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ABSTRACT

NICAM ( Nonhydrostatic Atmospheric ICosahedral model ) iglabal nonhydrostatic model for the climate
study by explicit cloud expression. In the model, the fulbmpressible equation system is discretized by the
finite volume method. To avoid the pole problem, it employssitiodified icosahedral grid. The nonhydrostatic
scheme developed for this model ensures the conservatiotebfnass and energy. The advection scheme on the
icosahedral grid in NICAM is an upwind bias scheme with reaturcof computational cost, having the consistency
with continuity ( CWC ). This paper gives a summary of currstatus of NICAM dynamical core, focusing on
numerical techniques used on it. The future direction taetkee scale computing is also discussed.

1 Introduction

In the last decade, NICAM ( Nonhydrostatic ICosahedral Adptwric ModelSatoh et al(2008 ) has
been continuously developed, aiming high-resolution glatmospheric simulations, by cooperative
effort of Research Institute for Global Change / Japan AgdoicMarine Science and Technology and
Atmosphere and Ocean Research Institute / The Universitglofo. This model has been employed for
the pilot study of the climate research by the global cloysteam resolving approach. The first global
cloud-system resolving simulation was performed by usimg modelfTomita et al, 2005. Although
this simulation is an aqua planet experiment, it clarifieat the global cloud-system resolving approach
is promising for the expression of hierarchical cloud oigation and the diurnal cycle of precipitation.
The subsequent papéddsuno et a).2007) analyzed multi-scale cloud organization with the intdcac

of planetary-scale motion. An attempt for climate-sewsijti estimation by this model was also per-
formed in the context of the aqua planet experimdii(a et al, 2005. As the simulation with the real
topographyMiura et al.(2007) successfully simulated the Madden Julian Oscillatioméweecurred in
December 2006 and demonstrated the usefulness of glohal-sistem resolving model to investigate
such intra-seasonal variatio@ouchi et al(20097?) also performed relatively-long range simulation of
several months in order to examine the major tropical phemanincluding the monsoon onset, MJO
and tropical cyclone associated with it. Recentigmada et al(2010 performed the first experiment
in the future warmed climate by the global cloud-system Ixésg approach to investigate the change
of tropical cyclone activity. The other NICAM activity is md in http://www.nicam.jp.

Thus, high-resolution simulations with global cloud-gystresolving approach have great potential to
improve the model performance and are very useful to inyatgithe interaction between cloud dynam-
ics and large scale phenomena with cloud hierarchical argon. In the near future, global cloud-
system resolving model will be certainly a major tool for tienate study and numerical weather fore-
casting. To enhance such research and forecasts, a cregial tkow we can obtain high computational-
efficiency and physical-performance. In this sense, thaegiy on selection of equation systems and
numerical method would be very important in the nonhydtastaodeling. In order to design the
model with high efficiency, we should consider the parakgion strategy also, considering the future
supercomputer architecture.
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Figure 1: (a) Standard grid with glevel-3. (b) Modified gridtivglevel-3.

In this paper, we review the NICAM dynamical cofe(nita and Satof2004 Miura, 2007 Niwa et al,
20117), focusing on its numerical method, current problems, amgré direction. In section 2 and 3, the
horizontal discretization and nonhydrostatic scheme I@AN are described, respectively. In section
4, the tracer advection scheme, which is very important foud; chemical, and aerosol transport, is
described. Section 5 discuss the current scheme and the filitection of development. Finally, the
exa-flops computing for the climate model is overlooked ttisa 6.

2 Horizontal discretization

2.1 Grid refinement and discretization of differential operator

The grid refinement is done by the general recursive teckeniduch is similar to that obtuhne and Peltier
(1996. In this paper, the grid resolution obtained Ibth dividing operation is called “glevél; e.g.,
Figure1(a) gives glevel-3 grid. All the variables are defined at thdives of triangular grid elements.
This arrangement is categorized into the Arakawa-A typd.gfihe control volume is defined as the
polygon constructed by connecting the gravitational asnté neighboring triangular grid elements.
The shape of control volume is hexagon except that it is jgemtat only twelve points inherited from
the original icosahedron.

We employ the finite volume method for the discretization iffiedential operators. For example, the
divergence operator is discretized as follows. Fid{g gives the schematic figure of horizontal control
volume. If a set of vectora is given at all the vertices of triangl€s vectorsu at the vertices of control
volumeQ; are interpolated as

au(Po) + BU(R) + Yu(Pr; modi6))

a+B+y ’ @

u(Qi) ~

wherea, B, andy are the areas &P Py, modi,6), QiPr+modi,6)Po, andQiPoR, respectively. The number
6 is replaced with 5 at the pentagonal control volumes. Therdence is calculated from the Gauss

theorem as

o1 2 u(Q)+u(Qiimodis)
D-U(Po) ~ a(Po) i;b, 2 - N, (2)
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Figure 2: (a) Schematic figure of control volume. (b) Modifica by the spring dynamics. (c)
Modification by the gravitational center reallocation.

whereb; andn; denote the geodesic arc length@Qy moqie) @and the outward unit vector normal to
this arc at the midpoint 0Qi Q1 modie)- a(Po) is the area of control volume at the polt. The other
differential operators such as are formulated by the smitay.

2.2 Modified icosahedral grid

The combination of the standard grid and the discretizatioBq.) has severe problems on the nu-
merical accuracy and stabilitfomita et al.(2001) proposed a modification method of icosahedral grid
in order to reduce the systematic grid noise and to improgeatituracy of operators. There are two
steps in this method. In the first step, we apply the springathjos as follows; Grid points are con-
nected by appropriate springs ( FA(p) ). Starting from an appropriate initial condition, thguations

of spring dynamics are numerically solved until the dynahgystem calms down. This modification
well reduces the grid-noise in the numerical integratioeaiations.

In the second step, the locations of gridpoints are movekaagtavitational centers of control volumes
as in Fig2(c). This modification gives second-order accuracy not ghbpally but also locally. One
arbitrary parameter to make such a grid system is the natmgth of spring. Tomita et al.(2002
examined its sensitivity to the generated grid and propaseaptimization method of the grid.

3 Nonhydrostatic framework

3.1 Governing equations

The governing equations employed in NICAM dynamical coeel@sed on the Euler’s equations with-
out any approximation. In the traditional atmospheric mMedine shallow atmosphere approximation
has been used conventionally. One may point out, howe\arthis approximation leads to inconsis-
tency for conservation of the absolute angular momenturassréeveral metric terms and the vertical
Coriolis term are neglectedhillips, 1966 Kasaharal974 Staniforth and Wood2003); if the equation
of absolute angular momentum is constructed from the setoofiemtum equations, the global integra-
tion of the absolute angular momentum is not guaranteechtosake of this approximation. NICAN
dynamical core avoids this inconsistency by considerimgdbep atmosphere. We introduce a “deep
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factor :

y=r/a, (3)

wherer anda denote the distance form the center of earth and the eaiitisratithe sea level, respec-
tively.

For the treatment of topography, we employ the terraimfoihg coordinate with the metrics as

7r(2— %) 12 _ (92 - oz

wherezr and zs are the top of the model domain and the surface height(ard¢), denotes the
derivative along the vertical direction afg denotes the spherical gradient operator along a constant
& plane at the sea level(=a).

SinceGY?2y2 is the factor of volume against the surface, we treat themmsiic variable multiplied by
this factor, i.e., the perturbation densRy= (p — pret)GY?y? ( subscriptre f stands for the hydrostatic
reference state ), the horizontal momentWm= pG/2y2vy, the vertical momenturvV = pG/2y2w,
and the internal enerdy = pG/2y2e. The governing equations for these quantities can be writte

R =~ Vi 0 (Vo ., W)\

Fri hO'y+0E<y'G +Gl/2>_ , 5)
Nn =P 0 [ P\~ =

W—H]h;-i-ﬁ(@; Y’) =—Ap—Cp, (6)
ow 7 P -~ o~

oV o () +Ra= (A€ )

OE - (. Va\ O [ (Vh ., W
5o () + 3¢ 0 (ot )
- P 0[P o[ P -
- [Vh' (DhOY/-i- £ (G Y’)) +W<Vzﬁ <GT2)/2> —|—Rg>} +Wg= Qheat, (8)

whereP = (p— pret)GY2y? is the perturbation pressurk,enthalpy,g the gravitational acceleration,
andQneat the heating rate.

A(= Ap+Azk) andC(= Cn+C.k) are momentum advection term and Coriolis term, respegthdere,
we introduce an orthogonal badis;, e;,e3}, which is independent of space wigg being in the same
direction as the angular velocity of the eafh0,Q). We definevs, v», andvs as the components of
the three-dimensional velocity with regard to the basie;, &, andes, respectively.A andC can be

expressed as
3
- Vi d Vi o, W
i;{ " (V' v>+0f Mv +Gl/2>”a’ ©)

2QpGY?y? (—Vvae1 +Vi€p). (10)

p>1
Il

O
Il

3.2 Numerical method

Since the set of governing equations we solve is the elagsies, it may contain all of the waves
realized in the actual atmosphere. The acoustic waves andigh-frequency gravity waves together
with the Lamb waves are contained as the fast modes. If a éubjicit method is employed to solve
Egs.6)-(8), the time interval is severely restricted due to the vaHropagation of the acoustic waves.
On the other hand, if an implicit method is employed for batlthie horizontal and vertical directions,
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Figure 3: Schematic diagram of temporal integration.

one has to solve a three-dimensional Helmholtz equatiopriEssure or vertical momentum. The com-
putational cost would be high in solving a multi-dimensiohizlmholtz equation especially for high
resolution simulation’s In order to avoid solving a multi-dimensional Helmholtziation, we integrate
the equations implicitly just in the vertical direction aegplicitly in the horizontal directions. This
method is called the Horizontally Explicit and Verticallgnplicit scheme ( HEVI ). This formulation
leads to one dimensional Helmholtz equation, which is ea®etsolved by the direct method, because
the matrix system is tridiagonalSatoh(2002 2003 proposed a new nonhydrostatic scheme in the
context of the HEVI scheme. In order to use it for climate datians, he formulated the scheme by
taking the conservation of mass and total energy into ceraithn. We extend this scheme to the global
domain using the icosahedral grid.

In Egs.6)-(8), the left-hand side terms are associated with fast prdpagwaves in space, while the
right-hand side terms are related to relatively slow matioie integrate the prognostic variables with
the time-splitting method, namely, the fast mode terms eatuated at every small time stég, while
the slow mode terms are evaluated at larger time Atepor the small time step integration we use the
forward-backward scheme based on the HEVI scheme, whildhé&large time step integration we use
the second-order or third-order Runge-Kutta scheme. Eigghows the time integration procedure by
the second-order Runge-Kutta scheme. Let Bi$8) be described schematically as

oV

5 ~F=s (11)
whereW, F, and S represent the prognostic variable, the fast mode term, lamdlbw mode term,
respectively. If¥ att = ta is known, we can evaluate the slow mode tendeBty). The variable is
integrated fronta to tg by usingS(ta) + F (ta + mAT) as the forcing at = ta + mAT with the fast mode
tendencyF (ta + mAT) being updated at every small step, whereepresents the index of small time
step. Thus, the temporary value of the prognostic varigblattg can be obtained. Using this value,
we can evaluate the slow mode tendeBtftg). Returning td = ta, the variable is integrated frotg to
tc by usingS'(tg) + F (ta+ MAT).

The fast mode solver is the main part of dynamical core. Wal€eithe prognostic variables into the
portions at the current large stefta or tg in Fig.3 ) and the deviations from them. Let the value of a
prognostic variablep at the current large time step géand the deviation from it bg* (= ¢ — ¢').

1 This is still debatable. Some technique such as the muttispiver may resolve it or not. Anyway, it is a safe stratemy t
avoid the solution of multi-dimensional Helmholtz equatio
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Based on the HEVI scheme, we temporally discretize Bi$8) by expanding the fluxes around the
timet as

R* T+AT _ R T |i| V; T+AT 0 V; T+AT o2 W T+AT B
A + Uho - % ﬁ % -G+ G172
~ Vi o9 (VL W
_|:|:|h0.7+ﬁ(7.6 +m):|, (12)
V*T+AT_v*T - * T * T - t t . .
S (0%) [ (07) Ken o
W T+AT —WHT d p* T-+AT . bl pt . .
AT o9& ( Gl/2 2) +R g =~y [(35 (Gl/zyz) +Rtg] (-A-C), (19
E* T+AT _ E* N \Vis T+AT d \VAi T+AT W THAT .
T+Dh0'<ht hy )+ﬁ ht hy .GZ+ e —|—gtW T+AT
~ ~ 0 Vi wt
— t t h
G B (1) + 5 [ (e )|
Vi - P 0 P Aty
e (O g7 (7)) -ow )
where
1 0 Pt
~t
9797 peip {yzdé (Gl/z 2) " Rtg} (16)

The work by the pressure gradient force and the buoyancy fbtbe last two terms in EAL) ) is
evaluated with Eq1(6) at the large time step. The enthalpy in the advection tehasrelates to the
acoustic wave speedcf = (Rq/C,) ht ) is evaluated also at the large time step.

In small-step integration, we first solve Etg{ by the forward method. Usiny} AT thus obtained,
Egs. (L2), (14), and (L5) can be arranged fdR, W, andP as

MTR+% (V"C;%) ~% (17)
W* T+ZT_ W T VzdaE (Zl;AZT ) = r+Arg — Sw, (18)
p* HAAT; pr T Ej adE {ht (VV;%/ZAT)] n %gtw* THT _ g, (19)
where we use the proportional relation betw@&randE*:
B = %p*. (20)
The tendency terms in Eq&4)-(19) can be written as
- () e
S = géheat* gﬁhO' <htvr*1 ;+AT> - %% ht <V; :AT ~GZ>
o (49)+ 1 (o 25
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Figure 4: Schematic diagram for the upwind bias scheme oméxagonal cell
Combination of Eqs1(7)-(19) gives the one-dimensional Helmholtz equation\as
bl 1 0 sz W T+AT bl sz W T+AT » 0 0 W T+AT
FH |:Gl/2y2 FH (AT ht Gl/2 & At g G1/2y2 +Ar ?ﬁ G1/2

1 W* T+ ATSy ) . AT
+ W TW:T DT3e [Gl/z S (P T+Arsp)} 7 R TLATSR) G (24)

W THAT andR* T+AT are obtained by solving Eq84) and (17), respectively.

For the evaluation of internal enerds/ T+27, Satoh(2002 2003 proposed several schemes from the
viewpoint of conservation; the “non-correction methodittHoes not consider the conversion of internal
and kinetic energies, the “correction method” that modifiesconversion term between the two energies
by deliberately choosing the discretization of the work eldny the pressure gradient force, and the
“conservation method” that perfectly guarantees the suthetwo energies by solving its flux form
equation. He compared the physical performance as welleasdmputational performance between
these schemes and concluded that the “conservation magbd’best. In this method, the conservation
of total energy is guaranteed by solving the flux form equmatibthe total energy:

T+AT
Etot Etot
AT

a V * T+AT WH T+AT .

whered(= g2) is the potential energk(=v-v/2) is the kinetic energy, ar = E + pGY/2y2(d+K).
Since[pGY/2y?(d +k ]H "is known,ET*2T can be calculated by

V* T+AT
+Ono- [(h+®+K)! T

A
ETHAT — ELHAT [pGl/Zyz(q)+ k)} rHAr (26)

The deviatiorE* 747 is derived from
E* T+AT __ ET+AT Et. (27)

The more detail formulation of this method is describe@omita and Satok2004); Satoh et al(2008).

4 The advection scheme and consistency with continuity

The time evolution of tracer is given as

9
T (pa)+0- (pav) = (28)
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Note that the metric term for the topography is omitted irs theection for simplicity. In the original
version of NICAM, the tracer advection scheme is the samenasim the continuity equation. That
is, the horizontal divergence operator of BJ).is used. Although this scheme has the second order
accuracy, the dispersion error is large and many spurippges appear consequently. In order to reduce
this error,Miura (2007) developed a third order upwind scheme on the icosahedidl Bven on the
distorted hexagonal-pentagonal grid, this scheme enstiteast second order accuracy. Conceptually,
this scheme is based on the val Leer’s scheme | for estimafitire mass flux on the cell boundaries.
Figure 4 gives the schematic diagram of this scheme. As in4ly), the mass flux passing through
the edgeQ;Qj. 1 during one time step is estimated as the integration of gyantthe parallelogram (
rectangle JQ;Q!, ;QiQi,1. The total amount of flux passing through the e@@®;,.1 during the time
stepAt is approximated by the amount of a tracer inside the reatang|

(|pR gr,VE N )At = /S pads (29)

The distribution of quantities in the cell is expressed by lihear distribution using the gradient op-
erator. With some algebraic calculation, these assungpitiastically reduce the computational cost
without degradation of accuracy. For example, the avergghating the time step at the center of cell
edge can be expressed as

Or = Gc = do+ (Ha)p, - (Ci — Po). (30)
To guarantee the perfect monotonicity, the flux limiter deped byThuburn(1996) is applied.

The extension of this scheme to the thee dimension is velny wigrk and it would spoil the virtue of
less computational cost of this scheme. Therefore, NICAlliap the scheme just in the horizontal
direction and employs the central difference scheme in ¢ngcal direction with the flux limiter.

However, if we calculate both of the advection terms at theeséime, the monotonicity is no longer
ensured. So, NICAM employs the directional-splitting neettdividing into the horizontal and vertical
advection. At this moment, we must take care of the congistay of the tracer advection scheme with
the continuity equation, so-called consistency with aarity ( CWC ) condition. In order to satisfy the
CWC condition on this method\liwa et al.(2011) extended the intermediate density meth&dster
1993 to the icosahedral grid. To avoid the directional bias,ftllewing three step are applied;

1. The vertical advection process during the fixst2

q - Qt—% qtk+1/2Wk*+1/2Aqutk1/2Wk*1/2] (31)
W — W
o = pt—% k+1/2AZk kl/Z] (32)
¢ = Q/p (33)
2. The horizontal advection process during ftteising theMiura (2007)'s scheme.
Q' = Qf—Z GV (34)
AS
ol = pliA. (Vi -my) (35)
&
¢ = Q'/p" (36)
Qe _% lqﬂﬂ/z""k?l/zA—Zk dL'l/ZW;l/Z] (37)
3. The vertical advection process during the Istst2.
WL, — W
Pt — pn_%l k+1/2AZk kl/Z] (38)
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qt+At — Qt+At/pt+At (39)

In the above processes, the mass flux are time-averageddoetarge time step, i.e.,

T HnATgE A 1t HnATgE A
0w A ) -5 ) @
W _ 1 stl( t+nArWt+nArAT) 1Nt ( t+nArWt+nAr) (41)
k12 = pf > (AL W) Ne nZ Put1/2Wir1)2

The use of time-averaged mass flux is crucial to satisfy theC@hdition. We can easily understand
that the combination of EE8R), (35), and B8) are perfectly same as the discretization of continuity
equation.

5 Discussion

In this paper, we summarize the current status of NICAM dyinahtore. The horizontal discretization
is the second order finite volume method with modified icodeddegrid(Tomita et al, 2001, 2002.
The developed nonhydrostatic scheme conserves the tosd amal energfatoh 2002 2003. The
tracer advection by the upwind bias scheme ensures the decdar accuracy not only globally but
also locallyMiura, 2007). To satisfy the consistency with continuity, the techieisiicombined time-
averaged mass flux and intermediate density is iNad( et al, 2011).

NICAM dynamical core is now in the mature stage as the firsiegation version. As described in sec-
tion 1, many fruitful results have been obtained by this nhoHewever, during those experiments, we
also found several problems, which should be overcome is¢lcend-generation version of NICAM.
The most concern is on the vertical discretization. NICAMh@v employing the terrain-following
coordinate. As pointed out in many literature, the presguaglient force error becomes larger if the
horizontal resolution increases. In the regional modés, phoblem is not so severe because the actual
field does not so differ from the reference hydrostatic st@e the other hand, the difference from the
reference state in the global model is larger than in theoredimodel. This leads to the large error
of the pressure gradient force at the steep topography asasionally the model blows up due to this
error. Since the steepness of the mountain becomes sevéherligher resolution, we are insisted to
change the vertical coordinate from the terrain-followtmprdinate to the height-based coordinate (
e.g. Yamazaki and Satomui@010). The Arakawa-A grid in the horizontal direction that we goy
with the spring grid has no fatal problem. The A-gird is freanfi the computational mode that appears
when the degrees of freedom for mass and momentum are diffeféne implementation and paral-
lelization are simpler than other grid types. However, @lso true that there remains the problem for
the geostrophic adjustment with short wavelength. The gdarf other grid type is controversial in the
near future in NICAM development.

6 Toward the exa-scale computing

Since NICAM was designed so as to bring out the high perfoomaanf massively parallel super-
computers in the high resolution simulation. it has good potational performance at this moment.
Toimta et al (2008 examined the computational performance on the Earth Stowiwhich is a vector-
parallel machine, and confidently remarked that the apprbas enough potential to obtain the scala-
bility on the future massive parallel machine.

The basic idea of the approach in NICAM dynamical core is the of icosahedral grid to avoid the
pole problem and horizontal explicit method to avoid thesiuity of increase of iteration process
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in the implicit method. From the viewpoint of the algorithhjs idea essentially does not degrade
the computational performance in the future massive maralachine. However, recent trend of the
hardware is now in the transition phase and is not alwaysmgtic for the geophysical application. The
assumed problems toward the exa-scale computing are awsoll

e Memory band width problem
Many cores are implemented in one CPU, so that the peak peafare becomes tremendously
high. On the other hand, increase of memory band width is,glomparing to the CPU power. In
order to obtain high performance on the scalar CPU, the effficise of cash memory is necessary.

e Hybrid architecture
To realize the exa-scale machine, it may be impossible taonkegeneral-purpose chips. The
help of the accelerator such as GPU may be needed. At the sammethere is a possibility
of hybrid architecture of accelerator and general-purpigp. This may insist on complicated
programming to model developers. The compiler and middiesvior reduction of this hard-work
is needed.

e Network bottleneck
The inner network is the most anxious concern for the sdélabits speed is a crucial issue.
The network topology is also important. The torus type obtogy seems to be better for the
gridpoint method.

e Fault tolerance
The increase of number of CPUs causes to the increase affadte. It is unrealistic to frequently
output restart files during the calculation. One remedy iduplicate a memory image even on
another computer node and allocate the memory image to aupawbdde immediately at the
node failure. However, it is very hard for the applicatiorogmammer to be insisted on such
implementation. Middle-ware to provide the mechanism auittrsuch awareness is required.

The design of exa-scale computer is not yet clear and stilhtddle. To overcome the above undesir-
able problems, much more communication between the métggyvolimate simulation community and
computer scientists are necessatry.
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