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ABSTRACT

After a brief introduction to background error modellingist paper describes several examples of covariances in
clouds and precipitation computed from ensemble of fortatifferences performed using non-hydrostatic Cloud
Resolving Models (CRM). These kind of models allow reatifrecast of diabatic processes thanks to the explicit
parametrization of most microphysical processes. Theodetlogy is based on the use of geographical masks that
allow to compute forecast errors statistics that are isttito areas where rain or fog is predicted. The resulting
covariances strongly differ from climatological statistithat are generally used in operations. They are also in
good agreement with the physics processes that are activmée areas. In precipitating cases for instance,
strong coupling of humidity, cloud and rain water contentwlivergence has been found, as well as shorter
horizontal correlation lengths. Overall, covariances lmuds and precipitation are characterized by different
balance relationships between control variables, and toypgtinhomogeneity and therefore flow dependency.
Possible strategies to take these characteristics inrdiBrenatrix formulations are reviewed.

1 Introduction

A long-standing problem in numerical weather prediction\(R) has been to provide adequate ini-
tial conditions for the quantitative prediction of cloudsdaprecipitation, given available observa-

tions such as satellite microwave imagers, infrared ragisror Doppler radars. As pointed out by
Errico et al,, 2007, the strong non-linearities of moist physical processeerseveral issues to accom-

modate for these observations in assimilation schemeg lmasénear theory such as variational data
assimilation (VAR), especially i) the linearization of @pgation operators, ii) the handling of non-

Gaussian probability density functions (pdf) for hydroews errors, and iii) the modeling of appro-

priate background error covariances (so calBernhatrix). As a matter of fact, VAR needs a priori (or

background) meteorological fields in order to provide infation in non-observed areas and to provide
realistic reference state needed in some nonlinear olisBrvaperators. As observations, the back-
ground state is prone to error, which are taken into accauAR through the use of thB matrix.

As pointed out byDaley, 1991 B has a profound impact on the analysis, by weighting the itapoe

of the a priori state, by smoothing and spreading infornmatiom observation points, and by imposing
balance between the model control variables (CV). To estirttds matrix, two main practical difficul-
ties occur. First, the “true” state needed to measure egainat is unknown. Secondly, because of its
size, B can be neither estimated at full rank nor stored explicitBovariances have thus to be mod-
elled, typically by computing statistics on differencesvien forecasts that allow to mimic forecast
errors (reviews of such methods can be foundannister, 2008 In order to retrieve climatological
covariances, these statistics are usually performed gy ione periods and moreover averaged over the
whole computational domain, which explains why the sigrialouds and precipitation forecast errors
is weak in the final results. As a consequence, current dpeedfformulation ofB are often inadequate
in cloudy and rainy areas where couplings between errors/ofiil€@ misrepresented and where the use
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of homogeneous and isotropic horizontal correlations ateappropriate.Lopez and Bauer, 200fbr
instance pointed out that the lack of impact of precipitatabservations on the dynamical and mass
fields found in 4DVar analyses after the 1D+4DVar assintlatf radar data may be due to the absence
of coupling relationships between those fields and humidity

To address these issudsjligné et al, 2010emphasize the need to relax the ergodicity assumption in
clouds and precipitation by allowing for inhomogeneouskigaosund error modeling to represent the
spatial variability of the background error matrix and byngsof better balance relationships, based
either on statistical regressionBgfre, 2000 or on more sophisticated diabatic non linear balance
(Pagéet al,, 2007). By using geographical masks in the computatiorBpfecent studies have diag-
nosed background error covariances separately in pratigjtand non-precipitating areas for regional
models Caron and Fillion, 201)0and for cloud resolving models (CRMYiontmerle and Berre, 2010
MB2010 hereafterMichel et al., 2010. The purpose of this paper is to review some of the main con-
clusions of the latter studies and to present some recantgebtained for fog based on the same kind
of methodology. The very different behaviors that have Heend may suggest to redesignin those
areas by using more adequate balance relationships bet@eamnd by considering inhomogeneous
flow-dependent covariances.

In section 2, we recall briefly the way is modeled using control variable transforms (CVT) and de-
composed as a product of a balance operator and of a spatiafdrm. In this context, covariances

diagnosed for precipitating and non-precipitating areagdtzen discussed in section 3 and 4 for “tradi-
tional” CV (i.e wind, mass and humidity) and for cloud andhraiater content respectively. Results for

fog are also briefly presented in section 3, possible stiegegr the specification of background error

covariances modeling in VAR for clouds and precipitatiorgg given in the final section.

2 Modelling of B in the CVT framework

Most operational centres are based on the CVT methodologpjchweconsists in replacing the in-
crementdx by a control variabley in a VAR algorithm written in an incremental formulation
(Courtieret al,, 1994. For a 3DVar, the total cost function writes:

Iy = %XTXJF% <HBl/2)(—d>T R (HBl/ZX - d)
with

ox = BY?x 1)

whereR is the observation error covariance matdxthe innovation vectofy — H[xp]) that measures
the difference between the observatipand its simulated counterpart computed by applying the non-
linear observation operatét to the backgroundy,, and whereH is the linearized version dfl. In the
CVT formulation, the background term becomes trivial arelgdhservation term represents the distance
between the innovation vectdrand the increment written in the observation space. Anateantage

of the CVT is the improvement of the preconditioning.

It allows also to express univariate and multivariate atgpetB is a compact and efficient wayy
does not necessarily contain the same number of degreeseafoim thardx. For instancey may
include extra information that does not contribute dinettl the analysis (e.g. VarBOee, 200%. It
implies also that background errors of the control vegtaire uncorrelated and have unit variance. The
challenge of background error covariance modeling is taurepn BY/2 the known important features
of the background error covariance matrix. For instancesdhfeatures should be in agreement with
atmospheric balance, non-separability of the flow, and tateeaccount the effect of the observation
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density and accuracy. The formalismDérber and Bouttier, 1998xpresse8'/2 as a combination of
two terms:
BY2 —KB/?

Eg. (1) can be written:
X =B Y25x = By Y/?K ~15x

K ~1is called the inverse of the balance operator (or parametesform) and aims in taking increments
of the model’s variable and to output new less correlatedrpaters on the same grid using balance con-
straints, under the basic hypothesis that errors in ggustrally balanced parameters (associated with
Rossby modes) are decoupled from errors in unbalanced pteesn(associated with inertia-gravity
modes). B, Y2 is a block diagonal matrix called the spatial transform.itsin projecting each pa-
rameter onto uncorrelated spatial modes, and then in diyiby the square root of the variance of each

mode.

Several different representations of these operatorsthese developed at NWP centers. The ECMWF
formulation (also used at Météo-France) designs thenbel@aperators with either analytical or based
on scale-dependent regression operatDestfer and Bouttier, 199Berre, 2000 Fisher, 200 Spa-

tial correlations are constructed through empirical ggthvtal decomposition and spectral or wavelet
diagonal assumptions. On the contrary, grid point forniotet are used at NCEP and NCAR
(Wu et al,, 2002 Barkeret al., 2004 Michel and Auligné, 201pwith physical space regression-based
balances and with recursive filteByrseret al., 2003 to ensure spatial correlations. The Met-Office
formulation (ngleby, 2001 Lorencet al, 2003 is based on a grid point analytical balance but spectral
(or wavelet) transforms for horizontal correlations. Qohvariables are also different. A review of
these distinct formulations can be foundBannister, 2008

3 Diagnosis of error covariances in clouds and precipitatio
for traditional CV

3.1 Convective systems

In order to quantify the misrepresentation of clouds andipi&tion in the current climatologicd
used in the operational NWP system at convective scale ARQS#iyet al., 2010, MB2010 have
diagnosed background error covariances for precipitaimdynon-precipitating areas. Computing such
covariances from a CRM that uses an explicit microphysichbme allows indeed to document co-
variances and balances in areas that are under-represergachples of forecast differences used for
climatological covariances computation. For that purpaseAROME ensemble assimilation of several
convective cases has been built, and statistics have begouéed from forecast differences by consid-
ering separately rainy and no-rainy profiles. In the balapmeratorK used in this study, increments of
specific humidityg is linked to other CV followingBerre, 2000multivariate formalism:

5q = 248 + #5i,+.7 (5T, 5Py + 56, @)

whereéf ,01, (0T, 0Ps) are respectively forecast errors of vorticity, divergerieeperature and surface
pressure; the subscriptstands for unbalanced (total minus balanced) fields7 and. are operators
deduced from statistical regression$’ is a horizontal geostrophic balance operator that coupbssm
and vorticity. At Météo-France, EQ.is used operationally at regional (ALADINE{scheret al., 2005)
and convective (AROME) scales.

Caron and Fillion, 201@ave shown that forecast errors drift away from linear gepsiic balance over
precipitation areas and that this deviation is proportidnathe intensity of precipitation. MB2010
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have confirmed this result and have furthermore shown tretiitating areas are mainly character-
ized by: i) larger error standard deviations for divergencand vorticity , which denotes a more
intense small scale dynamical activity, ii) twice shorterrelation lengths fog andT, iii) larger ver-
tical auto-correlations in the mid troposphere reflectimg stronger vertical mixing within clouds, iv)
very different contributions, in scale and in intensity,th@ explainedy error variances reflecting the
presence of low level cold pool, low level convergence,nakeat release, and cloud top divergence.

To illustrate this last point, Fig.1 shows the vertical distributions of variance ratios thatlaix g
variance in rainy and non-rainy areas. The differences b&tiers are striking: in the rainy case, the
total explained variance of g varies between 25% and 50%eitrtposphere, and it is mainly controlled
by unbalanced divergend®), ; in contrast, in the non-precipitating case, the total @ix@d variance
of g varies only between 10% and 30% in the troposphere, and idyrdtiven by the unbalanced mass
field (T, Ps)y. This strong coupling between moisture and convergenceetigitating areas is consistent
with the analysis of mesoscale balance couplindPayéet al,, 2007, and is of great interest for the
assimilation of e.g Doppler radar data in precipitatidiichel et al,, 2010 have also found different
multivariate couplings and overall shorter horizontatdéx vertical) correlations with a different NWP
model and a differenB formulation, suggesting that the result may be valid forrgdeclass of NWP
models and weather situations at convective scales.
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Figure 1: Explained variance ratios of specific humidjtgrror variances as a function of height, com-
puted over (a) precipitating and (b) non-precipitatingaard?y, stands for the so-called balanced mass
anddivu for the unbalanced divergence (frdtontmerle and Berre, 2030

3.2 Fog

The same approach has been recently applied to computdispecikground error covariances in fog.

An ensemble assimilation based on AROME 3D-Var has beed fwil18 cases of fog observed over

France during the fall and the winter 2009, and statistie® lieen computed on differences of forecast
separately in regions where fog was and was not predictedtim forecasts. To determine the best
model diagnostic for fog, a long time period comparison leemvdifferent parameters and the french
CARIBOU fog and haze analysi$S(idard and Tzanos, 20pWas performed. The best predictor was
found to be the nebulosity computed for model levels belo® s
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As for convective cases, different behaviors were founddgions where fog is predicted. The mean
vertical profile ofT standard deviation exhibits a maximum at low levels, refigadhe vertical variation
of the level of inversion (not shown). The presence of sédraonditions within fog explains why
specific humidityq variance is strongly balanced and exhibits a very stronglauy (up to 75%) with
the mass fieldT, Ps), and a moderate coupling with divergence in the lowest layenereas almost no
coupling is found in clear air (Fig).

Vertical auto-correlations also display strong differeméor all CV consistent with the presence of a very
stable layer of constant potential temperature near thengkoFor example, Fig3 shows thafl errors

in the first 3 model levels{150 m approximately) are totally uncorrelated from levgdgbove. In clear
air or in the operationaB, much mare vertical mixing appends. This illustrates a \Wetwn problem

of many operational models, where increments from growaskt observations propagate too much
vertically in cases of very stable boundary layer and detaté the resulting forecastsgrenc, 2007.
Using the covariances obtained for fog in the heterogenBomgtrix formulation should alleviate this
problem (see section 5).
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Figure 2: Same as Fid. but for fog (left), for areas without fog (middle) and for tbperationaB used
in AROME (right)
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Figure 3: Vertical auto-correlations fdrerrors (zoom in the first 400m) for fog (left), for areas witiho
fog (middle) and for the operationBl used in AROME (right)
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4 Diagnosis of error covariances in clouds and precipitatio for cloud
and rain water content

As mentioned in the introduction, the direct assimilatibeloud g. and raing, water content raises sev-
eral issues such as the linearization of strongly non-tinbaervation operators and the non-Gaussianity
of the pdf of hydrometeor errors. To avoid those impedimee@VWF use operationally a 1D+4DVar
method derived fronMarécal and Mahfouf, 2008arly work to assimilate the total water vapor column
previously retrieved from rainfall rates observed by migage imagers thanks to the use of a 1D-Var.
Other studies have tried instead to retrieve, also using-&/dprofiles of cloud and rain water con-
tents from ATOVS, SSM/I or TRMM radiances. In those studiestical background error covariances
where whether empiricalQhevallieret al,, 2002, or, for instance, obtained by perturbing the input of
the model’s moisture schemg &nd T, Moreauet al,, 2003. More recently Amerault and Zou, 2006
have computed such vertical covariances for warm and caldbinyeteors, by performing differences on
forecasts that were using different explicit moisture se@eTo directly assimilate these kind of profiles
however requires to include hydrometeors in the CV and topedenfull covariances of background
errors for the hydrometeors that are considered (among shees such as the observation operator).

Using the same methodology based on geographical maskMiB2610,Michel et al,, 2010have used
forecasts taken from an Ensemble Kalman Filter run at 3 kmmlugen for the prediction of a special
case of convective storm to compute full covariancesgfoandq, (Dowell and Stensrud, 2008 The
balance operator used in WRF 3D-Var has been extended fotjeavsimilar approach tha®erre, 2000

for g, in order to obtain multivariate relationships betwegrandq, and other CV. For traditional CV,
very comparable results than those of MB2010 have been fdewveh if hydrometeor errors are proba-
bly non-Gaussian distributefjichel et al., 2010also show that reasonable and physically meaningful
auto-covariances and statistical couplings with otherabdes (especially with divergence) could be
obtain for these variables.
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Figure 4: Explained variance ratio of (left) cloud contentl right) rain content as a function of model
level, computed over the heavy precipitating areas (fibichel et al., 2010

Fig. 4 shows for instance that the prevalent couplingdgg and dq; is, as fordq, with (unbalanced)
divergencedn,. This does not mean that coupling with temperature or huynatie small, as a sig-
nificant part of temperature and humidity is explaineddsy; (not shown). Covariances betweéq,
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Figure 5: Vertical cross-covariances of background ertmsveen (left) cloud content and diver-
gence (contour interval .20-*gkg 's™!) and (right) rain content and divergence (contour interval
10~4gkg 's™1), computed over the heavy precipitating areas (fidiohel et al.,, 2010.
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Figure 6: Average vertical auto-correlations for (leftpwl and (right) rain water content in heavy-
precipitating areas as a function of model vertical levehfour interval 0.2). FrorMichel et al,, 201Q

and divergenc®n shares the same structures than covariances betdgand dn, also observed in
MB2010, but translated vertically: a positidel. error is linked with low level convergence and higher
level divergence in convective clouds (Fi§, left panel). Covariances betweég, and én is more
complex and displays structures that depend on level ofdoeeection and freezing level height (Fig.
5, right panel). Finally, The structure of vertical autot&bations fordg. anddq, shares some similar-
ities with the results oAmerault and Zou, 20Q&lespite different models, methodologies and weather
phenomenons. There is more vertical mixingdak error within clouds because of the explicit con-
vection, dq; is vertically highly correlated under a certain level, whis the direct consequence of rain
falling (Fig. 6).
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5 How to get clouds- and precipitation-dependent statistis?

The previous results suggest that, compared with curresriatipnal formulation oB, the structures of
forecast errors linked to clouds and precipitation aresdiifitly balanced, strongly inhomogeneous and
flow dependent. Some leads to better consider those featutess CVT are proposed in this section.

5.1 Non-linear balances

Following Barkeret al., 2004 some flow-dependency can be obtain by modifying the ggusicdike
balance (that relates the balanced part of the wind incremvéh the balanced part of the mass in-
crement, depending of the formulation 9} in order to take into account cyclostrophic terms that are
important in regions of strong curvature. For that purpogéhas been recently replaced in some cen-
tres by a more sophisticated analytical Non-Linear Baldbgeation (NLBE), linearized around the
background Eisher, 2003

A similar approach allows to add an analytically balanceajence from vorticity and temperature,
according to the quasi-geostrophic (QG) omega and cohfimgjuations linearized around the back-
ground Fisher, 2003 For high resolution modelfagéet al,, 2007 suggest to revisit this formulation
with the introduction of diabatic forcing of balanced veali motion. The inclusion of these additional
terms in CVT formulation is technically difficult and has ne¢en tried yet. It has however to be
noted that large scale analytical balance relationshiesthie NLBE or the QG omega equation can
be efficiently relaxed in clouds and precipitation that anaracterized by smaller scale error struc-
tures when using ECMWF formulation that is based on scapedgigent regression coefficients. The
proportional deviation from linear geostrophic balancéhwtie intensity of precipitation, as shown by
Caron and Fillion, 2010could also be alleviated thanks to this scale dependency.

5.2 Ensemble flow-dependent B

The basic principle of ensemble variational data assimaitafEnVar) is to include partially information
from a flow-depender8 matrix, computed from daily runs of an ensemble assimitatioto 3 or 4D-
Var, without significant change of the existing setup of atienal VAR systems. In the case where
this B is used in the analysis, VAR systems share with the ensernddiaat Filter (EnKF) the ability to
represent flow-dependent error covariances. The differbesin the fact that the EnKF uses a santple
matrix that is filtered afterwards (mainly through taperiafgo called “localisation”), whereas the CVT
formalism more or less directly filters the noise (by estin@B in a certain basis). Ensembles with
perturbed observations allow to simulate the evolutionhefinodel state errors both in the ensemble
(Houtekameset al., 1996 and variational Fisher, 2003frameworks. Cycled perturbed analyses based,
on one hand, on explicit observation perturbations (reqmtegive of observation errors), and on the
other hand, on background perturbations which are eithigrifaplicit (i.e integrated from the previous
cycle) or partly explicit (to represent model error conitibn) are used for that purpose.

Although very attractive, this method is computationalpensive (especially for CRM), as the repre-
sentativeness of the forecast errors pdf depend on the mwhivembers of the ensemble. A solution is
to consider an ensemble with few members (eventually coedpattlower resolution) and use optimized
filtering techniques to reduce sampling error in the reai@fB. Several approaches are currently tested
in operational centres:

e Modulation of climatological covariances by spectrallyeiied background error standard devia-
tions gy, (Raynaudet al,, 2009 and wavelet correlationg-{sher, 2003Pannekoucket al., 2007
or anisotropic recursive filterSgtoet al,, 2009. At Météo-France, the global ARPEGE 4D-Var
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already uses operationally these,$ of the day” for all CV deduced from 6 perturbed global
members with 4DVarBerre, 2009.

e CVT in ensemble sub-space (En3DVar or En4DVdrorénc, 2003 Liu etal, 2008
Buehner, 2008 using localizations with Schur operators to reduce thalysis noise. Other
spatialization methods, such as wavelets, diffusion dapesar recursive filters, could be used for
that purpose.

5.3 Heterogeneous covariances

The formalism of heterogeneouB can be found in MB2010. Following an initial idea by
Courtieret al,, 1998 it consists in expressing in the CVT framework the analysisement as a linear
combination of two terms, each term corresponding to arbasacterized by different meteorological
behaviors (e.g rainy and non-rainy areas):

ox = F/2812x1 + GY/2B2x, 3)

where the complementafy and G operators define the spatial locations whBkeand B, are applied
respectively. By and B, can be retrieved by applying geographical masks on diftarerof forecast
coming from an ensemble assimilation. As displayed in Fjguch method allows to produce analysis
increments that are differently balanced and spatiallgagaccordingly to the error covariances that are
representative of the weather type in which observatioadamated. This figure displays for instance
very different structures that reflect the strong diffeesof forecast errors in precipitating and non-
precipitating areas discussed in section 3.1. Test on asalscare currently under progress for fog in the
AROME 3D-Var framework, using the specific statistics oftaet 3.2 that allow to confine increments
due to ground-based measurements in the first levels of tlelmdhe technique does not however
solve the maybe more fundamental problem of rain v.s. notr@ihmay occur because of displacement
errors Auligné et al,, 2010.

100

2004

Figure 7: Vertical cross-sections of temperature incramésocontours every.50 2 K), generated
by four pseudo-observations located at 800 and 500 hPa ardatbrized by a -30% innovations of
relative humidity. These increments have been obtainatjukie heterogeneouls matrix formulation
and considering the northern half of the domain as rainyr{fkéontmerle and Berre, 200
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6 Conclusion

This paper uses geographical masks to compute CRM backdyjeruor statistics in specific areas. The
masks depend on predicted cloud or rain water content. TYeriemces are computed for traditional
CV in convection and in fog cases, but also for hydrometediakbes for a particular convective case.
Overall, very different statistics have been obtained limse areas compared to their counterparts (i.e
areas without precipitations or without fog) and to operadi climatological covariances. In clouds
and precipitation, the coupling between humidity and djeece seems predominant, the horizontal
correlation lengths are shorter and the vertical corm@tatireflect the cloud vertical extension due to
convection. Meaningful covariances have been also foundfandq;: strong coupling with diver-
gence, even shorter correlation lengths and structurésrag depend on typical cloud characteristics
such as the free convection or the freezing levels. Corieglesuch multivariate relationships in the
balance operator would allow to map and g, increments onto the full set of variables used by the
nonlinear NWP model, even if a simpler linear observatioarator is used.

These results suggest that operational formulatior® miisrepresent forecast errors in clouds and pre-
cipitation, which implies that the assimilation of obsdiwas performed in those regions (e.g Doppler
radars or profiles deduced from microwave imager measursingray be far from optimal. This has
two implications: localization can be made more restrectit ensemble-based DA methods such as
EnKF or EnVar, and VAR formulations at cloud scales shouldable to represent these major inho-
mogeneities. To represent these inhomogeneities, nanlbaance relationships could include diabatic
processes, and covariances could incorporate some floandepcy in their formulations, i) by mod-
ulating climatological values with covariances extracaed filtered from an ensemble assimilation, ii)
by considering forecast error information from an ensenibline CV after an appropriate filtering of
the sampling noise, iii) by computing covariances spedifidar clouds and precipitation and by using
these covariances in the heterogeneBisamework.
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