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ABSTRACT

We outline the formulation of a fully compressible nonhystedic model discretized on centroidal Voronoi meshes
using a C-grid staggering of the prognostic variables. Toioi meshes are unstructured meshes that permit
variable horizontal resolution, and our nonhydrostaticleisolves the equations of motion directly on these un-
structured meshes. The unstructured variable-resolaoteshes allow for applications beyond uniform-resolution
global NWP and climate prediction, in particular allowingleedded high-resolution regions for regional NWP
and regional climate applications. The rationale for aspetthis formulation are discussed, and results from
tests for large-scale flow on the sphere and for nonhydio$lats on Cartesian planes are presented.

1 Introduction

Global atmospheric models have typically used latitudegitude grids for their discretization. The use
of these meshes necessitates the use of polar filters andestkasions to the base numerical schemes
due to the convergence of grid lines at the poles. Spherniaakform methods, while not requiring
polar filtering, do not scale optimally with increasing riegimn, and the semi-Lagrangian transport
with which they are often paired needs special attentiohérpblar regions. Finite difference and finite-
volume methods on latitude-longitude meshes, and sphérarzsform methods, do not scale (map)
well onto the latest generations of supercomputers thataellarge numbers of distributed-memory
processing elements.

We are constructing a global fully compressible nonhyétisinodel using finite-volume numerics dis-
cretized on centroidal Voronoi (nominally hexagonal) nesshsing C-grid staggering of the prognostic
variables based on the work ©huburn et al(2009 andRingler et al.(2010. This model is called the
Model for Prediction Across Scales (MPAS), and it is a callabive project being led by the National
Center for Atmospheric Research (NCAR) and Los Alamos Matibab (LANL). NCAR is responsi-
ble for developing the MPAS atmospheric component, LANLeisponsible for the ocean component,
with joint development of the shared software infrastroeturhe centroidal Voronoi meshes allow for
local refinement, and the horizontal mesh is unstructurethd following sections we present the equa-
tions and the finite-volume split-explicit discretizatiosed in the unstructured mesh solver, we discuss
some aspects of the variable unstructured mesh and thelecasons involving the discretizations, and
we present results from test simulations at large scalebeaphere and at convective scales on Carte-
sian planes. The test simulations indicate that the sofvpeiforming as well or better than existing
icosahedral mesh models based on the results presentedihém@n shallow water tests and theoretical
considerations presented in the previous worRiifgler et al.(2010.
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2 Governing Equations and Discretization

2.1 Continuous equations

We cast the governing equations in terms of a hybrid heiged vertical coordinatéfollowing Klemp
(2011). In this formulation the height of the coordinate surface

Z:Z—l—A(Z)hs(X,y,Z), (1)

wherez is the constant height of the upper boundaryepresents the nominal heights (ignoring ter-
rain) of the coordinate surfaces aAd{) defines the relative weighting between the terrain-folfayvi
coordinate and the pure height coordinate, such that®<1-{/z. ForA({) =1-{/z and
hs(x,y,{) = h(x,y) (the terrain height) we recover the traditional terraiief@ing height coordinate
and forA({) = 0 we recover a pure height coordinate. The afmagan be specified to produce in-
creased smoothing of the terrain influence with height wliih tequirement thats(x,y,0) = h(x,y).

As described irKlemp (2011), we can choosé({) andhs to control the amount and scale of terrain
influence on the vertical coordinate.

We define the flux variables
(U,V,Q,O,Qj):ﬁd-(U,V,f],e,Qj) (2)

to provide mass and scalar conservation, wimgrie the density of dry aitpy = py/{z, andq; represents
the mixing ratio of the respective water species. The imdiptognostic nonhydrostatic equations are
written in flux form using these variables, with the horizinhomentum equations expressed in vector-
invariant form to help achieve desired conservation pitigser
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and pressure is obtained diagnostically from the equatiatate:
Ri{:Om”
p:p0< ZZ m) , (8)
Po
with y = cp/cy. HereV = (U,V,Q), pm is the density of moist air,
%:1+qv+qc+qr+..., ©)

and 6, is a modified moist potential temperature,
B = 0[1+ (R//Ra) ). (10)
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In (3), n = k-0Ox vy + f is the absolute vertical vorticity, and = |vy|2/2 is the horizontal kinetic
energy. The metric terms associated with the vertical doatd transformation are represented by
07 = ({x, 4y, {z), with {; = ({x,{y) andzy = —{}4/{>. Q =V -0 is the component of the mass flux
normal to the coordinates surfaces in the transformed awated In the curvature and Coriolis terms in
(3) and @), f = 2Qcsiny, e = 2Qcosy, Y is the latitude Q¢ is the angular rotation rate of the earth,
re is the earth radius, ang} is the rotation angle between the line normal to the horeorglocity and
the meridians.

2.2 Discretization

In the MPAS model, the continuous equations are spatialigrdtized on a unstructured C-grid cen-
troidal Voronoi mesh followingThuburn et al.(2009 and Ringler et al.(2010. Nominally uniform
traditional icosahedral meshes as well as variable résoluteshes can be generated for the sphere, for
regional domains on the sphere, and for Cartesian planag tethniques described Ringler et al.
(2008.

Figure 1: The Voronoi mesh

A horizontal C-grid Voronoi mesh is depicted in figukeThe horizontal momentum normal to the cell
edge is prognosed at the cell edges and the coupled pottrtipkrature®,,, densityp and moisture

Q; are prognosed at the cell centers where they represeraveetkged values in the finite volume for-
mulation. The vertical momentum is prognosed on the vértiethface located half a grid level above
and below the cell center, consistent with a 3D C-grid diszation. All other quantities are diagnosed
from the prognostic variables, e.g. press8g (The tangential component of the horizontal momen-
tum, appearing in the horizontal momentum equat®)ni§ diagnosed followindg huburn et al(2009,
and the absolute vertical vorticity and kinetic energK in (3) are diagnosed followingingler et al.
(2010. These horizontal discretization techniques for the @ dio not suffer from the problems of
the non-stationary geostrophic mode. The horizontal eisation exactly conserves mass (to machine
roundoff), and, in the 2D shallow water framework, exactiyserves potential vorticity and conserves
energy to the time truncation errdrifigler et al, 2010

The fully compressible nonhydrostatic equatioss € (7) are solved using the time-split integration
technique described iKlemp et al. (2007 for height-coordinate equations. We use the third-order
Runge-Kutta scheme dalicker and Skamarock2002 with the time-split algorithm. The use of the
vector-invariant form of the horizontal momentum equaii@ndoes not complicate the solution proce-
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dure, but note that we cast this equation in flux form to feat#i the acoustic solve. This gives rise to
the additional ternvy0; -V that does not appear in non-flux-form equations that arellysused in
this context, e.gRingler et al.(2010.

The transport scheme used for the flux divergence calcoiiio ) and (7) on the irregular Voronoi
(~hexagonal) mesh is describedSkamarock and Gassmé&2011). It uses nominally third and fourth
order approximations for projecting the scalar value tocleedge in the conservative flux-divergence
calculation. The mass flux divergence B) {s approximated by averaging the cell averaged values of
p to the cell face from the two cells sharing the face (§baburn et al.2009. We use the mass flux
that is time-averaged over the acoustic steps for scalaspmat, thus maintaining consistency between
the scalar transport and the continuity equation. As emptiin Klemp et al.(2003), it is important

to maintain consistency between the transport operatotranthetric terms associated with the terrain
transformation. In MPAS this requires that the diagnositheftransformed vertical veloci® be con-
sistent with the advection operator used in the thermodymaguation §). To satisfy this requirement,
we formulate the transformed vertical velocity for dedls

Qi =VvV-0{=¢V-0(z-13z)
={[0-V(z-2z)—(z—2z)0-V]
={0-V(z—-12), (11)

where z is the coordinate-surface height at cefior which Q; is being computed. We apply the
Skamarock and Gassm#&2011) scheme to the right-hand-side dflj thus satisfying the consistency
requirement. The expensive part of tAkamarock and Gassmaoheme, evaluatin(z— z) at the cell
faces, can be computed and the results stored before ititegbagins, thus there is little additional cost
in implementing the&klemp et al.(2003 consistency requirement.

2.3 Nonuniform meshes

Figure 2: Variable resolution Voronoi mesh
For uniform resolution simulations on the sphere, the sphkecentroidal Voronoi tesselation is the
icosahedral mesh, and results for shallow water tests tisiagnesh are given iRingler et al.(2010.

Our intended applications also include regional NWP andorey climate, for which the Voronoi
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meshes can be generated using a specified non-uniform mesityd&igure2 depicts a variable resolu-
tion mesh with refinement embedded. The global mesh is repiea single mesh and it is conforming
- there are no hanging nodes in this mesh. The resolutiotutéso changes smoothly from the coarse
to the fine mesh regions. We have significant flexibility in thesh generation process, which requires
only a user-specified density functioRifgler et al, 2008).

We expect that smooth mesh transitions will ameliorate n@oplems encountered in traditional ap-
proaches to mesh refinement such as the use of embedded hestshe change in resolution is abrupt,
and in the grid stretching procedures used in some rectanguésh models that can produce some re-
gions of very anisotropic cells and that is usually limitedé¢finement in a single region. Initial tests
of MPAS on the sphere and at convective scales on Cartesiarydperiodic planes using the smooth
mesh transitions are producing consistent results withotiteable distortion.

2.4 Discretization consider ations

There are a number of new aspects in the MPAS solver formualatiompared with other icosahedral-
mesh formulations, that appear to provide beneficial cheriatics in the solver for global multiscale
(hydrostatic- and nonhydrostatic-scale) atmospheriaition.

The first significant advance in the MPAS formulation is therfalation for the C-grid staggering of the
prognostic variablesNickovi€ et al.(2002 examined the problem of the hexagonal C-grid geostrophic
mode. The problem arises because the tangential velo@tysrie be reconstructed from the prognosed
normal velocities on the cell faces in order to evaluate thedlis term, and Nickovic et al showed that
the stationary geostropic mode in the linearized shallotenequations will be nonstationary using the
most obvious reconstruction of the tangential velocitye filonstationary geostrophic mode renders the
scheme useless for global applicatiomsuburn(2008), Thuburn et al(2009 andRingler et al.(2010
developed a method to reconstruct the tangential veloaith shat the geostrophic mode remains sta-
tionary and also that allows for potential vorticity conssion, enstrophy conservation or dissipation
following Sadourny and Basdeva(it985, and energy conservation to the time truncation error.s Thi
critical advance is based on the constraint that the haidtanass divergence on the triangular mesh
(the dashed triangular cell in figufe the dual of our hexagonal mesh), that is computed usingethe r
constructed tangential velocities, be equal to the araghtexd sum of the divergences in the hexagons
underlying the triangular cell. This formulation makes §ibke the conservation of potential vortic-
ity, enstrophy and energy, and these conservation pregectin be considered a generalization of the
conservative rectangular mesh discretizationSadourny(1975 andArakawa and Lamli§1987).

Our use of the C grid staggering is guided by theory and bytiged@xperience. Mesoscale and cloud-
scale motions are dominated by horizontally divergent omstj and C-grid staggering provides twice
the resolution of divergent modes than the unstaggeredr{@dagd it does not require any averaging of
the velocities or pressures as is required on the A, B, D agddestaggerings. Pressure and velocity
averaging lead to stationary grid-scale modes that musitbeefi, and the parasitic modes associated
with the divergence and pressure gradient terms will reqaiinigher level of filtering on these meshes.
Our experience is that the level of filtering needed on théseraneshes is considerably higher than
that needed to provide sinks for the downscale energy anmophy cascades in our full nonlinear
simulations using the C-grid staggering. In practice, wd fimat solvers not using C-grid staggering
need finer meshes to produce similarly resolved featureh @siclouds). Our experience also indicates
that higher-order differencing of the mass divergence aedsure gradient terms does not apprecia-
bly change these results; stationary modes remain, iredlddiering is still needed on the non-C-grid
meshes, and higher mesh densities are still needed to maduaparably-resolved solutions. Gener-
ally speaking, all meshes can be made to work with some ldvdtering; the choices affect scheme
efficiency (accuracy versus cost), and we have found thattbad discretization results in the highest
efficiency.
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The analysis oRandall(1994) examining geostrophic adjustment indicates that thei€sgaggering is
not optimal for large-scale flows. Our intended applicaitor MPAS are cell spacings of order 100 km
and less. Our tests to date show that MPAS produces soludianilgr in accuracy to other finite-volume
and finite difference models for large scale flows (based sult®inRingler et al.(2010 for shallow-
water tests, and our results for thablonowski and Williamso(2006 baroclinic wave tests). We have
not identified any problems arising from the C-grid dis@atiion, neither with the computational Rossby
modes addressed Thuburn et al(2009, nor with other potential inaccuracies noted in the litigra.

The second advance incorporated into MPAS is the use of adueschemes making use of higher-order
operators. Unstructured, irregular meshes often use simgrhinally second order operators within the
advection algorithms. For example, the flux divergence iarthe scalar conservation equation requires
that mass flux be evaluated at the cell edge, and a secondforailation could use the average of the
scalar values in the two cells sharing that edge. Howevesgtimple schemes do not produce solutions
on hexagonal meshes that are as accurate as our rectangadhrcioud and mesoscale models. We
have implemented a scheme for use with the MPAS Runge-Kut&ihtegration, based on the 3rd and
4th order transport schemes used in the ARW m&dkelmarock and Klemf2008 using least-squares
polynomial fits for scalars, that allow us to reproduce theuaacy we obtain on the regular rectangular
meshes on the irregular MPAS meshes. Without the use of thesmaccurate schemes, we are not able
to produce solutions with accuracy similar to ARW.

Finally, unstructured mesh solvers such as MPAS make usedaect addressing when building the
horizontal operators during a timestep. We keep vertickiroos contiguous in memory in our Fortran
implementations, and we find that the our solvers have sirndaputational efficiencies as our rect-
angular (structured) grid solverMacDonald et al(2010 have examined the question of efficiency in
3D atmospheric solvers and find that, on cache-based comgmatatectures, having vertical columns
contiguous in memory produces solvers as efficient as ttreictared-mesh counterparts.

3 Simulationson the sphere

A standard test for 3D solvers on the sphere istglonowski and Williamso(2006 baroclinic wave
test. We have simulated the test as described in the refergging horizontal mesh resolutions from
approximately 480 km cell-center spacing (2562-cell ibestal mesh) to approximately 30 km cell
spacing (655362-cell icosahedral mesh). The initial statesists of identical zonally symmetric unsta-
ble jets in both the northern and southern hemispheres. riitie state represents an unstable steady-
state solution, and a baroclinic wave is triggered with alsp@turbation in the northern hemisphere
zonal wind. Figure3 depicts the surface pressure at day 9 for the 120 km aveelgspacing mesh.
P,(hPa) at day9

Test Case 2, 40962Cell , v,=10*
L L L L | L L

2
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Figure 3: Jablonowski and Wi liamson baroclinic wave test simulation.
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The solution on this mesh and for the other mesh densitiepamwell with the published solutions in
Jablonowski and Williamso(2006). We have also used this test case to examine model behaiay u
different advection schemes. We have found that using higtter schemes for the transport of poten-
tial temperature in this dry simulation significantly impes the accuracy of the solution with respect
to both phase and amplitude erro&kémarock and Gassmatn11).

The baroclinic wave train depicted in figuBeis initiated using an unbalanced perturbation. We have
also computed the most unstable normal mode for the jet, tandttucture of the normal mode in the
surface pressure field is depicted in figdre

P.(hPa), 40962Cell, v,=10"

Wave Number = 9, lteration Number = 15
90N L A L

60N —|

30N —

T
90E 120E 150E 180

[CONTOUR FROM -.6 TO .6 BY .1]

Figure 4: Surface pressure for the fastest growing normal mode of the Jablonowski and Williamson
baroclinicjet.

The most unstable mode has wavenumber 9. The normal modmsueed by putting in a perturbation
at a particular zonal wavenumber, integrating forwardrmetiwith periodic rescaling of the perturbation
fields. Note that the icosahedral mesh used in these simigainserts its own perturbation into the
solution in the form of a zonally varying truncation erroniravenumber multiples of 5, and the normal

mode depicted in these results shows good wavenumber 9 dyyneven though the icosahedral grid
does not promote this wavenumber mode.

80N R SR T
day 4.5 — surface pressure (c.i. = 4 hPa)
b —— surface temperature 6 (c.i. = 10 K) [

120E 140E 160E 180

20 40 60 80 100 120 140 160
Vert. Integ. g, (10 g/m?)

Figure 5: Moist baroclinic wave simulation.

We have used the normal mode initialization and added nreistuthe initial state along with Kessler
warm-rain microphysics to test the model response at latgies to stable precipitation processes.
The initial moisture distribution specifies an atmospheith approximately 40% relative humidity
below approximately 500 hPa decreasing to zero quickly eltbat level. The moist baroclinic wave
simulation at days 4.5 and 5.5 (beginning from the amplitdelgicted in figured) is shown in figure
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5. The solutions remain smooth and well resolved, and thetiaddif latent heating has not resulted in
any decrease in solver robustness at these scales. We heegrotess of implementing a complete set
of physics for full NWP simulations, and preliminary testslicate that the solver retains its robustness
for the case of unstable convection and parameterized ctoréan similar baroclinic wave simulations
but with increased moisture.

4 Convective-scale smulations

It is very difficult to test the nonhydrostatic response algll solvers because very high resolutions are
needed to resolve nonhydrostatic scales, particularlyestiion where cell spacings of a few kilometers
or less are needed. An advantage of the unstructured Vomesi and solver is that we can use our
solver on both the sphere and on doubly-periodic Cartedamep. We have performed extensive tests
of the solver for nonhydrostatic scale motions in the Céateplanes using both 2[x,z) and 3D test
cases, including mountain waves, 2D and 3D squall lines @hdupercells thunderstorms. For the
mountain wave cases we have exact linear and nonlinearswyuand these tests have helped us verify
the correctness of our coding.

(a) Hexagonal mesh simulation (b) Rectangular mesh simulation

Figure 6: 3D depiction of supercell simulation results at 6000 seconds. approximately 500 m cell
spacing horizontally and 500 m vertical spacing. The vertical velocity is contoured at 1, 5, and 10
km (c.i. = 3 nVs), the 30 mV/s vertical velocity isosurface is shaded in red, rainwater surfaces are
shaded as transparent shells, and perturbation surface temperature is shaded on baseplane.

Our experience is that deep moist convection provides omieeofnost challenging tests for nonhydro-
static solvers, in terms of solver robustness (stabilityd accuracy due to the significant latent heating
occurring near the grid scale. Figuéeshows the results of supercell simulations using the MPAS
model and a rectangular mesh model with the initial soundliopn Weisman and Klem§1982 and
unidirectional-shear hodograph. Mirror-image right aefl moving supercells are produced in these
simulations, and the right mover is shown in the figure. The todels produce very similar solu-
tions, and we generally find that MPAS produces convectiligtisas of similar accuracy and quality as
our state-of-the-art cloud models such as the AdvancedaRes&/RF model$kamarock and Klemp
2008. We also find that MPAS is as robust and as efficient as thamgatar mesh models (e.g. ARW).
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5 Summary

We have described the formulation of a fully compressiblehyalrostatic model discretized on (spher-
ical) centroidal Voronoi meshes using a C-grid staggerih¢he prognostic variables. The Voronoi
meshes are unstructured meshes that permit variable htaizesolution, and our nonhydrostatic model
solves the equations of motion directly on these unstradtaneshes. The potential benefits of this for-
mulation for the compressible flow solver are made possipléhtee advances. First, we are making
use of the C-grid discretization techniques for Voronox@igonal) meshes described Blguburn et al.
(2009 andRingler et al.(2010 that solve the problems associated with the non-statjogeostrophic
mode analyzed by Nickovit et @2Q02. Second, we are using higher-order transport operatodge-as
scribed inSkamarock and Gassmé2011); the higher-order transport scheme allows the MPAS model
to produce solutions of similar accuracy to present dagsithe-art cloud and mesoscale models, and
also improves the large-scale response in early test diimgaof baroclinic waves. Finally, MPAS is
demonstrating computational efficiency similar to our aegular mesh formulations on existing cache-
based supercomputer architectures.

We have tested the MPAS nopnhydrostatic solver on largle-ficavs (theJablonowski and Williamson
(2006 baroclinic wave on the sphere) and on small scale flows @ipgercell thunderstorms). MPAS
has produced results comparable to other state-of-thaadtls in these test. We are in the process of
incorporating a full atmospheric physics suite into MPAS are anticipate beginning to produce global
NWP test forecasts early next year, along with full-physiagable-resolution tests in anticipation of
using local refinement for NWP forecasts and for regionahate applications.
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