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ABSTRACT

The nonlinearity of the equations governing atmospherig fiaplies interscale transfers of energy and potential
enstrophy. It is important to understand how accuratelgeheansfers are captured in numerical models, which
have finite resolution and truncation errors, especialbr itiee resolution limit, in the presence of scale-selective
dissipation or other forms of subgrid model.

For the barotropic vorticity equation, energy and enstyoppansfers in spectral space due to truncated scales
are calculated for a high resolution reference solutionfangdeveral explicit and implicit subgrid models. The
reference solution shows a distinct and robust signal irchvieinstrophy and energy are removed from scales
very close to the truncation limit and energy is transfe(tetkscattered) into those scales that are already most
energetic. The subgrid models are able to capture the rdrabeastrophy from small scales, though none are
scale-selective enough. None of the subgrid models aeatyi@ptures the energy backscatter.

1 Introduction

In the absence of diabatic heating and frictional effedts,doverning equations for atmospheric flow
imply flux-form conservation laws for energy and potentigteophy. Thus, energy and potential enstro-
phy are conserved both locally and globally. However, thelinearity of the flow leads to systematic
transfers of energy and potential enstrophy between sdalegrticular, there will be transfers between
those scales that are resolvable and those that are urakkofer any given finite-resolution numerical
model. An important question, therefore, is: ‘How well ane interscale transfers handled in weather
forecast and climate models, particularly near the truogdimit?’

In this note we begin to address this question using the ttoguiot vorticity equation as a model prob-
lem. For the barotropic vorticity equation the conserveteptial enstrophy simplifies to the enstrophy.
We use a high-resolution reference solution to calculatectly the effect of scales smaller than some
specified cut-off on the spectral tendencies of energy asttaphy. These results are then compared
with the spectral energy and enstrophy tendencies for atyaof explicit and implicit subgrid models
when the data are truncated at the specified cut-off scale.

2 Theneed toremove potential enstrophy

It is well known that in two-dimensional turbulence and layése two-dimensional quasi-geostrophic

turbulence there is a systematic downscale cascade oftjbtenstrophy (e.g. Salmon 1998). If a

numerical model captures this downscale cascade but a@sstireresolvedpotential enstrophy, then

potential enstrophy must accumulate near the truncatioit, la phenomenon called ‘spectral blocking’,

leading to a noisy solution. Figuteillustrates this spectral blocking. The barotropic vatiequation
¢

E+D.(VZ):0, v=0ty, DPg=t, @)
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Figure 1: Initial vorticity (left) and vorticity after a feveddy turnover times (right) for a spectral solution of the
barotropic vorticity equation with no explicit dissipatiderm. Red indicates positive vorticity, and blue indisate
negative. The grid resolution B56 x 256and the spectral truncation 85 x 85.

where( is vorticity, v is velocity, andy is stream function, is solved on a doubly periodic domaingisi
a Fourier spectral method which, in the absence of any ekpligsipation terms, conserves both the
energy

£ [wgda @
and the enstrophy

1
zzé/zsz 3)

The initial state is a not-quite-uniform array of vorticédter just a few eddy turnover times the solution
has become noisy at the grid scale, and the noise becomaegsivgly worse as time increases.

Spectral blocking clearly points to the need for models toaee potential enstrophy near the truncation
limit. In practice all models include some form of explicit implicit scale-selective dissipation (e.g.
Jablonowski and Williamson 2011), one of whose roles is maawe potential enstrophy.

However, a by-product of removing potential enstrophy & #nergy is also removed. In the context of
the barotropic vorticity equation, if enstrophy is remowtdvavenumbekgiss at a rateZ then energy is
also removed at a rate = Z/k3, and this latter quantity is bounded below BykZ,,,, wherekmax is
the maximum resolvable wavenumber. In practice energy astiaphy are removed over a wide range
of wavenumbers, so the ratigy/Z is typically much greater thar/k2,.,.

Estimates of the enstrophy and available energy budgethdotroposphere (Koshyk and Boer 1995,
Thuburn 2008 and references therein) suggest enstrophgraerdy throughputZ ~ —10°s3 and

E ~ —10 5m2s 3 associated with nonlinear downscale cascades in the freesphere. (A much
larger energy sink of ordeE ~ —10*m~2s 3 is associated with boundary layer dissipation.) These
numbers suggest that the required average dissipatiomis&aks~ 10->m~1. There is evidence in the
literature (e.g. Shutts 2005, Bowler et al. 2009), as wethash anecdotal evidence (e.g. WGNE 2003)
that, at current climate resolutions and even resoluti@esl fior ensemble weather prediction, state of
the art models dissipate too much energy in the free atmospherhaps by an order of magnitude. This
can lead to insufficient variability and underdispersiveesnbles.
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One way to balance both the enstrophy and energy budgetsvireknlution models is to feed some
energy back in at larger scales. Diagnostics based on abmosmnalyses (Koshyk and Boer 1995)
show that small scales do indeed mediate an energy transéelarge scales. There have been various
proposals for representing this ‘backscatter’, includamgidissipation at certain wavenumbers (Koshyk
and Boer 1995), the Anticipated Potential Vorticity Meth@&hdourny and Basdevant 1985), Stochastic
Backscatter (e.g. Bowler et al. 2009), and vorticity confieat (e.g. Shutts, this volume).

3 Explicit and implicit subgrid models

The nonlinear effects of unresolved scales on resolve@soahy be non-negligible, and therefore they
need to be represented in numerical models. Formally thyshaaxpressed using a filtered form of the
governing equations (using the barotropic vorticity egquafor illustration):

%‘FD.(VZ) = SG, 4

ot
where L o

SG=0.(v{)—-0.(vQ) (5)

is the subgrid term and an overbar represents a filter thaivesnscales smaller than the model resolu-
tion.

Transfers of energy and potential enstrophy between redalwales and unresolved scales are mediated
by the unresolved scales. Therefore, the representatitinesé transfers is intimately related to the
representation of the subgrid term SG.

Broadly, there are two approaches to representing the isutegm. The explicit approach explicitly
constructs a mathematical model for SG in terms of resohables and adds this to the right hand
side of the discretized equations. The simplest examples¢ake-selective hyperdiffusion of the form
KO?", but a range of more sophisticated schemes have been pdof@ogeSmagorinsky 1963, Sadourny
and Basdevant 1985, Frederiksen and Kepert 2006, Sagalit 20@ references therein).

The alternative approach is known as Implicit Large-Eddy8ation (ILES). In this approach the in-
tention is to use a discretization of the governing equatishose truncation errors are able to play the
role of a subgrid model. This approach is made plausible hingdhat high-order upwind schemes
with flux-limiters typically have truncation errors thak&athe form of a nonlinear scale-selective dissi-
pation whose strength adapts to the strain rate of the reddlow; these characteristics resemble those
of many physically based subgrid models (Grinstein et d@.720).

There have been a number of studies of the validity of ILEStHoee-dimensional turbulence (e.g.
Margolin and Rider 2002, 2007, Grinstein and Fureby 200@<Bzin et al. 2007a), and some success
has been claimed, though it appears less successful wheal@gffects are important, for example near
walls (Brown et al. 2000).

The layerwise two-dimensional turbulence of large-scaieoapheric flow is a rather different flow
regime, and it is not clear that the success of ILES for thiiegensional flow will carry over. In
layerwise-two-dimensional flow energy transfers are pmadantly upscale (e.g. Salmon 1998), sug-
gesting that ILES may be less successful. On the other hhadertergy spectrum is typically much
steeper, suggesting a stronger slaving of small scalesy® sgales and therefore a greater possibility of
representing the effects of small scales in terms of largiesc The issue is relevant to state-of-the-art
weather and climate models using semi-Lagrangian advesttbemes, since the interpolation errors
introduce a scale-selective dissipation, meaning thafféctthese models use the ILES approach.

Kent et al. (2011) studied the applicability of ILES to twirgnsional flow. Using the barotropic
vorticity equation as a model problem, they diagnosed theutative effect of truncation errors on
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Figure 2: Vorticity at time t= 200 for a spectral solution of the barotropic vorticity equatiavith forcing and
dissipation. Red indicates positive vorticity, and blugioates negative. The grid resolution542x 512and the
spectral truncation i€70x 170,

the vorticity field for a variety of numerical schemes and paned them with the cumulative effect of
the subgrid term diagnosed directly from a high-resolutieierence solution. They found that several
schemes, with both implicit and explicit subgrid modelsjldocapture the leading order effects of the
subgrid term when those effects were dissipative, for examhen vorticity filaments were stretched
and thinned to the resolution limit. However, none of theesahs was successful when the subgrid term
involved upscale effects such as vortex merger or roll-ughiof vorticity filaments.

4 Effects on enstrophy and energy spectra of unresolved scales. direct
calculation

In this section we use a high-resolution reference soluifdhe barotropic vorticity equation to diagnose
the effects on the energy and enstrophy spectra of scaledesitiean some specified cut-off. The
calculation uses a doubly periodic domain discretizedgusirspectral numerical method truncated at
maximum wavenumber 170 170; the transform grid has resolution 51512 to avoid aliasing of
guadratic terms. The flow is initialized from a higher resiolu version of the initial state shown in
Fig. 1; itis forced at wavenumber 16 and there is scale-seleCf\dissipation term to remove enstrophy
near the truncation limit and a scale-independent digsip&rm (‘Rayleigh friction”) to remove energy
on large scales. Figuzshows the vorticity field at time= 200. (A typical peak vorticity value is of
order 1, so one time unit is roughly one eddy turnover time.Jhis time the flow is close to statistically
steady. All the diagnostics presented below are for thaimaheous fields at this time.

The spectral energy and enstrophy tendencies due to srabdbsare calculated as follows. Assume we
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know the Fourier transforms of the vortici@(k) and the stream functiogy(k) = —f(k)/\k\z, where
k is the wavenumber. First the energy and enstrophy tenddreyesy wavenumber are calculated for
the full-resolution data. This is done by transformii@gndy and their spatial derivatives to grid space,

calculating the Jacobian

J(x):D.(vZ):a—w%—a—w% (6)

on the transform grid and transforming back to spectral espaoobtainJA(k), (J is truncated to the
maximum retained wavenumber, 1¥@70 in our example, to avoid aliasing), then computing

E(k) Re{%} (@)
2(k) = —Re{%}, ®)

and finally integrating over angle in spectral space to oth(ik) andZ(k). Here the superscriptindi-
cates a complex conjugate= |k|, N is the grid resolution (512 in our examplé) is the wavenumber
interval in spectral space, and the fach®N* arises from the normalization of the Fourier transforms.
Second, th& and{ data are truncated to retain only those spectral compométitdk < kt for some
truncation wavenumbeir, and the calculation of the spectral energy and enstrophgetecies is re-
peated to giveEr (k) and Z7 (k). Finally, the contribution mediated by wavenumbers gretitan or
equal toky is given by _ _ _

Esa(k) = E(K) — Er(K), ©)

Zse(K) = Z(k) — Zr (k). (10)

Figure3 shows the results of this calculation for three differemttration wavenumber&; =48, 96, 144.
The threeZsg plots show that the truncated scales remove enstrophyKratkr and transfer it td > k.
The scales from which enstrophy is removed are stronghliimzhclose tokr. The magnitude of the
signal decreases &g increases, but the qualitative picture remains unchanged.

The threeEsg plots show that the truncated scales also remove energyviimmanumbers close to, but
smaller thankr. However, they also transfer energy to large scales, tcetha@enumbers that are
already most energetic. This is the signal of energy batiescaAgain, the magnitude of the signal
decreases dg increases, but the qualitative picture remains unchanged.

We have found this signal to be very robust. Repeating thaulzlon at other time instants produces
almost identical plots to those shown. A qualitatively $ampicture is seen even for rather idealized
flows that are far from fully developed turbulence.

These results provide a reference solution against whicbrgpare explicit or implicit subgrid models.
Ideally, the subgrid model for a numerical solution with rimanm resolved wavenumbdés should be
able to reproduc&sg andZsg for the samekr.

5 Effectson enstrophy and energy spectra of unresolved scales. explicit
and implicit subgrid models

This section compares a number of explicit and implicit sitbghodels against the reference solution
found in section4 in terms of their spectral energy and enstrophy transfereath case the data are
truncated to wavenumbés before the chosen scheme is applied. For this compakisen96.

Figure4 shows the spectral energy and enstrophy tendencies dueptesexplicitd* and1® hyperdif-
fusion subgrid models. A* subgrid model removes enstrophy predominantly from largeamumbers,
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Figure 3: Spectral tendencies of enerByc(k) (left) and enstrophysg(k) (right) mediated by
wavenumbers greater than or equal to. KTop: kr = 48; middle k- = 96, bottom: k = 144. Note
the different axis scales for the different valuesqaf k
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Figure 4: Top:Esg(k) andZsg(k) for kr = 96 (same as the middle row of Fig). Middle: Esg(K)
andZsg(k) for a 0* subgrid model. BottonEsg(k) andZsg(k) for a 08 subgrid model.

but is much less scale-selective than the reference solufibis is even more conspicuous in terms of
spectral energy tendency, which is almost flat for wavenusgeeater than about 10. Importantly, en-
ergy is removed at all wavenumbers; there is no representafithe backscatter. A subgrid model

is more scale-selective, but still significantly less smtlttae reference solution. Again, there is no
representation of backscatter.

UTOPIA (Leonard et al. 1993) is a quasi-third-order upwind{form advection scheme (it becomes
third order when the advecting velocity is constant). It dmerent scale-selective dissipation, and is
therefore the type of scheme that might be suitable for IU&8ay be used with a flux limiter (Thuburn
1996) to prevent overshoots and undershoots. Figwkows an estimate of the effect of truncation
errors on the spectral energy and enstrophy tendencies WhemrIA is used for advection of vorticity.
The estimate is obtained by using the Jacobian implied by RIAGn (7) and @) to obtainEy, Zy, then
subtractingEr andZr, which are computed using the spectral scheme (which hapatibtruncation
errors for the resolved scales).

The results show that UTOPIA's truncation errors do indesgdave enstrophy near the truncation limit,
though it is not as scale selective as the reference solutiowever, it also gives large enstrophy trans-
fers at small wavenumbers, with both sources and sinks. drge kenstrophy sources and sinks imply
extremely large energy sources and sinks; they are two @afemagnitude larger than the reference
solution backscatter signal. The inclusion of a flux limitestkes negligible difference to the results.

We speculate that the large energy sources and sinks at leenwaber arise as follows. The high
accuracy of the UTOPIA advection scheme is obtained thrauglancellation of leading truncation
errors in the numerical fluxes when their divergence is ¢aled. Because UTOPIA is an upwind
scheme, there is a ‘jump’ in the stencil used to compute tixe$lat locations where one of the velocity
components changes sign, at these locations the canmeltdtieading truncation error no longer occurs
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Figure 5: Top: Esg(k) andZsg(k) for kr = 96 (same as the middle row of Fig). Middle: Esg(k)
andZsg(k) for the truncation errors of the UTOPIA scheme. BottdBs(k) and Zsg(k) for the
truncation errors of the flux-limited UTOPIA scheme.

and the accuracy is significantly reduced. Thus, the flow dloisacriss-crossed by zones of relatively
large error, and this pattern projects significantly onte Yeavenumbers.

The Anticipated Potential Vorticity Method (APVM, Sadoyrand Basdevant 1985) was proposed as a
scheme for dissipating enstrophy while conserving enerdpydrostatic primitive equation atmospheric
models. It takes the form of a modification to the Corioligriein the momentum equation. When
applied to the barotropic vorticity equation the scheme is

ov ~ V2
E+(Z—D)k+D(p+E>=O, (11)

wherek is the unit vertical vector ang is the pressure, or in terms of the vorticity equation itself

%—{—D.(VZ) = [.(vD). (12)

Here,D = 8.4 (v.0¢) for some positive definite linear operatéf and suitable tunable paramet@r
We consider two possibilities proposed by Sadourny and &esd (1985).% = 1 implying

= —e/(v.mz)sz (13)

and.Z = —0? implying
Z:—G/(D(V.DZ))ZdA (14)

All terms are calculated using the spectral method.
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Figure 6: Top: Esg(k) andZsg(k) for kr = 96 (same as the middle row of Fig). Middle: Esg(k)
andZsg(k) for the . = 1 APVM. scheme. BottonEsg(k) andZsg(k) for the . = — 02 APVM.

Figure 6 shows the spectral energy and enstrophy tendencies due &P¥M subgrid modell.(vD).

For the.Z = 1 version of the scheme, there is indeed a net removal ofagfstiwhile the total energy

is conserved. Consistent with this, there is a net upscatesfier of energy; however, this transfer is
fairly local in wavenumber space, in contrast to the refeeesolution in which the energy transfer
is very nonlocal. Although there is some preference forrepsty removal to occur at the smallest
scales, it is significant across most of the spectrum. Maeavhen the coefficienf is tuned so that
the peak energy source is comparable to the referencemolais here), the enstrophy removal is much
smaller than for the reference solution. Ti#e= —[? version of the scheme again gives a net enstrophy
sink while conserving energy, but the spectral distributad sources and sinks is very erratic and very
different from reference solution.

6 Conclusions

There is evidence that numerical models of the atmosphesgpdie too much energy in the free atmo-
sphere, and this can lead to insufficient variability andardizpersive ensembles.

Using the barotropic vorticity equation as a model problem have examined the contribution to spec-
tral energy and enstrophy tendencies due to subgrid sd#detsby direct calculation using a high-
resolution reference solution, then for several explinil anplicit subgrid models. The direct calcula-
tion shows a distinct and robust signal: enstrophy and gremeremoved from scales very close to the
truncation scale, and energy is transferred to those sttaleare already most energetic.

All of the subgrid modes tested are able to remove enstropigominantly from the smallest resolved
scales, though none are as scale-selective as the refer@ntien. None of the subgrid models tested
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is able to capture a realistic energy backscatter signab #h= 1 version of APVM does provide an
upscale energy transfer, but this is too local in wavenunspace. The other schemes either remove
energy across too wide a range of scales, or produce largeirmedlistic energy transfers at small
wavenumbers.

The tendency of typical subgrid models to remove energysactoo wide a range of scales is likely
to be related to the excessive disspation reported in atneogpmodels. The effect is systematic and
deterministic, suggesting thatdgterministicscheme to restore the missing energy might be appropri-
ate. Kent (2009) tested a simple scheme for the barotroptitg equation, targeting energy input at
intermediate wavenumbers; he was able to improve the eteidget and found a small but measurable
improvement in the accuracy of the vorticity solution. Tetigg energy input at small wavenumbers
was less successful, implying that it is more important fmanethe excessive numerical dissipation at
intermediate scales than to capture the physical backscattarge scales.
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