 78 (~850 hPa) on the second line. Unit: K. 
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Figure 5:Map of the time-averaged (21 day period, 20100405-20100425) increase of EDA short range 
(t+12h) vorticity forecast spread due to the use of the SKEB scheme: model level 30 (~50 hPa) on the 
first line, model level 78 (~850 hPa) on the second line. Unit: s-1. 
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Figure 6: Map of the 200 hPa geopotential height background (solid black lines), analysis 
(dashed black lines), and analysis increments (dashed blue lines are negative increments, solid 
red lines positive) on the 19 June 2011, 12 UTC. Purple arrows show 200 hPa wind analysis 
increments. 

 

4. Impact on the statistical distribution of EDA variances 

EDA background spread is used in the ECMWF deterministic analysis as a proxy for background 
error variances. It is then important to evaluate how the use of model error parameterizations affects 
the statistical distribution of EDA spread. 

At a very basic level the EDA background spread should satisfy the following equality (Mitchell and 
Houtekamer, 2000): 

 
T Td,d HBH R= +

 (1) 

where bxHyd −≡  is the innovation vector computed with respect to the ensemble mean 

background (y is the observation vector, bxH  the ensemble mean observation prior). As a special 
case of this relationship, consider only the EDA variances:  

 ( ) ( ) ( )T Td,d HBH Rdiag diag diag= +  (2) 
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Equation (2) states that for a statistically consistent EDA the observed innovation variance should 
equal the predicted innovation variance, i.e., the sum of the EDA background forecast spread in 
observation space and the observation error variance. Figures 7 and 8 show the two sides of equation 
(2) for radiosonde temperature and zonal wind observations, respectively, for the three EDA 
experiments under examination. Overall, it is apparent that the use of model error parameterizations 
tends to produce a more reliable EDA background, though not enough to have a well calibrated 
ensemble. Consistent with the results shown in Section 2, the increase in temperature spread is mainly 
due to the SPPT scheme, while the SKEB scheme primarily increases the EDA wind spread especially 
in the extra-tropics. 

 
Figure 7: Time averaged (21 day period, 20100405-20100425) innovation standard deviation for 
radiosonde temperature observations in the Northern Hemisphere (left panel) and in the Tropics (right 
panel). Dashed line is the observed  innovation standard deviation, continuous lines are predicted 
innovation standard deviations (see main text for explanation) for EDA experiments with no model error 
param. (fgk7, black line),  with SPPT param. (fi8s,  red line) and with both SPPT and SKEB param. 
(fgk6, red line). 

 
Figure 8:Time averaged (21 day period, 20100405-20100425) innovation standard deviation for 
radiosonde zonal wind observations in  Northern Hemisphere (left panel) and in the Tropics 
(right panel). Dashed line is observed  innovation standard deviation, continuous lines are 
predicted innovation standard deviations (see main text for explanation) for EDA experiments 
with no model error param(black line, fgk7), SPPT param.(red line, fi8s) and SPPT + SKEB 
param.(blue  line, fgk6). 
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Since the EDA spread is used as a proxy for background errors, we are interested in comparing the 
statistical distributions of EDA variances and background mean squared errors. A linear relationship 
close to the y=x line between  EDA variances and  background mean squared errors would show that 
the EDA has statistical consistency (Anderson, 1996; Talagrand et al., 1997), i.e. the EDA spread is a 
statistically reliable predictor of forecast uncertainty (Kolczynski et al., 2011). To verify this 
hypothesis we follow Wang and Bishop, 2003, and bin Eq. (2) according to the EDA background 
variances. Results for radiosonde observations are presented in Fig. 9-11. It is again clear that the use 
of model error parameterizations improves the statistical reliability of the EDA spread as a 
background error variance predictor and that the additional value of the SKEB scheme is mostly in the 
characterization of the wind errors. 

 
Figure 9:Time averaged (21 day period, 20100405-20100425) expected vs. observed  innovation 
standard deviations as a function of expected innovation standard deviation (see main text for details) 
for EDA experiments with no model error param. (fgk7, black line), SPPT param. (fi8s, red line) and 
SPPT + SKEB param. (fgk6, red line). Dashed line is y=x line.  Results  for radiosonde temperature 
observations in the North Hemisphere at 200 hPa (left panel) and 850 hPa (right panel) .  

 
Figure 10:Time averaged (21 day period, 20100405-20100425) expected vs. observed  innovation 
standard deviations as a function of expected innovation standard deviation (see main text for 
details) for EDA experiments fgk7 (no model error param.; black line), fi8s (SPPT param., red 
line) and fgk6 (SPPT + SKEB param.; red line). Dashed line is y=x line.  Results  for radiosonde 
zonal wind observations in the North Hemisphere at 200 hPa (left panel) and 850 hPa (right 
panel) .  
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Figure 11:Time averaged (21 day period, 20100405-20100425) expected vs. observed  innovation 
standard deviations as a function of expected innovation standard deviation (see main text for 
details) for EDA experiments fgk7 (no model error param.; black line), fi8s (SPPT param., red 
line) and fgk6 (SPPT + SKEB param.; red line). Dashed line is y=x line.  Results  for radiosonde 
temperature observations in the Tropics at 850 hPa (left panel) and for radiosonde zonal wind 
observations in the Tropics at 200 hPa (right panel) .  

The strength of the linear relationship between the EDA spread and the background error is 
commonly measured in terms of the Pearson correlation coefficient. As many authors have noted 
(Houtekamer, 1993; Whitaker and Loughe, 1998; Mass and Grimit, 2007) this correlation can not be 
very large because the spread of the EDA distribution does not completely determine a single 
realization of the forecast error pdf. However what is of interest here is evaluating the relative strength 
of the linear spread-error model in the presence of the model error parameterizations. In Fig. 12 - 13 
we present the temperature and vorticity spread-error correlation values as a function of model level 
for the three EDA experiments, both in the northern hemisphere extra-tropics and in the tropics.  

 
Figure 12:Time averaged (21 day period, 20100405-20100425) Pearson correlation coefficient of 
the EDA background  standard deviation with the EDA background mean root mean squared 
error (computed with respect to the operational analysis)  for EDA experiments with no model 
error param. (fgk7, black line), (SPPT param. (fi8s, red line) and SPPT + SKEB param. (fgk6, 
red line). Results as a function of model level are shown for the temperature field in the northern 
extra-tropics (left panel) and  in the tropics (right panel) .  
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Figure 13:Time averaged (21 day period, 20100405-20100425) Pearson correlation of the EDA 
background  standard deviation with the EDA background mean root mean squared error 
(computed with respect to the operational analysis)  for EDA experiments with no model error 
param. (fgk7, black line), (SPPT param. (fi8s, red line) and SPPT + SKEB param. (fgk6, red 
line). Results as a function of model level are shown for the vorticity field in the northernextra-
tropics (left panel) and  in the tropics (right panel) .  

 
Figure 14:Time averaged (21 day period, 20100405-20100425) PECA values (computed with 
respect to the operational analysis) for EDA experiments with no model error param. (fgk7, black 
line), (SPPT param. (fi8s, red line) and SPPT + SKEB param. (fgk6, red line). Results as a 
function of model level are shown for the vorticity field in the northern extra-tropics (left panel) 
and  in the tropics (right panel) .  

 

Consistent with the results shown above, model error parameterizations increase the spread-error 
correlation, with the SPPT accounting for most of the increase in correlation for the temperature field 
while the SKEB scheme provides additional benefit in the description of the extra-tropical winds. 
Particularly noticeable is the increase in correlation due to SKEB for the extra-tropical vorticity 
between model levels 30 to 45 (approximately corresponding to the 50-150 hPa pressure layer), which 
has been shown to be related to the representation of model uncertainty due to the gravity wave drag 
parameterization.  
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5. Impact on the statistical distribution of EDA covariances 

EDA perturbations are also used to diagnose the covariance structures of background errors.  

At ECMWF this is currently done offline from a large sample to estimate a climatological background 
error matrix that is used in the 4D-Var analysis (Fisher, 2003). In the near future it is envisaged to be 
done on a daily basis to compute a flow-dependent component of the B matrix. 

A proper analysis of the impact of the model error schemes on EDA sampled covariances would 
obviously require a comparison of the EDA sampled covariance with the forecast error covariance. 
This is not available yet. 

However an indication of the effect of model error parameterizations on EDA covariances can also be 
inferred from the “Perturbation versus Error Correlation Analysis” (PECA, Wei and Toth, 2003). 

This diagnostic, originally developed in the ensemble forecasting context, is defined as: 

 ( )
1

1
b ,

Nens

j
jens

PECA cor pert
N

ε
=

≡ ∑  (3) 

i.e., as the average correlation between εb, which is defined as the difference between the EDA control 
background forecast and the verifying analysis, and pertj, which are the EDA member’s background 
perturbations with respect to the control. PECA values are a measure of how much the EDA 
perturbations project onto the perceived background error spatial patterns and thus give an indication 
about the skill of the sampled covariances computed from those perturbations.  

PECA values for the vorticity field as a function of model level are presented in Fig. 14, whose left 
panel shows results for the northern extra-tropics while the right panel refers to the tropics. The effect 
of the SPPT scheme appears to be neutral to positive in the northern hemisphere and negative in the 
tropical lower troposphere. The effect of the SKEB scheme, on the other hand, appears to be 
consistently negative when measured with the PECA diagnostic. 

It is difficult at this stage to assess the significance of this result. But it may be the case that the 
spatially correlated error structures introduced by the model error schemes do not represent 
background error covariances well. Further investigations are required on this issue.  

6. Summary and outlook 

The EDA system has recently become an essential component of both the ECMWF deterministic 4D-
Var and Ensemble Prediction System, due to its capacity to provide realistic flow-dependent estimates 
of analysis and background errors. Its success relies on the correct specification of the sources of 
uncertainty input into the assimilation cycle, among which model uncertainty plays a central role. 
Thus the use of the EDA sampled statistics to simulate the background errors of the reference 4D-Var 
provides a stringent, observation based, test for the model error parameterization schemes that 
originally were developed for the EPS. 
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The two model error schemes developed at ECMWF, SPPT and SKEB, aim to simulate different 
aspects of model uncertainty: random errors linked to physical parameterizations (SPPT scheme) and 
errors arising from energy dissipation in the dynamics and physical parameterizations of the model 
(SKEB). This is visible in the different impacts they have on the climatology of the EDA sample 
variances. 

The use of both model error parameterizations has been shown to improve the statistical consistency 
of the EDA variances, verified against both observations (radiosondes) and reference analysis fields. 
Their use has also been shown to be beneficial in terms of increasing the spatial correlation of the 
EDA spread with the ‘perceived’ background error standard deviation. This means that the EDA 
spread is a more skilful predictor of background error variance when the model error 
parameterizations are active.  

On the other hand the impact of model error parameterizations (especially SKEB) on the EDA ability 
to represent background error covariances is mixed in terms of the PECA diagnostic and needs further 
investigation. This will be performed by studying the relationship between ensemble covariance 
distribution and perceived background error covariances (similarly to what has been done for EDA 
variances); and through assimilation experiments using climatological background error  statistics 
derived from EDA with different model error parameterizations.  
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