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ABSTRACT

Microwave imager observations are sensitive to surfaceegstes, water vapour, cloud and precipitation, and
are assimilated in ‘all-sky’ conditions at ECMWF. The firstegs departures give information on biases between
the model and observations, and can be used as a guide fomdetsy the observation error. There can be
substantial discrepancies in the position and magnitudgoofd and precipitation features between first guess
and observations. Partly as a result of this, and partlyumscaf larger modelling errors in cloudy situations, the
standard deviation of all-sky first guess (FG) departureseimses quite predictably as a function of mean cloud
amount. The mean cloud amount is a ‘symmetric’ predictohat it does not suffer from the sampling biases
inherent in using first guess or observed cloud amount aldhis. knowledge of the size of FG departure errors
as a function of cloud amount can be used to derive a modebfggroation error, and also gives a new approach
to quality control. Ways of dealing with bias in all-sky ob&&tions are also discussed.

1 Introduction

Atthe frequencies used by microwave imagers, the atmosjmsemi-transparent except in heavy cloud
and precipitation. For the moment, these observationsrayeagsimilated over oceans, where clear sky
radiative transfer is dominated by water vapour absorptidience, the observations are sensitive to
ocean surface properties (e.g. surface temperature ardspénd), atmospheric water vapour, cloud
and precipitation. The intention is to use all of this inf@ton to improve analyses and forecasts. To
achieve this is not just a matter of providing the approprfatward model and assimilation algorithm.
Observation and background error characteristics neee tordperly described for the assimilation
algorithm to work. In particular, the errors are supposelddsaussian and unbiased. Quality control
(QC) schemes and adaptive bias correction (e.g. VaridtBias Correction, VarBCDeg 2004 help
ensure this.

Cloud- and precipitation- affected microwave radianceghseen assimilated at ECMWF since June
2005. Initially, Special Sensor Microwave / Imager (SSMiBservations were assimilated using a
1D+4D-Var approachRauer et al. 2006ab). More recently, additional sensors have been included.
Direct assimilation of cloud and rain-affected radiancess\ntroduced in March 200Béauer et al.
2010 Geer et al.2010, using an all-sky approach, where no distinction is maded&en clear, cloudy
or rainy observations. This removes the need to separade ahel cloudy scenes before assimilation,
and avoids biases that can come from an incomplete samphfast recently, the weight of these
observations in the assimilation system has been sulstgnticreased Geer and Baue2010. This
required a new approach to quality control and observatioor.e This paper describes some of the
concepts underlying the new approach and explores thebfgsof bias correction. In all of these
areas, approaches that have worked well in the past forskyatlata need re-examining for cloud- and
rain- affected observations.

For more detail on any aspect discussed in this paper, theréareferred t@seer and Baug2010).
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Figure 1: Displacement error between hypothetical firstggié-G, dashed) and observed (solid) binary clouds.
2 Observation errorsand cloud sampling effects

2.1 Cloud sampling

Differences between modelled and observed cloud and raitypically large. Some of these differences
may be due to displacement errors, but there are also errdheistructure and intensity of forecast
cloud and rain. Figurd shows a hypothetical system in which the only differencevben model
and observation is a displacement error. Typically we mashvid make observation error and bias
correction vary as a function of the cloud or rain amount. kwesv, it is very easy to do this in the
wrong way.

Fig. 2a shows the mean first guess (FG) departures (observatiars i) of the hypothetical cloud in
Fig. 1, as a function of cloud. In the area where the FG is cleargthes some cloudy observations,
and where the FG is cloudy, part of the area is observed todag. cThis causes mean departures to be
positive where the FG is clear and negative where the FGiglgld-or the mean departure as a function
of observed cloud, the opposite applies. This behaviour seayn trivial, but its consequences are very
important.

When correcting observational bias as a function of cloudwart the choice of predictor is crucial. In
clear-sky assimilation it is typical to use the FG forecaspitovide predictors for bias correction. The
bias is calculated as a function of these predictors, andrdmmoved from the observations. However,
the bias as a function of FG cloud in Fig.is simply a feature of the sampling, and not a real bias.
The only difference between FG and observation is a displaoé Hence it is incorrect to use the FG
cloud or rain as a bias predictor. Treating the sampling &&sa real bias and removing it from the
observations will tend to reduce their impact in the assitiih. Here we will define as ‘symmetric’
any predictor that does not produce a sampling bias in meadep@rtures. The mean of observed and
FG cloud amount (Fig2) and the maximum of FG and observed cloud amount (not shovenpath
symmetric.

It is typical to prescribe observation error as a functiorlofid amount (e.gBauer et al.2010, and an
asymmetric predictor can cause problems here too. Coresdanilating the observations in Figwith
a large error for those which are cloudy, and a small errotifose which are clear. If the background
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Figure 2: (a) Mean and(b) standard deviation of FG departures of the cloud distribotshown
in Fig. 1, as a function of FG cloud (black, solid), observed cloué¢k| dashed) and mean cloud
(red, solid)

error were the same in each case, the cloudy observationlsl Wweuelatively less influential than the
clear observations. The clear observations have a samiplituged bias of -0.17 and would cause the
analysis to dry. The cloudy observations have a sampling @iia-0.17 which should counterbalance
this, but it does not, because these observations havenfasarice in the analysis. The net effect would
be a spurious drying of the analysis relative to the FG. Hejuist as for bias correction, if observation
error is defined as a function of cloud or rain, the cloud an @edictor must be symmetric.

It is also interesting to examine the standard deviation®fdeparture as a function of cloud (FR&p).

In our example standard deviation does not vary with obskové-G cloud (this is because cloud makes
up exactly half of the domain). However, as a function of melmud, standard deviations are zero
where both model and FG agree, i.e. where mean cloud is €tbed. A mean cloud amount of 0.5
is associated with situations where model and FG disagret hare, for binary cloud, the standard
deviation is 1. Large departures are associated with arbasenwthe model and observation disagree.
We can use this effect to our advantage for the quality cbofroloud and rain observations.

2.2 Thesymmetric behaviour of all-sky FG departures

The behaviour of all-sky FG departures is remarkably sintitawhat our conceptual model would
predict. Figure3 shows the mean and standard deviation of FG departures freralltsky system,
calculated as a function of FG, observed, or symmetric @&loOf course, cloud is not a binary quantity
here. More importantly we need to be careful with our definitof ‘cloud’, since we are working with

a radiance observation. It would be easy to determine thel&i@& @mount from the model, but cloud
is only one of several quantities to which the radiances emsisve. We need to use a measure of cloud
that can be computed consistently for both FG and obsengtio

The solution is to work in radiance space, and to apply a snapiproximate retrieval of the cloud
amount. Here, we take the normalised 37 GHz polarisatiderdificeP37 (Petty and Katsared.99Q
Petty, 1994, which is roughly proportional to the square of the slanhmdoud and precipitation trans-
mittance at this frequency. Note that cloud and precigitatiave much lower optical depth in the
microwave than in the visible or infrared, so only the mogtise convection is opaque at 37 GHz. To
be consistent with our earlier discussion, we @8& as the x-axis in Fig3, where

C37=1-P37 1)

and henc&37 increases with cloud amount. We comp08¥rg andC370gsfor the FG and observed
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Figure 3: (a) Mean and(b) standard deviation of SSM/I channel 19v FG departures lirea
function of ‘cloud’ derived from 37 GHz brightness temparas (C37) and(c) number per bin, for

a sample of 419159 observations from 1 - 10 October 20087 i€ derived from the FG (black,
solid), observations (black, dashed) or is the mean of tlee(ted, solid). Vertical lines on panel

¢ show the medians. Bin size is 0.05 iB7C Standard deviations and means are only shown when
there are more than 50 observations in a bin.
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values and then the ‘symmetric’ or mean cloud,

. C37c+C37
Ca7— e ==foes @)

As expected, selecting a cloudy FG3(r¢ > 0.8) gives a positive mean departure and selecting a
completely clear FGG37:c = 0) gives a negative mean departure (RBg). Mean departure as a
function of observed cloud is almost a mirror image. Aga@®&T, the mean departure is generally quite
close to zero. Deviations from zero probably indicate triasds between modelled and observed cloud.

In contrast to the simple binary model, standard deviatimmeases as a function of FG or observed
cloud (Fig.3b). We would expect FG or observation error to be larger indjyosituations than in
clear sky because: (i) both the model and the observatioratipeare less accurate and (ii) the dynamic
range of brightness temperature is much larger in cloud @ndhan in clear skies. Against mean cloud,
standard deviation peaks at 17 K between 0.45 and 0.65, atidetefor higher mean cloud amounts,
as increasingly the FG and observation agree that cloucgept.

Overall, Fig.3 suggests that mean cloud, as representgd3sy should be useful in all-sky assimilation
as a symmetric predictor for bias correction and obsemadioor.

2.3 Application to quality control and observation error

The lesson from Fig3b is that the standard deviation of FG departures is wellipred by the mean
cloud amount. The FG departures give the ‘total error’, anigims of variance, this should be the sum
of the observation error and background error in obsemajmace (see, e.pesroziers et al2005:

=24 b2, @3)

where t, r and b are respectively the total, observation baaetiground error standard deviations. Here,
as is conventional, observation error includes errors pfagentativity and of the observation operator.
Based on Fig3, we can predict as a simple function of mean cloud amount. This has some lusefu
applications for quality control and for helping estimdte bbservation error.

In the ECMWF system, background quality control (BgQ@@rvinen and Underi997) rejects obser-
vations with large normalised departures, i.e. where
d

Va2
Here,d is the bias-corrected FG departure. The rejection thrdshid set to 2.5 for all-sky observations.
Since we can estimateas a function of cloud amount, this can be used in BgQC in pi@agér2 + b2.
Figure4 shows histograms of actual departudeand normalised FG departurdgy/r2 + b? for SSM/I
channel 37v, along with roughly fitted Gaussians. The adtisitbgram emphasises how hard it is to
do all-sky quality control in brightness temperature spaiee distribution of departures is very non-
Gaussian, with the largest departures occurring whereradtian and model disagree in terms of the
rain or cloud amount. It is impossible to use a threshold stirjuish erroneous observations from real
information. When normalised, the departures become fae@aussian. Normalised departures with
magnitudes greater than 2.5 are infrequent and quite offeocéted with gross observation error. An
example is shown in Figh. SSM/I suffers from occasional bad scan-lines, such asthosund 40N,
165W. however, only when the departures are normalised tareshold check be used to identify the
problem. The large positive departures around 5N, 150WexXample, indicate a cloud system that is
observed but not present in the first guess.

>0 4)

Being able to predict the total error as a function of meamalamount is also useful for providing
observation errors as a function of cloud amount. Howevehawve no easy way of knowing how to split
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Figure 4: Histograms of SSM/I channel 37v FG departui@sas brightness temperaturés) nor-
malised by the symmetric error model. Sample is from 27 JuBeluly 2009. The red curves show
Gaussians fitted by eye to the peak of the distribution.
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Figure 5: Maps of SSM/I channel 37v FG departugasas brightness temperatur@s) normalised
by the symmetric error model, on 1 July 2009, looking at théebse Meteorological Satellite Pro-
gram (DMSP) F-13 satellite only.
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Figure 6: Maps of SSM/I channel 19&) observationgb) first guesqc) departures on 9 August
2009 in the South Atlantic.

total error between background error and observation.eFia proportion of total error being assigned
as observation error was made tunable and a series of exgresinwere performed with different values
for this tuning parameter. Fits of FG forecasts to other plzgmn types were used to determine the best
value, which turned out to require 100% of total error in dgituations to be assigned as observation
error. All this is explained in more detail iBeer and Bauef2010. In summary however, in cloudy
regions, observation error needs to be about the same sihe &pected standard deviation of FG
departures. This is strange, as we would expect a large awenpof the FG departure standard deviation
to come from the model, which is not always able to predictidlor rain in exactly the right place or
intensity. Observation error correlations are not takéa account in our current all-sky assimilation
system but may explain some of this. Also, if there are regitiases between observations and model,
observation errors may need to be set quite large to avoi thiases being assimilated into the system
as real information, and thus degrading forecasts. Thessetion examines these biases in more detail.
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3 Biases

Figure6 illustrates the kind of biases that affect the all-sky syst&'he broad area of positive depar-
tures in the centre at the bottom of the plot is a bias typicafisociated with cold, dry, air moving

equatorward from the polar regions. Here, the observatiwagselatively warm, indicating the pres-

ence of water cloud, but the model produces very little clagiding lower brightness temperatures.
This bias, known as the ‘cold sector’ bias, is most prevatetite winter hemisphere, and shows up in
monthly means in the regions where such equatorward trangpours preferentially. A second bias
occurs around the front on the lower right of the figure. H&1®M/I measures relatively high brightness
temperatures caused by elevated moisture and cloud amdimgsnodel’s fronts appear to be typically
too intense but not widespread enough, giving a band of ivegdpartures (in blue) along the centre of
the front, surrounded by a region of positive departuresg@). Monthly mean histograms of brightness
temperatures (not shown) confirm that this is a systemdtctef

The traditional approach with an adaptive bias correctimiesn such as VarBC is to determine biases
as a function of predictors such as surface temperaturey, taicknesses, and total column water vapour
(TCWV). It is natural to extend this for cloud and rain affedtobservations by adding a predictor for
biases as a function of cloud amount. However, as 3&and Fig.2 show, this must be done very
carefully to avoid producing a sampling bias. We experireéntith using mean cloud amou@37) as

a predictor, as it is not subject to sampling biases. Howekix proved to be of little practical benefit
in the all-sky assimilation, for the following reasons:

1. Asshown in Fig2a and b, the mean bias in cloudy areas is only 2 K. By comparikerstandard
deviation of departures is around 15 K. Hence, the bias ignificant compared to the variability
in cloudy areas, and may not be worth correcting.

2. The bias correction was affected by interactions witHityueontrol of the kind that are described
by Auligné and McNally(2007). As shown in Fig2c, the highest cloud amounts are associated
with very low numbers of observations. These observatisasabso associated with very large
FG departures, which even with the new QC approach may stilesimes be removed. Hence,
this makes the bias correction vulnerable to interactioitls @C.

3. Biases such as the cold sector or frontal biases exendplifiEig. 6 are not simple functions of
cloud amount, but occur in particular synoptic situatioHgnce, the cloud amount on its own is
not well targeted towards the actual biases in the systenmyM#empts were made to come up
with predictors that could identify these biases, but ndrteem worked very well.

For these reasons, we decided not to include any cloud- eipitetion-related predictors in VarBC.
Being unable to use the bias correction scheme to removesa dig options were either (a) to fix
the problem at source, i.e. by improving the atmospheric @hod observation operator, (b) not to
assimilate the bias-affected observations or (c) to igtineebias. Option (a) has been successful in the
past: for exampleGeer et al(2007) identified a bias in the moist physics operator in the 1D-D-
assimilation and the moist physics was re-tuned as a reaidb, biases in the cloud-affected SSM/I
departures helped identify an inaccuracy in the cloud apetsed in the radiative transfer operator,
which was subsequently fixedéer et al. 2009. However, the causes of the remaining biases are
harder to identify and fix. Instead, all observations a#ddby the cold-sector bias are eliminated from
the system, based on identification criteria for cold, dryreasses with little water cloud. Unfortunately,
this eliminates many good observations at the same timefrdhtal bias is currently ignored, but given
the relatively large observation errors applied in areaBealvy cloud and precipitation, it should not
cause major problems.
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4 Conclusion

One of the main difficulties in assimilating cloud- and ppetEtion-related observations is the fact the
there are often substantial errors in the model forecasthatoclouds are in different places or have
different structures in the model compared to the obsemati Where these displacements occur, the
size of the FG departures can be very large in terms of raggrtdowever, even when clouds are well
located in the FG, the size of departures is still much laigénese areas, due to the inherent difficulty
of modelling cloud and precipitation (both in the forecastdel and in the observation operator) as
well as the increased dynamic range of the radiances in tteesditions. In order to assimilate cloudy
radiances, we need to define an observation error that irlargloudy areas than in clear sky. Hence,
we would like to vary the observation error as a function ofid.

Through a simple model, and by studying the FG departures fhe ECMWF assimilation system, we
show that using FG or observed cloud amount on their own asdiqgtor for the size of the departures
is incorrect, since they are affected by sampling biases, &re ‘asymmetric’. Only a ‘symmetric’
predictor should be used, i.e. one unaffected by sampliag. bihis bears much similarity with the
asymmetries encountered when using relative humidity amaal variable H6Im et al, 2002. Here,
we use the mean of FG and observed cloud amount as it is a gedittor of the standard deviation of
FG departures. Normalising the FG departures by the pestigtindard deviation gives a distribution
that is very close to Gaussian. This is encouraging, as gestg that non-Gaussianity may not be a
problem in all-sky data assimilation. It also has a numbgarattical uses in the ECMWF system, both
for quality control, and for developing a model of obsermaterror as a function of cloud amount.

Ways of dealing with biases in all-sky data have been distisdn a predictor-based system such
as VarBC, it is also necessary to avoid sampling biases mgusisymmetric predictor. However, in
practice there is no large global bias that varies as a famcti cloud, so no bias correction as a function
of cloud has been introduced in the ECMWF system. Insteadiribst damaging biases are typically
found under specific meteorological situations which arigechard to identify using a simple predictor
in VarBC. To avoid damaging the analysis, the best solusomot to assimilate all-sky observations in
such areas.
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