
ECMWF Workshop on Model Uncertainty, 20 – 24 June 2011 333 

Assessment of Representations of Model Uncertainty  
in Monthly and Seasonal Forecast Ensembles 

Antje Weisheimer 

ECMWF, Reading, UK 
Antje.Weisheimer@ecmwf.int 

and 
National Centre for Atmospheric Sciences (NCAS),  

Department of Physics, Atmospheric, Oceanic and Planetary Physics, Oxford University, UK 
Weisheimer@atm.ox.ac.uk  

 

Abstract 

The probabilistic skill of ensemble forecasts for the first month and the first season of the forecasts is assessed, 
where model uncertainty is represented by the a) multi-model, b) perturbed parameters, and c) stochastic 
parameterisation ensembles. The main foci of the assessment are the Brier Skill Score for near-surface 
temperature and precipitation over land areas and the spread-skill relationship of sea surface temperature in the 
tropical equatorial Pacific. On the monthly timescale, the ensemble forecast system with stochastic 
parameterisation provides overall the most skilful probabilistic forecasts. On the seasonal timescale the results 
depend on the variable under study: for near surface temperature the multi-model ensemble is most skilful for 
most land regions and for global land areas. For precipitation, the ensemble with stochastic parameterisation 
most often produces the highest scores on global and regional scales. Our results indicate that stochastic 
parameterisations should now be developed for multi-decadal climate predictions using earth-system models. 

 

1. Introduction 
The inevitable approximations needed to solve the equations of weather and climate are a major 
source of forecast error and uncertainty on all timescales, from hours to centuries and longer. Over 
recent years, the multi-model ensemble has emerged in weather (TIGGE, Bougeault et al., 2010), 
seasonal (DEMETER, Palmer et al., 2004) and climate (CMIP, Solomon et al., 2007) prediction, as a 
pragmatic tool for representing the effects of model uncertainty. However, such ensembles are limited 
by the number of models available and their assumed independence, and moreover there is no prior 
guarantee that the available models faithfully represent true model uncertainty. The first of these 
problems, that of limited ensemble size, is mostly solved in the alternative approach of perturbing free 
sub-grid scale parameters within a single model framework (Murphy et al., 2004, Stainforth et al., 
2005). However, the second problem, that of ensuring true model uncertainty is properly represented, 
is even more acute in the perturbed parameter framework, since uncertainty in the structural form of 
the parameterisations is not addressed. Some of these issues are illustrated in recent analyses of multi-
model and perturbed parameter ensembles (Masson and Knutti, 2011). 

A third approach to representing model uncertainty has emerged in recent years and relies on the idea 
of stochastic parameterisation (Palmer, 2001, Palmer and Williams, 2009, Berner at al., 2011). In this 
approach, the underlying deterministic sub-grid bulk-formulae are replaced by an inherently 
stochastic formulation, recognising that the problem of representing sub-grid tendencies as a function 
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of the resolved variables may not be consistent with underlying scaling symmetries of the dynamical 
equations or with observations of power law structure in the real atmosphere.  

In this paper we assess the skill of the different representations of model uncertainty (multi-model 
ensemble MME, perturbed parameter ensemble PPE, stochastic physics ensemble SPE) as outlined 
above, using IPCC-class global coupled ocean atmosphere models, in monthly and seasonal forecast 
mode. These ensembles were made as part of the EU-FP7 ENSEMBLES project, which promoted the 
concept of probabilistic and seamless prediction across a range of timescales from seasons to a 
century. We focus on the analysis of probabilistic predictions of precipitation and near-surface 
temperature over land areas on time scales of one month to one season, and on seasonal forecasts of 
sea surface temperature (SST) in the tropical equatorial Pacific. 

2. Description of models and experiments 
A co-ordinated set of retrospective seasonal forecasts (re-forecasts) using the MME, the PPE and the 
SPE was carried out to study the impact on forecast skill of these three approaches to represent model 
uncertainty. The ENSEMBLES MME comprises five coupled atmosphere-ocean general circulation 
models developed quasi-independently in Europe and initialised using realistic estimates of the 
observed states (Weisheimer et al., 2009a). Each model was run from an ensemble of nine initial 
conditions which results in an overall MME size of 45 members.  

The PPE seasonal re-forecasts were generated with the UK Met Office Decadal Prediction System 
(DePreSys, Smith et al., 2007, Doblas-Reyes et al., 2009, Smith et al., 2010) by perturbing poorly 
constraint atmospheric and surface parameters. Eight model variants with simultaneous perturbations 
to 29 parameters (see   
www.ecmwf.int/research/EU_projects/ENSEMBLES/table_experiments/pert_param_desc.html) and 
one standard unperturbed version of the model were used in the nine-member PPE re-forecasts.  

For the nine-member SPE, two different stochastic physical parameterisation schemes were applied to 
the atmospheric part of ECMWF’s coupled seasonal forecast model using version IFS-
CY35R2/HOPE T159L62/1°. The stochastically perturbed parameterisation tendency scheme (Buizza 
et al., 1999; Palmer et al., 2009) applies univariate Gaussian perturbations to the wind, temperature 
and humidity tendencies of physical processes in the form of multiplicative noise with a smoothly 
varying pattern in space and time. A two-scale version of the perturbations with a shorter 
characteristic spatio-temporal scale on the order of 6 hours and 500 km together with a longer scale of 
30 days and 2500 km has been used. The stochastic backscatter scheme (Shutts, 2005; Palmer et al., 
2009) is based on the idea of backscatter of kinetic energy from unresolved scales. It is formulated in 
terms of a spectral stream function forcing field estimated from the numerical, convective and 
orographically induced dissipation rates and uses vertical phase correlation. For comparison, a set of 
control re-forecasts with the ECMWF model without any stochastic physics parameterisations has 
also been generated (CTRL). 

The re-forecasts comprise the ENSEMBLES stream 2 set of experiments for boreal summer (June - 
August, JJA) and winter (December - February, DJF) seasons initialised on 1 May and 1 Nov, 
respectively, over the re-forecast period 1991-2005. 

http://www.ecmwf.int/research/EU_projects/ENSEMBLES/table_experiments/pert_param_desc.html
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3. Temperature and precipitation forecast quality over land  
Here we look at forecast skill for predicting the binary events that monthly or seasonal-mean 
temperature/precipitation anomalies exceed the upper tercile (i.e. warm/wet events) or does not 
exceed the lower tercile (i.e. cold/dry events) of the bias-corrected model climatological distribution 
for a set of land regions. As a probabilistic measure of skill we use the Brier skill score (BSS, Jolliffe 
and Stephenson, 2003). Positive (negative) BSS values indicate (no) forecast skill compared with 
trivial forecasts of climatological probabilities of 1/3. A modified version of the BSS for hypothetical 
infinite ensemble sizes (Ferro, 2007) has been used to minimise the effect on the skill measure of 
sampling uncertainty due to the different ensemble sizes of the three systems. The verification over 
the re-forecast period was carried out in cross-validation mode and confidence intervals for the BSS 
were estimated from a 1,000 sample bootstrapping with replacement (for further detail of the 
computation see Palmer et al. (2008) and Doblas-Reyes et al. (2009)). ERA-40 (Uppala et al., 2005) 
and GPCP (Adler et al., 2003) have been used as verification data for temperature and precipitation, 
respectively. 

The mean skill over all (global) land areas in terms of BSS for temperature and precipitation forecasts 
on lead times of 1 month and 2-4 months is summarised in Table 1. The SPE system scores highest 
for almost all temperature and precipitation events during the first month of the forecasts. The results 
also clearly show that the MME gives the highest scores for cold and warm temperature events in JJA 
and DJF. For precipitation, however, it is the SPE system that scores best for dry and wet JJA and wet 
DJF events. In the case of dry DJF events the PPE has the highest scores. In no situation (warm/cold, 
wet/dry, monthly/seasonal) does the control ensemble without representation of model uncertainty 
perform best. A two-sampled one-sided t-test applied to the bootstrap resamples of each event in 
Table 1 supported the hypothesis that the highest BSSs are statistically significantly larger than the 
second largest BSSs with all p-values < 0.02. 

A similar analysis has been performed for a set of 21 standard land regions. By way of summary, 
Figures 1 and 2 show which of the four forecasting systems has highest BSS scores during the first 
month and first season of the forecast respectively. Figure 1 indicates the forecasting system that 
produces the overall highest BSS during the first month of the forecasts for cold May (a), warm 
November (b), dry May (c) and wet November (d) events. Here, bold colors indicate BSS>0 and light 
colors stand for BSS<0. As can be seen, the best-performing system varies with the variable, event 
and season. For the events shown in Fig. 1, the SPE scores highest in the majority of regions, in 
agreement with the findings for global land areas in Table 1. The ECMWF control ensemble CTRL 
produces the highest BSS especially for large parts of Eurasia in November, while the MME is 
superior for cold May conditions in the tropics and during November over Africa. 
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Lead time:  
1 month 

T2m precip 
MAY NOV MAY NOV 

cold warm cold warm dry wet dry wet 
CTRL 0.147 0.148 0.126 0.148 0.044 0.061 0.058 0.075 
MVE 0.178 0.195 0.141 0.159 0.085 0.079 0.080 0.099 
PPE 0.059 0.054 −0.012 0.033 0.031 0.009 0.031 0.000 
SPE 0.194 0.192 0.149 0.172 0.104 0.118 0.095 0.114 
Lead time:  
2-4 months 

T2m precip 
JJA DJF JJA DJF 

cold warm cold warm dry wet dry wet 
CTRL −0.024 −0.002 −0.011 0.063 −0.032 −0.020 0.037 0.042 
MVE 0.084 0.082 0.037 0.090 0.023 0.030 0.041 0.039 
PPE 0.004 0.046 −0.001 0.064 0.013 0.006 0.046 0.035 
SPE 0.059 0.054 0.019 0.076 0.037 0.037 0.040 0.062 

Table 1: Brier Skill Scores for predicting eight events of global land area 2m temperature and 
precipitation for the four forecasting systems. Bold figures indicate the system with the highest 
score. The highest scores for all events are significantly different from the second highest scores 
with p-values < 0.02, see text for details.  

 

Corresponding results for seasonal-mean temperature and precipitation events on forecast lead times 
of 2-4 months are displayed in Fig. 2. Although the performance of the individual systems varies and 
no clear “winner” can be identified, there is a tendency for the MME to produce highest scores for 
temperature events and for the SPE to produce highest scores for precipitation events. These 
conclusions are supported by the findings of Table 1 where we identified MME and SPE as the 
forecasting systems producing the highest scores for global land areas for temperature and 
precipitation, respectively. 

One potential reason for the different relative performance of SPE for near-surface temperature and 
precipitation lays in the vertical structure of the physical tendency perturbations with no perturbations 
applied in the lowest ~300 m of the atmosphere. The impact of this would be expected to be larger for 
near-surface temperature than it would for precipitation which is more linked to processes higher up 
in the atmosphere. 

The Brier score can be decomposed into the three components reliability, resolution and uncertainty 
(Murphy, 1973) that describe certain attributes of the forecasts. In order to understand why some of 
the forecasting systems perform better than others, it would be desirable to be able to compare the 
reliability and resolution components for the different systems. However, all these statistical measures 
strongly depend on the size of the ensemble system (see Doblas-Reyes et al., (2010)) even though 
some attempts were discussed to de-bias the BSS (Müller et al., 2005; Weigel et al., 2007). To our 
knowledge, the only methodology to overcome the problem is the one suggested by Ferro (2007) 
which derives an analytical expression of the BSS for a hypothetical infinite ensemble size. Unlike the 
full BSS, we know of no method to correct the reliability and resolution components of the skill score 
for ensemble size. 
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Figure 1: Probabilistic skill comparison for cold May (a), warm November (b), dry May (c) and 
wet November (d) between the ENSEMBLES multi-model ensemble (MME), perturbed physics 
ensemble (PPE), stochastic physics ensemble (SPE) and the control simulation for the stochastic 
physics ensemble (CTRL) on forecast lead time 1 month. The forecasting system with the highest 
Brier Skill Score is indicated with bold (light) colors for skill scores larger (smaller) than zero. 
Definition of the regions after Giorgi and Francisco (2000).  

 

 

Figure 2: As in Fig 1 but for forecast lead times of 2-4 months and the following events: cold JJA 
(a), warm DJF (b), dry JJA (c) and wet DJF (d).  
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4. Tropical Pacific SST re-forecasts 
The El Niño/Southern Oscillation (ENSO) in the tropical Pacific is the prime example of a coupled 
atmospheric and oceanic phenomenon on seasonal and inter-annual timescales and a skill comparison 
between the MME, PPE, SPE and CTRL in terms of predicting SSTs in the Niño3 region (5°S–5°N, 
150°W–90°W) has been carried out. Figure 3 shows the temporal evolution over forecast time of the 
ensemble-mean root-mean square error (RMSE) and ensemble spread of the bias-corrected re-forecast 
anomalies. For comparison, results from a simple statistical persistence forecast model are also 
plotted. In a perfect ensemble, over a large number of ensemble forecasts, the RMSE of the ensemble 
mean would equal the ensemble spread about the ensemble mean. A general feature of single-model 
ensembles is that their ensemble spread is substantially smaller than their RMSE, that is, each 
individual ensemble is underdispersive, or overconfident (see Fig 2 from Weisheimer et al. (2009a) 
for the spread-skill relationship of the five individual model ensembles contributing to the MME). 
Figures 3a and 3c show this deficiency for the CTRL and PPE systems (neither take account of any 
structural model uncertainties).  

 

 

Figure 3: Skill comparison for predicting Niño3 SST anomalies in a) the control simulation 
(CTRL), b) the ENSEMBLES multi-model ensemble (MME), c) the perturbed physics ensemble 
(PPE) and d) the stochastic physics ensemble (SPE) showing the ensemble mean RMSE (red 
solid), the ensemble spread (red dashed) and the RMSE of a simple persistence reference forecast 
(black dash-dotted) as a function of forecast lead time.  

 

As has been demonstrated in numerous studies (e.g., Palmer et al., 2004; Weigel et al., 2008), the 
multi-model combination effectively reduces the RMSE while the ensemble spread is increased 
leading to overall improved skill. For the MME SSTs this leads to an almost perfect match between 
the RMSE and spread (Fig 3b). In contrast, the CTRL and PPE reveal a substantial mismatch between 
the RMSE and ensemble spread on all lead times. Similar results have been found for the PPE over 
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the tropics and for a longer re-forecast set (Weisheimer et al., 2009b). SPE performs better than the 
CTRL system (Fig. 3d) due to a pronounced increase of the ensemble spread so that a good spread-
skill relationship is obtained on forecast lead times of 1 to 4 months. The spread increase also leads to 
more reliable forecasts and thus better probabilistic skill scores. 

5. Conclusions 
 A goal for the development of a forecasting system, for either weather or climate time scales, is the 
provision of reliable predictions. This necessarily implies that predictions must take explicit account 
of inherent uncertainties in the prediction process, and therefore be probabilistic in nature. A key 
source of uncertainty in the prediction of weather, and even more climate, arises from the 
computational approximations needed to solve the underlying equations of motion. Here, following an 
earlier analysis by Doblas-Reyes et al. (2009), we compare the performance in monthly and seasonal 
forecast mode, of three different approaches to the representation of model uncertainty: the multi-
model ensemble, the perturbed parameter ensemble, and the method of stochastic parameterisation. 
We also compare these with a default ensemble with no representation of model uncertainty. On the 
monthly timescale the results are fairly clear-cut that the system with stochastic parameterisation 
generally provides the most skilful probabilistic forecasts and the system without representation of 
model uncertainty never provides the best forecasts. On the seasonal timescale the results are more 
mixed: the multi-model ensemble provides more often the best forecasts of near surface temperature, 
whilst the stochastic parameterisation ensemble provides more often the best forecasts of 
precipitation. This result may indicate the need to extend the notion of stochastic parameterisation into 
the ocean and land surface model. 

In discussing the PPE system, it should be noted that no corresponding control ensemble based on the 
same underlying model as PPE but with fixed parameter values was available for comparison. Hence 
the results above should not be interpreted as implying that the PPE method is overall worst of the 
three techniques studied – the relative poor results from PPE (e.g. in the first month) could reflect that 
the underlying model itself was relatively poor. In fact, it would seem plausible to speculate that it 
may be possible to systematically outperform an MME using a single model system that combined 
aspects of PPE and SPE.  Also, it might be possible that an ensemble forecast system which combines 
all three approaches studied here may prove optimal, but an analysis of this is beyond the scope of this 
paper. 

The representation of model uncertainty in climate change projections is particularly problematic as 
there is as yet little verification data to assess potential representations. As a result, the concept of 
seamless prediction has arisen (Palmer et al., 2008, Hazeleger et al., 2009), that climate models can 
and should be tested in weather and seasonal prediction mode. The notion of seamless prediction 
suggests that the results presented here may be relevant on longer multi-decadal timescales and that 
stochastic parameterisations should now be developed for multi-decadal climate predictions using 
earth-system models. 
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