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1 Introduction

The current NWP model chain of the DWD (Deutscher Wettest)econsists of the hydrostatic global
model GME with a horizontal grid spacing of about 30 km, and tersions of the non-hydrostatic,
compressible model COSMO: the COSMO-EU covering most drEurope with 7 km grid spacing
and the convection-resolving COSMO-DE (2.8 km).

In particular both versions of the COSMO model use the Rufgga (RK) integration scheme for
the solution of the Euler equations, originally developedthe WRF model\(vicker and Skamarock
2002. Their 3-stage Runge-Kutta scheme (denoted here as RK&/¥8)ended by an implicit vertical
advection calculation in the following mannd&dldauf et al, 2010. Starting from the field®" at time
stepn, first the implicit scheme fo is solved
O BAUD)+ (L= BIALD) + A (") + Ag (") + P(@"
a— = PBA z A (D) 4+ Ag (D7) + P(D"). (D)

3
N——

—:L(®n)

A, andA, are spatial discretisations of the horizontal advection-rand ¢-direction (see eq.1Q)).

A; denotes a vertical advection spatial operaf(P") contains the tendencies of the physical param-
eterisations which are calculated once outside of the Rterse. Then the first RK-substep with the

tendencyL (®") is performed
JA\
o - ¢n+§‘ L(o") )
and the fast parts are calculated with tendeftdy — ®")/(At/3), starting atd". The result is a new

state®*. In the second step

O [aO A OV @)+ (1— B)AL®) + Ay (0) + Ag(@) =P, (3)

2
=:L(P¥)

is solved and used for the RK-substep

At
O =N+ (@), 4)
Then the fast waves with tendenc®*™ — ®")/(At/2) are calculated starting &" giving a new state

@**, In the third step we solve

®—[aP"+ (1— a)P*]
At
—iL(®™)

= BALD) + (1— B)ALD™) + Ay (D) + Ay (D) +P(®").  (5)
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leading to the third RK-substep
O = " At L(D™). (6)

Finally the fast waves with tenden¢g$p™ ! — ®")/(At) are calculated starting &t" which gives®™+1.
The overdamping weight is equal to 0 in the original scheme Vficker and Skamaroci002. Un-
fortunately this limits the stability range of our vertigaiplicit advection scheme. A certain stabilisation
can be achieved by the usemt= 1.

The paper is split into two parts. The second section adesetbe issue of stability of the RK time-
splitting scheme. To this purpose a complete tiamel space von Neumann analysis of the above
scheme is performed. The third section addresses a spesii@ of accuracy, namely the influence of
the prominent stabilising damping mechanism (divergereeping) or the influence of several anelastic
approximations of the basic equations compared to the ctascdution.

2 Stability analysis

In the following a von Neumann stability analysis of the tdicaensional (2D), non-hydrostatic, com-
pressible Euler equations

Ju Ju 10p oD

ot "Y%x T Tpeox a0y (7)
ow ow 10p T 9 oD

i (ﬁ‘g)*“% ®
op o G
ot UOW = —EPOD -+ PogW, 9)
oT’ oT’ R 0Ty

—Pn P g ’
with the divergence
Ju oJw
=xt3, (11)

is performed (more details can be foundBaldauf(2010). Here terms are grouped as indicated into
the processes 'advectio?,, 'sound propagation??s, ‘’buoyancy’ &g, and a possible artificial diver-
gence damping tern#’p. This vertical slice model contains the most importantuesg that restrict
the stability of spatial and temporal discretisation scegmwf a nonhydrostatic 3D-model applied to the
convection permitting scale.

The only 'slow’ process in these equations is the horizoatslection, for which a fifth order upwind
scheme is used, e.g. xadirection

=3¢ 12+ 30¢@; 1+ 200, —60@ 1+ 15¢@; > — 2¢;
A(9) = —Ug @j+2+ 30041 OQOAXOQ 111502 2¢;-3 (12)

A discussion of stability properties of several advectiens with a comprehensive theory of RK-
schemes can be found Baldauf(2008. Table @) shows theefficientCourant numbe€et¢ :=C/s
(defined inRuuth and Spiter{2004)), whereC means the maximum allowable Courant number (e.g.
1.42 for a 3-stage RK and an upwind 5th order scheme). Themrwudenote advection operators of
several orders (upwind 1st, 3rd and 5th order or centreérdifices 2nd, 4th or 6th order). The rows
denote the stageof the RK-scheme (or more precisely: a certain subset dgesRK-schemes, called
LC-RK in Baldauf(2008). C.¢ therefore takes into account the number of substeps needddef
calculation and consequently is a rough measure aboutfibiee€y of the method. Apart from the low
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\ | upl | cd2 | up3 | cd4 | up5 | cd6 |
LC-RK1 |1 0 0 0 0 0
LC-RK2 | 0.5 0 0.437 0 0 0

LC-RK3 | 0.419 0.577 0.542 0.421 0.478 0.364
LC-RK4 | 0.348 0.707 0.436 0.515 0.433 0.446
LC-RK5 | 0.322 0 0.391 0 0.329 0
LC-RK6 | 0.296 0 0.385 0 0.311 0
LC-RK7 | 0.282 0.252 0.369 0.184 0.323 0.159

Table 1: The 'effective Courant number G := Cerit /N for several upwind (up) and centred differ-
ence (cd) advection schemes and RK-schemes of differgassta

order advection schemes the most efficient combination®RE@upwind3, RK3/upwind5 (proposed
by Wicker and Skamaroci002 and also used in COSMO), and RK4/centred difference4.

All of the fast processes are spatially discretized by eghtlifferences of 2nd order on a staggered grid
in space. The temporal discretisation uses a forward-backscheme in horizontal direction and an
implicit (Crank-Nicholson) scheme in the vertical.

For the buoyancy terms alone (i.e. only the procéssis considered) this leads to

Wn+1_Wn B T/n+1 B Nl B p/n+1 B p/n>
— = M + (1= B%)My— — B°M;— — (1— B®)M,— |,
- o (BoMeT s~ + (- B — BT — (1 o

ptl— pn B 1 B
S = Pog(BMAW 4 (1 BB M)
T dTo

—— = —E(BBMZVV”+1+(1—BB)MZVV'1).

which is unconditionally stable for the off-centring parter 38 < 1/2 (M, denotes a vertical averaging
operator).

In the same manner for the sound terms alone (i.e. if only thegss#s is considered) such a discreti-
sation is unconditionally stable for all vertical sound @mt number€syg; = csAt/Az and horizontal
numberCsngx = CsAt/Ax < 1, (with the sound speed = (cp/cy - RTo)Y/?) if the off-centring parameter
of the Crank-Nicholsoi8® > 1/2. (3% = 0 means a purely explicif§®* = 0 a purely implicit scheme).

A stability reduction arises, if these fast processes amebowed with the advection via the RK time
splitting procedure. For example if one combines only squadesses with the advection, then most of
the waves are unstable ff = 1/2, even for moderate (and theoretically stable) value€{gy, Csnax.

But even for stronger off-centring (e.@> = 0.7), horizontally propagating waves remain unstable. A
solution for this problem is known since a long time (&gamarock and Klem992: the addition of

an artificial divergence damping terg#p can stabilise all the waves of this linear 2D sound-advactio
system (even foB° =1/2).

But the inclusion of buoyancy effects destabilises the sehéo a very small extent: Figuteshows

the maximum amplification factokmax (i.e. the maximum value over all wavevectors) in dependence
on Csnax and Cyqy for different off-centringsB®. One recognises that an optimal valugBis~ 0.7;
higher values do not significantly increase the stabilitgvéttheless a very slight instability remains.
However it seems to be not relevant for weather predictiopgees or for climate runs of a limited area
model, in which amplified perturbations are transportedugh the boundaries before disturbing the
solution. One should remark that an increas@®tioes not improve the stability. However, a slightly
higher value (e.g.3° = 0.7) can stabilise the discretisation of the sound processsteeper terrain
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(this is not inspected here). It should be mentioned thatHerstrength of the divergence damping a
value ofCyjy := aDAt/AXZ = 0.1 was found to be necessary. For the COSMO-DE sefiing2.8 km
andAt ~= 5 sec. this leads top/c2/At ~ 0.3 which is larger than the value 0.1 recommended by
Wicker and Skamaroc{002).

RK3WS__betaSnd246=0.5__betaBuoy=0.6 RK3WS__betaSnd246=0.5__betaBuoy=0.7 RK3WS__betaSnd246=0.5__betaBuoy=1.0

Figure 1: Maximum amplification factotmaxin dependence onggx and Ggy for RK3WS with ad-
vection, sound, buoyancy and divergence dampig & 0.1 for different off-centring for buoyancy
BB =0.6,0.7,1.0. Sound off-centring-coefficient B* = 1/2 (i.e. trapezoidal). Time-integration
scheme RK3WS, White colour means stable radgex< 1), Isolines are at 1.0, 1.0001, 1.0003,
1.001,1.003,1.01,....

A further look at tablel shows that the combination of a 4-stage, 2nd order RK scheatled RK4MS)

qv = q”+%Atf(q”), (13)
q? = q”+%Atf(q(”), (14)
q® = q”+%Atf(q(2>), (15)
"t = "+t f(gY), (16)

and the centred difference 4th order advection operatesgpretty large stable Courant numBgy, =
2.06 leading to the large effective Courant numBgt; = 0.515. Therefore one can expect that the time-
split scheme will be efficient. The large allowable largedistep overcompensates the additional RK
substep (compared to the 3-stage RK). Figushows the amplification factor for this scheme. Due to
the fact that a centred difference advection scheme is shed, waves reduce the stability of the scheme
(top, left figure). A weak additional 4th order smoothingtfwa diffusion coefficienK = CqmdAx*/At)
damps these short waves and results in a quite stable schfegaan a more elaborate analysis can be
found inBaldauf(2010.

RK4—MS|betaS=0.5|Cdiv=0.1|betaB=0.7 RK4—MS|Csmo=0.005|Cdiv=0.1|betaB=0.7 RK4—MS|Csmo=0.05|Cdiv=0.1|betaB=0.7

Figure 2: Amax for RK4MS with cd4 advection 4§y = 0.1, with different smoothing o= 0,0.005,0.05.
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3 Normal mode analysis

Numerical stability is one of the most important propertiés dynamical core. Another important as-
pect is accuracy. This can be analysed by the calculatiomieéation errors or by performing idealised
tests with known solutions. In the following we want to hiighit the role of the artificial divergence
damping by answering the question in which sense it pertimbar properties (wave expansion). This
will be done on the level of the analytic equations. The t@sgihormal mode analysis can be quite eas-
ily extended to the consideration of some anelastic appration sets@Qgura and Phillipg1962), here
denoted as 'OP62'Wilhelmson and Ogurd1972, 'WQO72’, and Lipps and Hemle(1982), 'LH82").
These approximations are of interest for COSMO because inrartt project possible benefits of the
EULAG dynamical core (e.gSmolarkiewicz and Prus2005 are inspected. The basic ideas follow the
normal mode analysis @avies et al(2003).

In the following a steady atmosphere (no base flgw= 0) is assumed. We will use an equation for
the pressure perturbatign as in the COSMO-model, but a continuity equation to have ectlicontrol
about the anelastic approximations. The appropriate fiise@d equations read

ou 10p oD’
ot —%W+f\/+aD X a7
ov 10p , oD’
ow 10p 1N%2, p oD’
51? = ooz HP_Ep—g%+ D5, (19)
op’ 0
&7+ w o2 — oD (20)
op' , 9P _ 9p" 9P
oW = Cﬁ(ﬁwﬁ (21)
~——
=—gpow
v ow
D = X + dy+ Rl (22)

Some switches were introduced whose values (0 or 1) are stisatian table2. &, = 0 delivers the
hydrostatic approximation, and is the main switch of the anelastic approximation. The #olut
term ~ &y only arises in the equation system of LH82This is the only difference toward OP62 or
WQO72; the continuity equation is the same for all of the tharelastic equation sets, and the pressure
equation is just the linearised adiabatic state equat®pdt = 0 used by them, too. Furthermore, it
should be mentioned that in tHisear analysis there is no difference between the equation sgstém
OP62 and WO72.

equation system & &% &n D
compressible 1 1 0 0
compressible, with div. dampingl 1 0 #0
anelastic (OP62, WO72) 1 0 0 0
anelastic (LH82) 1 0 1 0

Table 2: Switches for the different equation sets inspeotéte normal mode analysis.

The coefficient functions of the linearised equatiohg){(22) are dependent om To reduce this-

1 For the pressure gradient and the buoyancy term LH82-4pel09 ™ + g&' /©q instead of the correct termcpy@0TT +
g9’ /©g (Nance and Durrarll994). In linear approximation the difference between thesetewrms is—c,m'0g. Expressed

1

by the variables used in the equation system above this capgyeximated linearly by % %2 p.
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dependency (the following Fourier transformation recuiesen constant coefficients) we perform a
variable transformation by a function of the density acoaydo Bretherton(1966 section 5):

g = <%> . (29)

whereps is a constant reference value (e.g. at the bottom). The expiasia = —1/2 for ¢ = u, v, w,
T anda = +1/2 for ¢ = p, p’. Insertion into eqns. 1(7)-(22) results in a quite similar system with
additional terms proportional to the (inverse) scale hieigh

9 (10gP
0= 57 <Iog Ps> . (24)

In the special case of an isothermal atmosph@ge=(const) the density is purely exponential and
therefored = g/(RTo) = const The result of this Bretherton transformation is that somefficients
(namely those- 1/ps) become constant, whereas others lk&Z, ~ To, ~ & remain dependent on
(they are only constant for an isothermal atmosphere). ldstztdependency is quite weak, therefore
they can also be considered nearly as constant. This allovestent the analysis to more realistic
stratifications (see 'second stratification case’ below).

It is convenient to introduce the acoustic cutoff frequency

g2
Wi =N*+ (25)
S
with the Brunt-Vaisala-frequency
gdd g (dTo ¢
Ne=22 22 (2242, 26
Oy 0z To<0z+cp (26)

With the aid of the sound velocity, the ideal gas equationthachydrostatic equation one can derive

fd
f =22 (27)

Po 0z

and therefore®d = w?/g.

Now we can Fourier transform the equations by
G0V Z,) = Bk, Ky, kg, ) @l hoyHezet), (28)

This leads to a system of the for (Gp, Vo, W, B, Pp) T = 0 with

iw+ap(iky)?  f — apkky apiky(ikz + 3) 0 ket
—f —apkdy iw+ap(iky)?  apiky(ik,+ 2) 0 —ikyx
A= | apik(ik;+3) apiky(ik;+3) Siw+aplik,+$)2 -2 Ags (29)
—iKkyps —ikyPs %wg — (ikz+ (—;)Ps oiw 0
0 0 — N -2 iw

with the abbreviation

.0\ 1 1 N?
Ags = — <|kz—§> — =0

After an appropriate non-dimensionalization the requertrdetA = O leads to the characteristic equa-
tion for w(k). This delivers the following dispersion relations:
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The characteristic equation for then-hydrostatic, compressible equations follows from the switches

. 1 1 N
4 2 2 3 2,2 Wy 2 2
w+aD<|k —|Zé +k26>w—<csk +Z 5 N2+f>w

. 1 1 Wl
—an2<|k§—|252+k25> w+c§(k§+k§)N2+f2<c§k§+zwga_)aN2> -0 (30)

For ap = 0 we get the correct compressible solution whereas the imftuef the artificial divergence
damping can be inspected by # 0.

The differentanelastic approximations follow from é; = 1, &, = 0 (andap = 0). The equation sets of
OP62 and WO72 are generated &y, = 0, those of LH82 byd y = 1. This results in the dispersion
relation

[§k2+alj| W’ — [%(karks)Ner f2 (%@Jralﬂ =0 (31)
with
o +}2n2(1+5LH)—3
WV 4 1w

andn:= N/w,. The anelastic approximation eliminates sound waves, thelywo branches for gravity
waves are contained. Purely horizontally propagating wave undamped. A small damping occurs if
the wave vectok has a vertical component, too.

(32)

a = 1+ (1— a_H)lkZ

Discussion of theresults  Two stratifications are considered. The first case is anéswotal atmosphere
with To = 260 K. In this case the inverse scale heigh®isz 1/76065 1/m, cs ~ 3232 m/s, N ~
0.01919 1/s, andy, ~ 0.03591 1/s.

N=0.019191 /s, =0.0001 /s, alpha_D=0/160000m"2/s, arg k=0.0 N=0.019191 /s, f=0.0001 /s, alpha_D=0/160000m"2/s, arg k=0.0

0018 0.01925

0.016 st 00192

0.014 et 0.01915

0012 0.0191

0.01905

Re (omega) in 1/s
Re (omega) in 1/s

0.008 0.019

0.006 iy 0.01895

0.004 r 0.0189

compressible
ible + div.damp. ------- 0.01885
anelastic (OP62/WQ72) -------+
anelast‘lc (LH82)

I : I
0 2e-05 4e-05 6e-05 8e-05 0.0001 0 0.0005 0.001 0.0015 0.002 0.0025
|k| in 1/m |k in 1/m

compressible

" / / + div.damp. 4
anelastic (OP62/WQ72) «-------
ane\asllF (LH82)

Figure 3: Dispersion relation for horizontally propagatirgravity waves (i.e. &= 0) for the isother-
mal atmosphere gF= 260K, f =104 1/s). Red: correct (compressible) solution, green: corsgpre
ible equations with divergence damping, blue: OP62 appnation, magenta: LH82 approxima-
tion. Left: focus on long waves, right: focus on short waves.

The right panel of Fig.3 shows the behaviour for short gravity wavés= 0.0025 1/m corresponds
to a wavelengthh = 2rr/k = 2.5 km). All the anelastic approximations are quite close ® ¢brrect
solutionw — N for k — c0. The compressible equatiomgth divergence dampindo not converge to
this solution. But the deviations are less than about 0.08&4dlzerefore are negligible.
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The left panel of Fig.3 focuses on long gravity wave& £ 0.0001 1/m corresponds to a wavelength
A = 63 km). Obviously the divergence damping has no spuriousdnfie on this type of waves. The
OP62/WQO72 approximations show stronger deviations froentthe solution. The LH82 approxima-

tion represents very long waves with reasonable accuracgtimngly deviates for a medium range of
wavelengths (even greater as for OP62/WO72). These reseltim good quantitative agreement with
Davies et al(2003.

N=0.01 /s, f=0.0001 /s, alpha_D=0/160000m"2/s, arg k=0.0 N=0.01 /s, f=0.0001 /s, alpha_D=0/160000m"2/s, arg k=0.0
0.01 0.01005

0.008 0.01

0.006 0.00995

Re (omega) in 1/s
Re (omega) in 1/s

0.004

0.002 4 0.00985
compressible
compressible + div.damp. -------
anelastic (OP62/WQ72) «-------
ane\ast‘ic (LH82)

0 L 0.0098 L
0 2e-05 4e-05 6e-05 8e-05 0.0001 0 0.0005 0.001 0.0015 0.002 0.0025

|k] in 1/m |k| in 1/m

0.0099

compressible

compressible + div.damp. -------

anelastic (OP62/WQ72) -+-+-+-+
ane\astiF (LH82)

Figure 4: Dispersion relation for gravity waves as in Fig8 now for a 'standard atmosphere’
(N=0.011/s, f=10"*1/s).

The second case is a standard atmosphere Mith 0.01 1/s. By eq. Z5) we can derivew, ~
0.03196 1/s. Again a mean temperaturelof 260 K is assumed to estimate a mega- 3232 m/s. A
comparison between this case (Hy.and the isothermal case (Fig) shows that the statements above
about gravity waves in the isothermal case are qualitatitied same. But the quantitative deviations
from the true solution are much smaller. E.g. the LH82 apipnation deviates less than 4% from the
true frequency, the OP62 approximation even less.

N=0.01 /s, f=0.0001 /s, arg k=0.0 N=0.01/s, f=0.0001 /s, arg k=0.0
0.8

T
compressible
compressible -------

compressible + div.damp. 160000m"2/s «-+----- 0

0.7 |- compressible + div.damp. 160000m~2/s

compressible + div.damp. 58000m"2/s .0.05

compressible + div.damp. 58000m"2/s .

0.6

0.5

0.4

Re (omega) in 1/s
Im (omega ) in 1/s

0.3

o
0.2 < 0.35
0.4
0.1 compressible + div.damp. 160000m*2/s
7 -0.45 | compressible + div.damp. 160000m"2/s -------
-~ compressible + div.damp. 58000m"2/s «-------
0 SIS NS S S S 0 compres‘slble + div.damp. 5§000m"2/s
- -0.5
0 0.0005 0.001 0.0015 0.002 0.0025 0 0.0005 0.001 0.0015 0.002 0.0025

|k in 1/m |k| in 1/m

Figure 5: Dispersion relation for the compressible equasavith/without divergence damping for
a standard atmosphere N 0.01 1/s, f=10"* 1/s, only horizontally propagating waves. Real part
(left), colours for sound waves: red: correct solution, &lwp = 160000m?/s (or Giivx = 0.1),
cyan: ap = 58000n¥/s (or Giivx = 0.03). Imaginary part (right) colours for sound waves: red:
ap = 160000m?/s (or Gyiyx = 0.1), blue: ap = 58000m?/s (or Cyiyx = 0.03).

Finally we want to inspect the behaviour of sound waves fiieidint strengths of the divergence damp-
ing. Fig. 5 (left) shows that only short sound waves differ in the reat p&the dispersion relation
toward the true solution. But the negative imaginary paotrsha strong damping of these sound waves.
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The influence of the stratification to sound waves is smallx@eeted The appropriate figures for an
isothermal stratification look rather similar (not shown).

To summarise, the normal mode analysis shows that diveeggarmping has no serious influence on the
linear behaviour of the compressible equations. The atieksproximations are applicable on smaller
scales (e.g. regional of convection resolving scales).tfBay show some deviations for longer gravity
waves, which seems to be severe only in the case of an isahatmosphere (which is a bit unrealistic
for the whole troposphere).
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