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ABSTRACT

Multimodel combination has become an accepted techniquapoove the reliability of weather and climate
projections on all time-scales. The underlying mechansthat of a systematic widening of ensemble spread
which often leads to a reduction of overconfidence and hencienprovement in prediction skill. If enough
training data (e.g. reforecasts) are available, multicheki# can be further enhanced by applying performance-
based model weights. Remaining reliability deficits canleast in principle, be accounted for by statistical
postprocessing. On the long time-scales of climate chamyeever, the lack of verification data implies that
neither the effects of model weighting, nor the realism efuhderlying paradigms of ensemble interpretation, can
be objectively judged. Any uncertainty estimate obtairattliis time-scale is therefore necessarily conditional
on the models available as well as on prior assumptions coimgethe credibility and statistical properties of the
participating single models. These limitations indicduattthere is a clear need for more systematic approaches
to estimate model uncertainty, particularly on the longetistale of climate change.

1 Introduction

Multimodel combination is a pragmatic and well-acceptechtggque to estimate the range of uncer-
tainties induced by model error. The success of multimotteimproving the reliability of weather
and climate projections has been demonstrated in numetadges (e.g.Krishnamurti et al. 1999
Palmer and Co-authar004 Weigel et al, 2008. In the following, some conceptual issues with re-
spect to the construction, interpretation, potential dandtdtions of multimodel ensembles are dis-
cussed. This is first done from the perspective of weathectsts and seasonal predictions (Section 2),
and then from the perspective of long-range climate prigest(Section 3). Conclusions are given in
Section 4.

2 Multimodelsin weather and seasonal forecasting

On the short time-scales of weather and seasonal foregagtiadiction skill of a model can be sys-
tematically assessed by verification, i.e. by comparing foascasts, or reforecasts, with corresponding
observations by appropriate skill metrics. Similarlygetise effects of multimodel combination, and the
strengths and weaknesses of different combination metluaaisbe systematically assessed by verifi-
cation. In this section, the following three questions dsewssed: Why do multimodels improve skill
(Section 2.1)? What is the conceptual difference betweiirgsikn due to multimodel combination and
skill gain due to recalibration (Section 2.2)? And, can tkid ef multimodels be further enhanced by
assigning skill-based weights to the participating singtedels (Section 2.3)?
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2.1 Why do multimodelsimprove skill?

In the case of deterministic forecasts, it is straightfadv@ demonstrate the effect of model averaging
on the expected prediction error (eAnnan and Hargreave2011): Let my, ny, ..., m, be (determin-
istic) forecasts obtained from models, letM = 25" . m be the multimodel mean, and Ietbe the
verifying observation. The expected mean squared errolM$ a single model forecast can then be
formulated as:

%Ij (mi—X)2 _ %‘ii[(m_M)_(X_M)]Z
= %ii(mi—M)Z_%Ii(mi_M).(X_M)+(X_M)2
B %ii(m—M)2+(X_M)2 > (x=M)? (1)

That is, the MSE of the multimodel averade— M)z, is always lower than (or equal) the average MSE
of the single model forecasts. However, it can also be shbedrtiere is always at least one model that is
equal or better than the model average. Yet, in practicelisiglly not possible to judge a priori which
model that would be at a given time. Indeed, the individuak$land strengths of models typically
vary with forecasting context (location, predictand, ialization time, etc.), so that in the long run,
i.e. averaged over a sufficient number of grid-points anddast realizations, multimodel approaches
usually outperform any single-model strategdafiedorn et al2005.

From a probabilistic perspective, i.e. if several singledelensemble (SME) forecasts are pooled to-
gether to a multimodel ensemble (MME) and are verified withr@bgbilistic skill metric, the picture
changes in that situations can be found where even a modeatdhaistently performs better than the
other models over the whole range of prediction contexts beagutperformed by a multimodel (e.g.
Doblas-Reyes et al2005 Weigel et al, 2008. In the following, this apparent paradox is explained and
resolved with the help of a simple conceptual model of seaspredictability {Veigel et al, 2009.
Note that, despite the seasonal focus of the following disicin, the same line of argumentation holds
for other time-scales, such as weather forecasting.

Consider a set of observatioms(e.g. seasonal averages of surface temperature at a givatioly).
Assume that each observation can be formulated as the sunmofial-predictable signal and an
unpredictable noise terigy, that is

X=HU+8& . (2)

U can be thought of as the expected atmospheric responsently starying and predictable boundary
conditions such as anomalies in sea-surface temperatini&s sy represents the chaotic and unpre-
dictable components of the observed dynamical systeni and g are assumed to have zero mean,
i.e. anomalies are considered rather than absolute valletersr.gx be the unpredictable internal variabil-
ity, i.e. the variance of the (hypothetical) distributiohpmssible outcomes, given the predictable signal
K. This situation is illustrated in Figs. 1a and b: the presenica given predictable signal shifts, and

on average also narrows, the distribution of possible eo&owith respect to climatology.

Now assume that prior to each observaticacorresponding ensemble forechst (f1, fa, ..., fy) with

M ensemble members has been issued. Assume that theset®egedssued as anomalies with respect
to the mean of the model climatology. If the ensemble fortscaie perfectly reliable, then the observa-
tions x and the individual ensemble member forecastshould be statistically indistinguishable from
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Figure 1: lllustration of reliable and unreliable forecasfadapted fronWeigel et al.2009. Consider a climatol-
ogy of observed outcomes (a). Under the influence of anosnalielevant and predictable boundary conditions
(e.g. SST in the context of seasonal forecasting, or a pddli flow regime in weather forecasting), the distri-
bution of possible outcomes is shifted and sharpened @lintatology (b). The expectation of this constrained
distribution is the potentially predictable signal and its standard deviation is,. A reliable ensemble (c) would
fully sample this distribution of possible outcomes. Areliable ensemble with ensemble spregd# o, does
not appropriately sample this distribution (d), and the emble mean may differ fropby an error shifteg. Note
that the probability densities are scaled differently hiereillustrative purposes.

each other. This implies that, for a given predictable dignaeach forecast membédy represents an
equally likely random sample from the distribution of piésiobservable states. A reliable ensemble
forecast therefore has the following structure:

fi = u+s 3)

with oZ = 0Z. This is illustrated in Fig. 1c. The ensemble mean is thenrdiiased estimator of the
predictable signgit, and the ensemble spread estimates the uncertainty otinedatcome.

For real ensemble prediction systems, however, the exppecteemble means are not necessarily iden-
tical with the predictable signalg. In fact, ensemble forecasts are often seen to be overcanfide
meaning that the ensemble spread is too narrow while beinmigies at the wrong value. This can be
considered in the conceptual model of Bdpy adding an additional scalar error teegg- rather like the
idea of model error which affects all ensemble members gqual

fi = U+tepte (4)

with 0,52i < aszx. This is illustrated in Fig. 1d. Note that the individual mieen forecastd;, while still
being statistically indistinguishable from each otheg, mow statistically different from the observations
X. In such a forecasting system, the ensemble mean is not any amounbiased estimator of the
predictable signal, and the forecasts are unreliable. $uelconfidence is penalized by probabilistic
skill metrics and implies lower skill scores than if the foasts were reliable.

Now assume that an MME is constructed by combining the outpsieveral (overconfident) SMEs
stemming from different models. If all models see the sansgliptable signaju, and if the model
errorseg are independent, the combination leads to a widening oftiserable spread, a reduction in
the error of the ensemble mean (#eterms cancel out), and thus a reduction of overconfidende an
an increase of skill. This is illustrated in Fig. 2, where atkgtic generator of forecast-observation
pairs based on Eq&-4 (details inWeigel et al, 2009 has been applied to assess the effect of model-
combination on skill. As can be seen, multimodel combimatieduces overconfidence and improves
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Figure 2: Expected skill of multimodel ensemble forecasts dunction of the number of participating single
model ensembles (adapted frakeigel et al. 2008. The red line indicates well-calibrated reliable enseasl
and the black line represents highly overconfident ensesniblee ensembles have been generated from synthetic
toy model simulations. It can be seen that only in the latésecdoes model-combination truly enhance prediction
skill, because multimodel combination of overconfiderglsimodel ensembles widens the spread. The underlying
‘mechanics’ of multimodel combination is illustrated byetfour small panels at the bottom of the plot: The
combination of more and more overconfident single modelebles (shown as grey shading) successively widens
the ensemble spread and reduces the ensemble overconfidetiiceventually the entire predictable signal is
correctly sampled and the forecasts are reliable.

skill beyond the skill of the best participating SME. Undees$e conditions, even the addition of a poorly
performing model can improve the skill of the MME, but onlyhg poor performance of the SME is due
to overconfidence and not lack of predictable signal. Thisadilink between overconfidence and the
success of multimodel combination has also been identifi¢iu real seasonal forecasté/¢igel et al,
2008.

2.2 Multimodels versusrecalibration

Having seen that the widening of ensemble spread and thugduetion of overconfidence is a key
mechanism to explain the success of multimodel combinati@question arises as to whether a simi-
lar effect could be achieved in a cheaper way by a recaldmwadiased inflation of ensemble spread? Inits
simplest configuration, such a recalibration strategyafod example consist of multiplying the ensem-
ble mean with a scaling factoyand the ensemble spread with a scaling fagterg.Doblas-Reyes et al.
2005 Weigel et al, 2009. If applied to the conceptual model of E4j.a recalibrated foreca$f® would
then be given by:

fRe=r(u+ep)+s6 . (5)

Optimum values of ands can be determined from reforecasts. Note that here it imasduhat sys-
tematic biases have already been removed a phideigel et al.(2009 have demonstrated that such an
approach can indeed strongly enhance the reliability ansltte skill of (seasonal) ensemble forecasts.
However, since is in most cases smaller than 1 due to the predominatingdetewerconfidence (im-
plying that the ensemble mean is shifted towards the clitogiwal mean), such a recalibration scheme
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implicitly destroys a part of the predictable signabnd thus a part of the predictable variance. In con-
trast to that, MMEs may in the ideal case, that is if all pgpating single models “see” the same signal
p and have independent model error terggs become reliable by canceling out teg-terms while
retaining the predictable signgl. This leads to an improvement of the skill attribute of regoh.

In principle, multimodel combination therefore has thegmdial to yield superior results, particularly
since the effectiveness of most recalibration schemeagfralepends on the length of the reforecast
data record available and on distributional assumptiomsedlity, however, only of a finite number of
SMEs is usually available (“ensembles of opportunity”, Seetion 3.1), and the model erragg are
often highly correlated and fail to cancel out, so that in ynaeases the skill of recalibrated SMEs is
comparable to or even better than the skill of MMBEgefgel et al, 2009. Several studies have indi-
cated that optimum results may be obtained by a combinafioecalibration and model combination
(e.g. Stephenson et al2005), i.e. the two techniques should be treated as complenyerdtrer than
competing approaches.

2.3 Modd weighting

So far, it has been tacitly assumed that the models to be cembisee” the same predictable sigpal
but in fact there may be major differences in how well indisatimodels resolve the physical processes
that are relevant for predictability. For instance, a seabprediction model which is not able to resolve
ENSO events will necessarily fail to exploit the seasonatmtability arising from ENSO. In contrast
to the discussions of Section 2.2, the addition of such a imtodan ensemble of ENSO-resolving
models would reduce skill. One option to avoid such skill elegration is weighting the participating
SMEs according to their prior performance. Many approacti@sodel weighting have been suggested
in literature. They are typically based on a non-linear roptation of past forecasts with respect to a
specific skill metrics, Bayesian approaches with climajglas a prior, or regression approaches (e.g.
Rajagopalan et al2002 Raftery et al. 2005 Coelho et al.2006 DelSole 2007 Weigel et al, 2008).

All these approaches have in common that they indeed cad gigierior skill as compared to equal
weighting, but only if enough training data are availablelbtain robust weights. If the weights are not
robust, more skill may actually be lost than could potelytiake gained by model weighting. This is
illustrated in Fig. 3. The plot is based on the analysis ofseal 2-m temperature forecasts stemming
from 40 yr of hindcast data of two ensemble prediction systéietails inVeigel et al, 2010. It can be
seen that the equally weighted combination of these two tagdlelds on average substantially higher
skill than any of the two single models alone, and that skili be further improved by model weighting.
However, if the amount of independent training data is syat&ally reduced, the weight estimates
become more uncertain and the average prediction skillsdriopfact, if the weights are obtained from
less than 20 yr of hindcast data, weighted multimodel faescare in this example actually outperformed
by the equally weighted ones. This issue will be discusseihag the context of long-range climate
projections in Section 3.2.

3 Multimodelsin long-term climate change projections

As in weather and seasonal climate forecasting, multinsoded also widely used in the context of
multidecadal climate change projections to reduce ovéidemce and enhance reliability of the pro-
jections. In fact, the climate projections and correspogdincertainty estimates provided IRCC
(2007 heavily rely on multimodels. Fig. 4a, for example, shows thultimodel mean and one stan-
dard deviation uncertainty range for global temperaturetfe historic simulations and projections for
three IPCC SRES scenarios. The key challenge associatedwah uncertainty estimates is illustrated
in Fig. 5: A probability distribution needs to be derivedrfra finite set of model projections. The
uncertainty estimate obtained depends amongst othersrea thndamental issues: Has a sufficient
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Figure 3: Average global predic-

tion skill (in % RPSS) of seasonal
forecasts (JJA, lead-time 1 month)
of 2-m temperature, obtained from
the DEMETER database and veri-
fied against ERA40 data for 1960-
2001. Shown if the RPSS for
ECMWF's System 2, for the Met Of-
fice’s GloSea 2, and for multimodels
constructed with (i) equal weights;
(i) with optimum weights obtained
grid-point wise from 40, 20, and 10
yr of hindcast data by optimizing the
MULTI-MODELS ignorance score; and (i) with ran-

dom weights.
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number of models been included in the MME to sample all releaapects of model uncertainty (Sec-
tion 3.1)? Is each model equally credible, or should weigpgtsissigned (Section 3.2)? And what is
the underlying statistical framework guiding the intetpt®n of the ensemble members (Section 3.3)?
Here only a few brief comments to these questions are prdviéer a more in-depth discussion, the
reader is referred t&nutti et al. (2010 andWeigel et al.(2010. Note that these aspects are equally
relevant for the probabilistic interpretation of multim@dveather and seasonal forecasts. However, due
to the existence of verification data on shorter time-sc¢dlesrealism and potential benefits of the as-
sumptions made can be systematically assessed and jusigechmbination strategies can be adjusted
accordingly. Moreover, remaining reliability deficits cahleast in principle be corrected a posteri-
ori by statistical post-processing techniques such adibeation. The key challenge in the context of
multidecadal climate change projections arises from thetfeat the choices and assumptions made for
ensemble combination and interpretation cannot be velitiatthe sense of a robust verification so that
any uncertainty estimate obtained is therefore inherdBlyesian (see also discussion in Section 3.2).
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Figure 4: (a) Multi model mean and one standard deviationartainty ranges for global temperature (relative to
the 1980-1999 average for each model) for the historic satiorh and projections for three IPCC SRES scenarios.
(b) Mean and one standard deviation ranges (lines) plus mimh maximum ranges (symbols) for the subset of
models that have run for all three scenarios (squares) amdaflomodels (circles). The model spread for the
scenarios B1 and A1B depends strongly on what models haveiheaded in the ensemble. Froldnutti et al.
(2010.
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Figure 5: The key challenge in estimating model uncertaamtythe basis of multimodel climate projections: A
probability distribution needs to be derived from a finité sEmodel projections. This requires plenty of con-
ceptual decisions and assumptions, such as: Has a sufficisnber of models been included in the ensemble to
sample all relevant aspects of model uncertainty? Is eaathetrequally credible, or should weights be assigned?
If yes, how? And what is the underlying statistical frameunguriding the interpretation of the ensemble members?

3.1 Ensembles of opportunity

In practice, MMEs are usually not designed according teagedriteria (e.g. criteria ensuring that struc-
tural and parameter uncertainty are optimally sampled hadall models satisfy similar performance
criteria), but rather are simply constructed on the basie@fnodel runs available. That s, itis more the
number of climate modeling centers, their budgets, prawiand their modeling experience that deter-
mine the composition of a MME than physical reasoning. Surdembles are therefore often referred
to “ensembles of opportunity”. The addition or removal of adal from an MME is often seen to have
major consequences on the uncertainty estimates obtamplyjng that the model uncertainty space is
very likely to be undersampled. This is for example eviderftig. 4b, which shows the distributions of
the MMEs Fig. 4a is based upon, once only considering theesudigshose models that have been run
for all three emission scenarios (squares), and once argjdall models available for each scenario
(circles). Particularly for the scenarios B1 and A1B, theeenble spread depends sensitively on which
models have been included in the ensemble. This dependéttoy i@sults on the “arbitrariness” of the
number of models available, together with a common lack stesy in ensemble design, imposes severe
challenges in the interpretation of multimodel climatejpctions and thus represents a major limitation
of the multimodel approach.

3.2 Modd weighting

The second important question for the interpretation of aiEvbf climate projections is whether each
participating model should be equally weighted (“one maatet vote”), or whether they should be
weighted according to some criteria of prior performancee@that, in weather and seasonal forecast-
ing, performance-based weighting schemes have been stidgesnplemented and have been demon-
strated to improve the average prediction skill, it may appmbvious that model weighting can also
improve the projections in a climate change context andaedbe uncertainty range. However, as
mentioned above, the two projection contexts are not dyrecimparable. In seasonal forecasting, for
instance, usually 20 to 40 yr of hindcasts are availableckwhiimic real forecasting situations and can
thus serve as a data basis for deriving optimum model weighfthin the context of climate change
projections, however, the time scale of the predictandpgally on the order of many decades, rather
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than a couple of months. This strongly limits the number affigation samples that could be used
to directly quantify how good a model is in reproducing thenelte response to changes in external
forcing and, thus, to derive appropriate weights. Thisaditin is aggravated by the fact that existing
observations have already been used to calibrate the mdelet®m more problematic, however, is that
we do not know if those models that perform best during therobsimulations of past or present cli-
mate are those that will perform best in the future. Paranzetéons that work well now may become
inappropriate in a warmer climate regime. Physical praegssuch as carbon cycle feedbacks, which
are small now, may become highly relevant as the climategag®(e.gFrame et al.2007). Given these
fundamental problems, it is not surprising that many swdigve found only a weak relation between
present-day model performance and future projecti®@sanen2007 Whetton et al.2007 Jun et al,
2008 Knutti et al, 2010 Scherrey2011), and only a slight persistence of model skill during thetpas
century Reifen and Toumi2009. Finally, not even the question of which model performst luzs-

ing the control simulations can be readily answered buheratdepends strongly on the skill metric,
variable, and region considered (eGJeckler et al. 2008. Evidence from several studies suggests that
the task of finding robust and representative weights fonalé models is certainly a difficult problem.
This is mainly due to (i) the inconveniently long time scatesmsidered, which strongly limit the num-
ber of available verification samples; and (ii) nonstatrities of model skill under a changing climate.
If model weights are applied that do not reflect the true mededr uncertainties, then the weighted
multimodel may have much lower skill than the unweighted.oive many cases, more information
may actually be lost by inappropriate weighting than carepilly be gained by optimum weighting
(Weigel et al, 2010. This is illustrated in Fig. 6 which shows results obtaiméth a simple conceptual
toy model of climate change projections describedMeigel et al.(2010. This toy model has been
used to assess the effects of equal, optimum and inappmpviighting in generic terms by controlled
combination experiments of two models as a function of thelative skill. Note that this does not
imply that the derivation of performance-based weightsripdssible by principle. However, it does
imply that a decision to weight climate models should bernakéh great care. Unless there is a clear
relation between what we observe and what we predict, tkeofiseducing the projection accuracy by
inappropriate weights appears to be higher than the prospeuproving it by optimum weights. Given
the current difficulties in determining reliable weightg fong-range climate models, equal weighing
may for many applications well be the safer and more traespavay to go.

Having said that, the construction of equally weighted imddels is not trivial, either. In fact, many
climate models share basic structural assumptions, @ageertainties, numerical schemes, and data
sources, implying that with a simple “each model one voteatspy truly equal weights cannot be
accomplished. This is for example evident in Fig.7, whick baen published iMasson and Knultti
(2011 and shows the results of a hierarchical cluster analysith@fperformance characteristics of
the CMIP3 models during the control period. Models stemnfiogn the same institution or sharing
versions of the same atmospheric model are in most casegagtanto the same cluster, indicating that
they are more similar to each other than to the other modets.even higher level of complexity is
reached when climate projections are combined that stem finaltiple GCM-driven regional climate
models (RCMs). Very often in such a downscaled scenarioezbntome of the available RCMs have
been driven by the same GCM, while others have been driverifiegyatht GCMs (e.gENSEMBLES
2009. Assigning one vote to each model chain may then resultnmesof the GCMs receiving more
weight than others, depending on how many RCMs have beeerdpy the same GCM.

3.3 Statistical interpretation

The third, and probably most fundamental aspect for obtgingéliable uncertainty estimates from mul-
timodels is the underlying statistical framework that gsidhe probabilistic ensemble interpretation.
Many approaches have been suggested in literature, andaith&m can be assigned to one of two
interpretational paradigms. The first paradigm (“truthspduror”, e.g.Tebaldi et al, 2005 Buser et al.
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Figure 6: Increase/decrease of the expected mean squamed BtSE) of weighted averages of two single models
(solid black: optimum weights; dot-dashed: worst possitdgghts; dashed: random weights) with respect to the
benchmark of equal weighting. The results are plotted asation of the MSE ratio of the two single models to
be combined. The combination experiments are based on tleeptual model oiVeigel et al(2010.
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Figure 7: Hierarchical clustering of the CMIP3 models foeft) surface temperature and (right) precipitation in
the model control state. Models from the same institutioth models sharing versions of the same atmospheric
model are shown in the same color. Observations also are edably the same color. Models without obvious
relationships are shown in black. Froiiasson and Knuttf2017).
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Figure 8: Uncertainty (95% confidence interval width) in thesterior estimate of the change signal of sum-
mer temperature in northeastern Switzerland. The unceafgastimates have been obtained with the Bayesian
algorithm of Buser et al.(2009 and are shown as a function of the prior choice of ‘toleralsteodel projec-
tion uncertainty. 6 GCM-RCM-model chains of the ENSEMBpESfect ENSEMBLES2009 have been used.
Scenario period is 2020-2049, reference period is 1980920he figure has been adapted fréischer et al.
(2012.

2009 is based on the assumption that each ensemble member iteddingmn a distribution centered
around the truth. The other paradigm assumes that each otie @nhsemble members considered
is ‘exchangeable’ with the other members as well as with &a system (e.gMurphy et al, 2007,
Annan and Hargeave2010. Again, due to the long time-scale considered, it is diffitwjudge which
interpretation is more appropriate in a climate changeexdnfThis problem is further complicated by
the fact that any probabilistic framework applied reliesamnarray of more or less subjective prior as-
sumptions (discussed for exampleRischer et al.2011). For instance, the Bayesian ‘truth plus error’
algorithm ofBuser et al(2009 requires that a prior is specified on the ‘tolerable’ ranfprojection
errors. The choices made for this prior largely determirepbsterior estimates of model uncertainty
(see Fig. 8). This high dependency of model uncertaintyrnegés on the underlying statistical frame-
work and prior assumptions raises the question as to whitisgsossible at all at present to formulate
reliable probabilistic climate change projections on theib of a multimodel ensemble of opportunity.

4 Conclusions

Plenty of studies have shown that multimodels improve thkk skweather and climate predictions,
both in a deterministic and a probabilistic context. Multiels represent an effective ad-hoc method
to obtain first-guess estimates of model uncertainty andakenthe forecasts more reliable. In contrast
to perturbed parameter or stochastic approaches, muldlmodt only sample parameter and physical
uncertainty, but also structural uncertainty and numeéricaertainty of the dynamical cores. More-
over, multimodels are “politically attractive” in that theformation provided by different modeling
centers can be jointly considered. The improvement of ptiedi skill by multimodels is relatively sim-
ple to understand, regardless which time-scale is coresidéviultimodel combination usually widens
ensemble spread, thus reducing overconfidence and enpaetiability. This also explains why mul-
timodels are often seen to even outperform the best patiogsingle model. On the short time-scales
of weather and seasonal predictions, forecasts often ctong with a set of past forecasts or refore-
casts that can be used for a systematic verification. Wit this relatively straightforward to judge
the success of multimodels, to optimize the combinatiorhektpplied, to assign meaningful model
weights, and to correct for remaining reliability deficitg $tatistical post-processing approaches. On
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longer time-scales, however, the choices and assumptiadg wannot be assessed by a robust verifi-
cation. Estimates of model uncertainty thus become intrglgsBayesian, i.e. increasingly conditional
on more or less subjective prior assumptions. At the montiegite are no convincing concepts to derive
probabilistically meaningful model weights for long-ranglimate models, nor is there a consensus on
how quantitative estimates of projection uncertainty $thdae derived. Particularly the last aspect is
aggravated by the fact that multimodels typically représgrsembles of opportunity, i.e. they are not
constructed in a systematic way with a clear underlying @bdlstic concept but are put together on the
basis of what is available. This highlights the need for neygtematic approaches to estimate model
uncertainty, approaches which should be based on reassiemptions and principles.
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