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ABSTRACT

After a brief introduction to background error modelling, this paper describes several examples of covariances in
clouds and precipitation computed from ensemble of forecast differences performed using non-hydrostatic Cloud
Resolving Models (CRM). These kind of models allow realistic forecast of diabatic processes thanks to the explicit
parametrization of most microphysical processes. The methodology is based on the use of geographical masks that
allow to compute forecast errors statistics that are restricted to areas where rain or fog is predicted. The resulting
covariances strongly differ from climatological statistics that are generally used in operations. They are also in
good agreement with the physics processes that are active inthose areas. In precipitating cases for instance,
strong coupling of humidity, cloud and rain water contents with divergence has been found, as well as shorter
horizontal correlation lengths. Overall, covariances in clouds and precipitation are characterized by different
balance relationships between control variables, and by strong inhomogeneity and therefore flow dependency.
Possible strategies to take these characteristics in current B matrix formulations are reviewed.

1 Introduction

A long-standing problem in numerical weather prediction (NWP) has been to provide adequate ini-
tial conditions for the quantitative prediction of clouds and precipitation, given available observa-
tions such as satellite microwave imagers, infrared radiances or Doppler radars. As pointed out by
Errico et al., 2007, the strong non-linearities of moist physical processes raise several issues to accom-
modate for these observations in assimilation schemes based on linear theory such as variational data
assimilation (VAR), especially i) the linearization of observation operators, ii) the handling of non-
Gaussian probability density functions (pdf) for hydrometeors errors, and iii) the modeling of appro-
priate background error covariances (so calledB matrix). As a matter of fact, VAR needs a priori (or
background) meteorological fields in order to provide information in non-observed areas and to provide
realistic reference state needed in some nonlinear observation operators. As observations, the back-
ground state is prone to error, which are taken into account in VAR through the use of theB matrix.

As pointed out byDaley, 1991, B has a profound impact on the analysis, by weighting the importance
of the a priori state, by smoothing and spreading information from observation points, and by imposing
balance between the model control variables (CV). To estimate this matrix, two main practical difficul-
ties occur. First, the “true” state needed to measure error against is unknown. Secondly, because of its
size,B can be neither estimated at full rank nor stored explicitly.Covariances have thus to be mod-
elled, typically by computing statistics on differences between forecasts that allow to mimic forecast
errors (reviews of such methods can be found inBannister, 2008. In order to retrieve climatological
covariances, these statistics are usually performed for long time periods and moreover averaged over the
whole computational domain, which explains why the signal of clouds and precipitation forecast errors
is weak in the final results. As a consequence, current operational formulation ofB are often inadequate
in cloudy and rainy areas where couplings between errors of CV are misrepresented and where the use

ECMWF−JCSDA Workshop, 15−17 June 2010 121



MONTMERLE ET AL.: MODELLING OF BACKGROUND ERROR COVARIANCES...

of homogeneous and isotropic horizontal correlations are not appropriate.Lopez and Bauer, 2007for
instance pointed out that the lack of impact of precipitation observations on the dynamical and mass
fields found in 4DVar analyses after the 1D+4DVar assimilation of radar data may be due to the absence
of coupling relationships between those fields and humidity.

To address these issues,Auligné et al., 2010emphasize the need to relax the ergodicity assumption in
clouds and precipitation by allowing for inhomogeneous background error modeling to represent the
spatial variability of the background error matrix and by using of better balance relationships, based
either on statistical regressions (Berre, 2000) or on more sophisticated diabatic non linear balance
(Pagéet al., 2007). By using geographical masks in the computation ofB, recent studies have diag-
nosed background error covariances separately in precipitating and non-precipitating areas for regional
models (Caron and Fillion, 2010) and for cloud resolving models (CRM) (Montmerle and Berre, 2010-
MB2010 hereafter,Michel et al., 2010). The purpose of this paper is to review some of the main con-
clusions of the latter studies and to present some recent results obtained for fog based on the same kind
of methodology. The very different behaviors that have beenfound may suggest to redesignB in those
areas by using more adequate balance relationships betweenCV and by considering inhomogeneous
flow-dependent covariances.

In section 2, we recall briefly the wayB is modeled using control variable transforms (CVT) and de-
composed as a product of a balance operator and of a spatial transform. In this context, covariances
diagnosed for precipitating and non-precipitating areas are then discussed in section 3 and 4 for “tradi-
tional” CV (i.e wind, mass and humidity) and for cloud and rain water content respectively. Results for
fog are also briefly presented in section 3, possible strategies for the specification of background error
covariances modeling in VAR for clouds and precipitations being given in the final section.

2 Modelling of B in the CVT framework

Most operational centres are based on the CVT methodology, which consists in replacing the in-
crement δx by a control variableχ in a VAR algorithm written in an incremental formulation
(Courtieret al., 1994). For a 3DVar, the total cost function writes:

Jχ =
1
2

χT χ +
1
2

(

HB1/2χ −d
)T

R−1
(

HB1/2χ −d
)

with

δx = B1/2χ (1)

whereR is the observation error covariance matrix,d the innovation vector(y−H[xb]) that measures
the difference between the observationy and its simulated counterpart computed by applying the non-
linear observation operatorH to the backgroundxb, and whereH is the linearized version ofH. In the
CVT formulation, the background term becomes trivial and the observation term represents the distance
between the innovation vectord and the increment written in the observation space. Anotheradvantage
of the CVT is the improvement of the preconditioning.

It allows also to express univariate and multivariate aspects of B is a compact and efficient way.χ
does not necessarily contain the same number of degrees of freedom thanδx. For instance,χ may
include extra information that does not contribute directly to the analysis (e.g. VarBCDee, 2005). It
implies also that background errors of the control vectorχ are uncorrelated and have unit variance. The
challenge of background error covariance modeling is to capture inB1/2 the known important features
of the background error covariance matrix. For instance, these features should be in agreement with
atmospheric balance, non-separability of the flow, and takeinto account the effect of the observation
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density and accuracy. The formalism ofDerber and Bouttier, 1999expressesB1/2 as a combination of
two terms:

B1/2 = KB1/2
u

Eq. (1) can be written:

χ = B−1/2δx = B−1/2
u K−1δx

K−1 is called the inverse of the balance operator (or parameter transform) and aims in taking increments
of the model’s variable and to output new less correlated parameters on the same grid using balance con-
straints, under the basic hypothesis that errors in geostrophically balanced parameters (associated with
Rossby modes) are decoupled from errors in unbalanced parameters (associated with inertia-gravity
modes).B−1/2

u is a block diagonal matrix called the spatial transform. It aims in projecting each pa-
rameter onto uncorrelated spatial modes, and then in dividing by the square root of the variance of each
mode.

Several different representations of these operators havebeen developed at NWP centers. The ECMWF
formulation (also used at Météo-France) designs the balance operators with either analytical or based
on scale-dependent regression operators (Derber and Bouttier, 1999; Berre, 2000; Fisher, 2003). Spa-
tial correlations are constructed through empirical orthogonal decomposition and spectral or wavelet
diagonal assumptions. On the contrary, grid point formulations are used at NCEP and NCAR
(Wu et al., 2002; Barkeret al., 2004; Michel and Auligné, 2010) with physical space regression-based
balances and with recursive filters (Purseret al., 2003) to ensure spatial correlations. The Met-Office
formulation (Ingleby, 2001; Lorencet al., 2003) is based on a grid point analytical balance but spectral
(or wavelet) transforms for horizontal correlations. Control variables are also different. A review of
these distinct formulations can be found inBannister, 2008.

3 Diagnosis of error covariances in clouds and precipitation
for traditional CV

3.1 Convective systems

In order to quantify the misrepresentation of clouds and precipitation in the current climatologicalB
used in the operational NWP system at convective scale AROME(Seityet al., 2010), MB2010 have
diagnosed background error covariances for precipitatingand non-precipitating areas. Computing such
covariances from a CRM that uses an explicit microphysical scheme allows indeed to document co-
variances and balances in areas that are under-representedin samples of forecast differences used for
climatological covariances computation. For that purpose, an AROME ensemble assimilation of several
convective cases has been built, and statistics have been computed from forecast differences by consid-
ering separately rainy and no-rainy profiles. In the balanceoperatorK used in this study, increments of
specific humidityq is linked to other CV followingBerre, 2000multivariate formalism:

δq = QH δ ζ̃ +Rδ η̃u+S (δ T̃,δ P̃s)u + δ q̃u (2)

whereδ ζ̃ ,δ η̃ ,(δT,δPs) are respectively forecast errors of vorticity, divergence, temperature and surface
pressure; the subscriptu stands for unbalanced (total minus balanced) fields;Q,R andS are operators
deduced from statistical regressions;H is a horizontal geostrophic balance operator that couples mass
and vorticity. At Météo-France, Eq.2 is used operationally at regional (ALADIN, (Fischeret al., 2005))
and convective (AROME) scales.

Caron and Fillion, 2010have shown that forecast errors drift away from linear geostrophic balance over
precipitation areas and that this deviation is proportional to the intensity of precipitation. MB2010
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have confirmed this result and have furthermore shown that precipitating areas are mainly character-
ized by: i) larger error standard deviations for divergenceη and vorticity ζ , which denotes a more
intense small scale dynamical activity, ii) twice shorter correlation lengths forq andT, iii) larger ver-
tical auto-correlations in the mid troposphere reflecting the stronger vertical mixing within clouds, iv)
very different contributions, in scale and in intensity, tothe explainedq error variances reflecting the
presence of low level cold pool, low level convergence, latent heat release, and cloud top divergence.

To illustrate this last point, Fig.1 shows the vertical distributions of variance ratios that explain q
variance in rainy and non-rainy areas. The differences of behaviors are striking: in the rainy case, the
total explained variance of q varies between 25% and 50% in the troposphere, and it is mainly controlled
by unbalanced divergenceδηu ; in contrast, in the non-precipitating case, the total explained variance
of q varies only between 10% and 30% in the troposphere, and is mainly driven by the unbalanced mass
field (T,Ps)u. This strong coupling between moisture and convergence in precipitating areas is consistent
with the analysis of mesoscale balance coupling inPagéet al., 2007, and is of great interest for the
assimilation of e.g Doppler radar data in precipitation.Michel et al., 2010have also found different
multivariate couplings and overall shorter horizontal (larger vertical) correlations with a different NWP
model and a differentB formulation, suggesting that the result may be valid for a large class of NWP
models and weather situations at convective scales.
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Figure 1: Explained variance ratios of specific humidityq error variances as a function of height, com-
puted over (a) precipitating and (b) non-precipitating areas. Pb stands for the so-called balanced mass
anddivu for the unbalanced divergence (fromMontmerle and Berre, 2010)

3.2 Fog

The same approach has been recently applied to compute specific background error covariances in fog.
An ensemble assimilation based on AROME 3D-Var has been build for 18 cases of fog observed over
France during the fall and the winter 2009, and statistics have been computed on differences of forecast
separately in regions where fog was and was not predicted in both forecasts. To determine the best
model diagnostic for fog, a long time period comparison between different parameters and the french
CARIBOU fog and haze analysis (Guidard and Tzanos, 2007) was performed. The best predictor was
found to be the nebulosity computed for model levels below 150 m.
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As for convective cases, different behaviors were found forregions where fog is predicted. The mean
vertical profile ofT standard deviation exhibits a maximum at low levels, reflecting the vertical variation
of the level of inversion (not shown). The presence of saturated conditions within fog explains why
specific humidityq variance is strongly balanced and exhibits a very strong coupling (up to 75%) with
the mass field(T,Ps)u and a moderate coupling with divergence in the lowest layers, whereas almost no
coupling is found in clear air (Fig.2).

Vertical auto-correlations also display strong differences for all CV consistent with the presence of a very
stable layer of constant potential temperature near the ground. For example, Fig.3 shows thatT errors
in the first 3 model levels (<150 m approximately) are totally uncorrelated from levels up above. In clear
air or in the operationalB, much more vertical mixing appends. This illustrates a wellknown problem
of many operational models, where increments from ground-based observations propagate too much
vertically in cases of very stable boundary layer and deteriorate the resulting forecasts (Lorenc, 2007).
Using the covariances obtained for fog in the heterogeneousB matrix formulation should alleviate this
problem (see section 5).

Figure 2: Same as Fig.1 but for fog (left), for areas without fog (middle) and for theoperationalB used
in AROME (right)

Figure 3: Vertical auto-correlations forT errors (zoom in the first 400m) for fog (left), for areas without
fog (middle) and for the operationalB used in AROME (right)

ECMWF−JCSDA Workshop, 15−17 June 2010 125



MONTMERLE ET AL.: MODELLING OF BACKGROUND ERROR COVARIANCES...

4 Diagnosis of error covariances in clouds and precipitation for cloud
and rain water content

As mentioned in the introduction, the direct assimilation of cloudqc and rainqr water content raises sev-
eral issues such as the linearization of strongly non-linear observation operators and the non-Gaussianity
of the pdf of hydrometeor errors. To avoid those impediments, ECMWF use operationally a 1D+4DVar
method derived fromMarécal and Mahfouf, 2002early work to assimilate the total water vapor column
previously retrieved from rainfall rates observed by microwave imagers thanks to the use of a 1D-Var.
Other studies have tried instead to retrieve, also using a 1D-Var, profiles of cloud and rain water con-
tents from ATOVS, SSM/I or TRMM radiances. In those studies,vertical background error covariances
where whether empirical (Chevallieret al., 2002), or, for instance, obtained by perturbing the input of
the model’s moisture scheme (q andT, Moreauet al., 2003). More recently,Amerault and Zou, 2006
have computed such vertical covariances for warm and cold hydrometeors, by performing differences on
forecasts that were using different explicit moisture scheme. To directly assimilate these kind of profiles
however requires to include hydrometeors in the CV and to compute full covariances of background
errors for the hydrometeors that are considered (among other issues such as the observation operator).

Using the same methodology based on geographical masks thanMB2010,Michel et al., 2010have used
forecasts taken from an Ensemble Kalman Filter run at 3 km resolution for the prediction of a special
case of convective storm to compute full covariances forqc andqr (Dowell and Stensrud, 2008). The
balance operator used in WRF 3D-Var has been extended following a similar approach thanBerre, 2000
for q, in order to obtain multivariate relationships betweenqc andqr and other CV. For traditional CV,
very comparable results than those of MB2010 have been found. Even if hydrometeor errors are proba-
bly non-Gaussian distributed,Michel et al., 2010also show that reasonable and physically meaningful
auto-covariances and statistical couplings with other variables (especially with divergence) could be
obtain for these variables.

Figure 4: Explained variance ratio of (left) cloud content and (right) rain content as a function of model
level, computed over the heavy precipitating areas (fromMichel et al., 2010)

Fig. 4 shows for instance that the prevalent coupling forδqc andδqr is, as forδq, with (unbalanced)
divergenceδηu. This does not mean that coupling with temperature or humidity are small, as a sig-
nificant part of temperature and humidity is explained byδηu (not shown). Covariances betweenδqc
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Figure 5: Vertical cross-covariances of background errorsbetween (left) cloud content and diver-
gence (contour interval 2.10−4gkg−1s−1) and (right) rain content and divergence (contour interval
10−4gkg−1s−1), computed over the heavy precipitating areas (fromMichel et al., 2010).

Figure 6: Average vertical auto-correlations for (left) cloud and (right) rain water content in heavy-
precipitating areas as a function of model vertical level (contour interval 0.2). FromMichel et al., 2010.

and divergenceδη shares the same structures than covariances betweenδq andδη , also observed in
MB2010, but translated vertically: a positiveδqc error is linked with low level convergence and higher
level divergence in convective clouds (Fig.5, left panel). Covariances betweenδqr andδη is more
complex and displays structures that depend on level of freeconvection and freezing level height (Fig.
5, right panel). Finally, The structure of vertical auto-correlations forδqc andδqr shares some similar-
ities with the results ofAmerault and Zou, 2006, despite different models, methodologies and weather
phenomenons. There is more vertical mixing ofδqc error within clouds because of the explicit con-
vection,δqr is vertically highly correlated under a certain level, which is the direct consequence of rain
falling (Fig. 6).
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5 How to get clouds- and precipitation-dependent statistics?

The previous results suggest that, compared with current operational formulation ofB, the structures of
forecast errors linked to clouds and precipitation are differently balanced, strongly inhomogeneous and
flow dependent. Some leads to better consider those featuresin the CVT are proposed in this section.

5.1 Non-linear balances

Following Barkeret al., 2004, some flow-dependency can be obtain by modifying the geostrophic-like
balance (that relates the balanced part of the wind increment with the balanced part of the mass in-
crement, depending of the formulation ofK ) in order to take into account cyclostrophic terms that are
important in regions of strong curvature. For that purpose,H has been recently replaced in some cen-
tres by a more sophisticated analytical Non-Linear BalanceEquation (NLBE), linearized around the
background (Fisher, 2003).

A similar approach allows to add an analytically balanced divergence from vorticity and temperature,
according to the quasi-geostrophic (QG) omega and continuity equations linearized around the back-
ground (Fisher, 2003). For high resolution models,Pagéet al., 2007suggest to revisit this formulation
with the introduction of diabatic forcing of balanced vertical motion. The inclusion of these additional
terms in CVT formulation is technically difficult and has notbeen tried yet. It has however to be
noted that large scale analytical balance relationships like the NLBE or the QG omega equation can
be efficiently relaxed in clouds and precipitation that are characterized by smaller scale error struc-
tures when using ECMWF formulation that is based on scale-dependent regression coefficients. The
proportional deviation from linear geostrophic balance with the intensity of precipitation, as shown by
Caron and Fillion, 2010, could also be alleviated thanks to this scale dependency.

5.2 Ensemble flow-dependent B

The basic principle of ensemble variational data assimilation (EnVar) is to include partially information
from a flow-dependentB matrix, computed from daily runs of an ensemble assimilation, into 3 or 4D-
Var, without significant change of the existing setup of operational VAR systems. In the case where
thisB is used in the analysis, VAR systems share with the ensemble Kalman Filter (EnKF) the ability to
represent flow-dependent error covariances. The difference lies in the fact that the EnKF uses a sampleB
matrix that is filtered afterwards (mainly through tapering, also called “localisation”), whereas the CVT
formalism more or less directly filters the noise (by estimating B in a certain basis). Ensembles with
perturbed observations allow to simulate the evolution of the model state errors both in the ensemble
(Houtekameret al., 1996) and variational (Fisher, 2003) frameworks. Cycled perturbed analyses based,
on one hand, on explicit observation perturbations (representative of observation errors), and on the
other hand, on background perturbations which are either fully implicit (i.e integrated from the previous
cycle) or partly explicit (to represent model error contribution) are used for that purpose.

Although very attractive, this method is computationally expensive (especially for CRM), as the repre-
sentativeness of the forecast errors pdf depend on the number of members of the ensemble. A solution is
to consider an ensemble with few members (eventually computed at lower resolution) and use optimized
filtering techniques to reduce sampling error in the retrieval of B. Several approaches are currently tested
in operational centres:

• Modulation of climatological covariances by spectrally filtered background error standard devia-
tionsσb (Raynaudet al., 2009) and wavelet correlations (Fisher, 2003; Pannekouckeet al., 2007)
or anisotropic recursive filters (Satoet al., 2009). At Météo-France, the global ARPEGE 4D-Var
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already uses operationally these “σbs of the day” for all CV deduced from 6 perturbed global
members with 4DVar (Berre, 2009).

• CVT in ensemble sub-space (En3DVar or En4DVar (Lorenc, 2003; Liu et al., 2008;
Buehner, 2008)) using localizations with Schur operators to reduce the analysis noise. Other
spatialization methods, such as wavelets, diffusion operators or recursive filters, could be used for
that purpose.

5.3 Heterogeneous covariances

The formalism of heterogeneousB can be found in MB2010. Following an initial idea by
Courtieret al., 1998, it consists in expressing in the CVT framework the analysisincrement as a linear
combination of two terms, each term corresponding to areas characterized by different meteorological
behaviors (e.g rainy and non-rainy areas):

δx = F1/2B1/2
1 χ1 +G1/2B2

2χ2 (3)

where the complementaryF andG operators define the spatial locations whereB1 andB2 are applied
respectively. B1 and B2 can be retrieved by applying geographical masks on differences of forecast
coming from an ensemble assimilation. As displayed in Fig.7, such method allows to produce analysis
increments that are differently balanced and spatially spread accordingly to the error covariances that are
representative of the weather type in which observations are located. This figure displays for instance
very different structures that reflect the strong differences of forecast errors in precipitating and non-
precipitating areas discussed in section 3.1. Test on real cases are currently under progress for fog in the
AROME 3D-Var framework, using the specific statistics of section 3.2 that allow to confine increments
due to ground-based measurements in the first levels of the model. The technique does not however
solve the maybe more fundamental problem of rain v.s. no rainthat may occur because of displacement
errors (Auligné et al., 2010).
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Figure 7: Vertical cross-sections of temperature increments (isocontours every 5.10−2 K), generated
by four pseudo-observations located at 800 and 500 hPa and characterized by a -30% innovations of
relative humidity. These increments have been obtained using the heterogeneousB matrix formulation
and considering the northern half of the domain as rainy (from Montmerle and Berre, 2010).

ECMWF−JCSDA Workshop, 15−17 June 2010 129



MONTMERLE ET AL.: MODELLING OF BACKGROUND ERROR COVARIANCES...

6 Conclusion

This paper uses geographical masks to compute CRM background error statistics in specific areas. The
masks depend on predicted cloud or rain water content. The covariances are computed for traditional
CV in convection and in fog cases, but also for hydrometeor variables for a particular convective case.
Overall, very different statistics have been obtained for those areas compared to their counterparts (i.e
areas without precipitations or without fog) and to operational climatological covariances. In clouds
and precipitation, the coupling between humidity and divergence seems predominant, the horizontal
correlation lengths are shorter and the vertical correlations reflect the cloud vertical extension due to
convection. Meaningful covariances have been also found for qc andqr : strong coupling with diver-
gence, even shorter correlation lengths and structures that may depend on typical cloud characteristics
such as the free convection or the freezing levels. Considering such multivariate relationships in the
balance operator would allow to mapqc andqr increments onto the full set of variables used by the
nonlinear NWP model, even if a simpler linear observation operator is used.

These results suggest that operational formulations ofB misrepresent forecast errors in clouds and pre-
cipitation, which implies that the assimilation of observations performed in those regions (e.g Doppler
radars or profiles deduced from microwave imager measurements) may be far from optimal. This has
two implications: localization can be made more restrictive in ensemble-based DA methods such as
EnKF or EnVar, and VAR formulations at cloud scales should beable to represent these major inho-
mogeneities. To represent these inhomogeneities, nonlinear balance relationships could include diabatic
processes, and covariances could incorporate some flow-dependency in their formulations, i) by mod-
ulating climatological values with covariances extractedand filtered from an ensemble assimilation, ii)
by considering forecast error information from an ensemblein the CV after an appropriate filtering of
the sampling noise, iii) by computing covariances specifically for clouds and precipitation and by using
these covariances in the heterogeneousB framework.
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