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ABSTRACT

We outline the formulation of a fully compressible nonhydrostatic model discretized on centroidal Voronoi meshes
using a C-grid staggering of the prognostic variables. The Voronoi meshes are unstructured meshes that permit
variable horizontal resolution, and our nonhydrostatic model solves the equations of motion directly on these un-
structured meshes. The unstructured variable-resolutionmeshes allow for applications beyond uniform-resolution
global NWP and climate prediction, in particular allowing embedded high-resolution regions for regional NWP
and regional climate applications. The rationale for aspects of this formulation are discussed, and results from
tests for large-scale flow on the sphere and for nonhydrostatic flows on Cartesian planes are presented.

1 Introduction

Global atmospheric models have typically used latitude-longitude grids for their discretization. The use
of these meshes necessitates the use of polar filters and other extensions to the base numerical schemes
due to the convergence of grid lines at the poles. Spherical transform methods, while not requiring
polar filtering, do not scale optimally with increasing resolution, and the semi-Lagrangian transport
with which they are often paired needs special attention in the polar regions. Finite difference and finite-
volume methods on latitude-longitude meshes, and spherical transform methods, do not scale (map)
well onto the latest generations of supercomputers that rely on large numbers of distributed-memory
processing elements.

We are constructing a global fully compressible nonhydrostatic model using finite-volume numerics dis-
cretized on centroidal Voronoi (nominally hexagonal) meshes using C-grid staggering of the prognostic
variables based on the work ofThuburn et al.(2009) andRingler et al.(2010). This model is called the
Model for Prediction Across Scales (MPAS), and it is a collaborative project being led by the National
Center for Atmospheric Research (NCAR) and Los Alamos National Lab (LANL). NCAR is responsi-
ble for developing the MPAS atmospheric component, LANL is responsible for the ocean component,
with joint development of the shared software infrastructure. The centroidal Voronoi meshes allow for
local refinement, and the horizontal mesh is unstructured. In the following sections we present the equa-
tions and the finite-volume split-explicit discretizationused in the unstructured mesh solver, we discuss
some aspects of the variable unstructured mesh and the considerations involving the discretizations, and
we present results from test simulations at large scales on the sphere and at convective scales on Carte-
sian planes. The test simulations indicate that the solver is performing as well or better than existing
icosahedral mesh models based on the results presented here, and on shallow water tests and theoretical
considerations presented in the previous work ofRingler et al.(2010).
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2 Governing Equations and Discretization

2.1 Continuous equations

We cast the governing equations in terms of a hybrid height-based vertical coordinateζ following Klemp
(2011). In this formulation the height of the coordinate surface

z = ζ + A(ζ )hs(x,y,ζ ), (1)

wherezt is the constant height of the upper boundary,ζ represents the nominal heights (ignoring ter-
rain) of the coordinate surfaces andA(ζ ) defines the relative weighting between the terrain-following
coordinate and the pure height coordinate, such that 0≤ A ≤ 1− ζ/zt . For A(ζ ) = 1− ζ/zt and
hs(x,y,ζ ) = h(x,y) (the terrain height) we recover the traditional terrain-following height coordinate
and forA(ζ ) = 0 we recover a pure height coordinate. The arrayhs can be specified to produce in-
creased smoothing of the terrain influence with height with the requirement thaths(x,y,0) = h(x,y).
As described inKlemp (2011), we can chooseA(ζ ) andhs to control the amount and scale of terrain
influence on the vertical coordinate.

We define the flux variables
(U,V,Ω,Θ,Q j) = ρ̃d · (u,v, η̇ ,θ ,q j) (2)

to provide mass and scalar conservation, whereρd is the density of dry air,̃ρd = ρd/ζz, andq j represents
the mixing ratio of the respective water species. The inviscid prognostic nonhydrostatic equations are
written in flux form using these variables, with the horizontal momentum equations expressed in vector-
invariant form to help achieve desired conservation properties:
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and pressure is obtained diagnostically from the equation of state:
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(

RdζzΘm

p0

)γ
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with γ = cp/cv. Here,VVV = (U,V,Ω), ρm is the density of moist air,

ρm

ρd
= 1+ qv + qc + qr + . . . , (9)

andθm is a modified moist potential temperature,

θm = θ [1+(Rv/Rd)qv]. (10)
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In (3), η = kkk ·∇∇∇× vvvH + f is the absolute vertical vorticity, andK = |vvvH |
2/2 is the horizontal kinetic

energy. The metric terms associated with the vertical coordinate transformation are represented by
∇∇∇ζ = (ζx,ζy,ζz), with ζζζ H = (ζx,ζy) andzzzH = −ζζζ H/ζz. Ω = VVV ·∇∇∇ζ is the component of the mass flux
normal to the coordinates surfaces in the transformed coordinate. In the curvature and Coriolis terms in
(3) and (4), f = 2Ωe sinψ , e = 2Ωe cosψ , ψ is the latitude,Ωe is the angular rotation rate of the earth,
re is the earth radius, andαr is the rotation angle between the line normal to the horizontal velocity and
the meridians.

2.2 Discretization

In the MPAS model, the continuous equations are spatially discretized on a unstructured C-grid cen-
troidal Voronoi mesh followingThuburn et al.(2009) and Ringler et al.(2010). Nominally uniform
traditional icosahedral meshes as well as variable resolution meshes can be generated for the sphere, for
regional domains on the sphere, and for Cartesian planes using techniques described inRingler et al.
(2008).
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Figure 1: The Voronoi mesh

A horizontal C-grid Voronoi mesh is depicted in figure1. The horizontal momentum normal to the cell
edge is prognosed at the cell edges and the coupled potentialtemperatureΘm, densityρ̃ and moisture
Q j are prognosed at the cell centers where they represent cell-averaged values in the finite volume for-
mulation. The vertical momentum is prognosed on the vertical cell face located half a grid level above
and below the cell center, consistent with a 3D C-grid discretization. All other quantities are diagnosed
from the prognostic variables, e.g. pressure (8). The tangential component of the horizontal momen-
tum, appearing in the horizontal momentum equation (3), is diagnosed followingThuburn et al.(2009),
and the absolute vertical vorticityη and kinetic energyK in (3) are diagnosed followingRingler et al.
(2010). These horizontal discretization techniques for the C grid do not suffer from the problems of
the non-stationary geostrophic mode. The horizontal discretization exactly conserves mass (to machine
roundoff), and, in the 2D shallow water framework, exactly conserves potential vorticity and conserves
energy to the time truncation error (Ringler et al., 2010)

The fully compressible nonhydrostatic equations (3) – (7) are solved using the time-split integration
technique described inKlemp et al. (2007) for height-coordinate equations. We use the third-order
Runge-Kutta scheme ofWicker and Skamarock(2002) with the time-split algorithm. The use of the
vector-invariant form of the horizontal momentum equation(3) does not complicate the solution proce-
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dure, but note that we cast this equation in flux form to facilitate the acoustic solve. This gives rise to
the additional termvvvH∇∇∇ζ ·VVV that does not appear in non-flux-form equations that are usually used in
this context, e.g.Ringler et al.(2010).

The transport scheme used for the flux divergence calculations in (5) and (7) on the irregular Voronoi
(∼hexagonal) mesh is described inSkamarock and Gassman(2011). It uses nominally third and fourth
order approximations for projecting the scalar value to thecell edge in the conservative flux-divergence
calculation. The mass flux divergence in (6) is approximated by averaging the cell averaged values of
ρ̃ to the cell face from the two cells sharing the face (seeThuburn et al., 2009). We use the mass flux
that is time-averaged over the acoustic steps for scalar transport, thus maintaining consistency between
the scalar transport and the continuity equation. As explained inKlemp et al.(2003), it is important
to maintain consistency between the transport operator andthe metric terms associated with the terrain
transformation. In MPAS this requires that the diagnosis ofthe transformed vertical velocityΩ be con-
sistent with the advection operator used in the thermodynamic equation (5). To satisfy this requirement,
we formulate the transformed vertical velocity for celli as

Ωi =VVV ·∇∇∇ζ = ζzVVV ·∇∇∇(z− zi)

=ζz [∇∇∇ ·VVV (z− zi)− (z− zi)∇∇∇ ·VVV ]

=ζz∇∇∇ ·VVV (z− zi), (11)

where zi is the coordinate-surface height at celli for which Ωi is being computed. We apply the
Skamarock and Gassman(2011) scheme to the right-hand-side of (11) thus satisfying the consistency
requirement. The expensive part of theSkamarock and Gassmanscheme, evaluating(z− zi) at the cell
faces, can be computed and the results stored before integration begins, thus there is little additional cost
in implementing theKlemp et al.(2003) consistency requirement.

2.3 Nonuniform meshes

Figure 2: Variable resolution Voronoi mesh

For uniform resolution simulations on the sphere, the spherical centroidal Voronoi tesselation is the
icosahedral mesh, and results for shallow water tests usingthis mesh are given inRingler et al.(2010).
Our intended applications also include regional NWP and regional climate, for which the Voronoi
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meshes can be generated using a specified non-uniform mesh density. Figure2 depicts a variable resolu-
tion mesh with refinement embedded. The global mesh is represents a single mesh and it is conforming
- there are no hanging nodes in this mesh. The resolution resolution changes smoothly from the coarse
to the fine mesh regions. We have significant flexibility in themesh generation process, which requires
only a user-specified density function (Ringler et al., 2008).

We expect that smooth mesh transitions will ameliorate manyproblems encountered in traditional ap-
proaches to mesh refinement such as the use of embedded nests where the change in resolution is abrupt,
and in the grid stretching procedures used in some rectangular mesh models that can produce some re-
gions of very anisotropic cells and that is usually limited to refinement in a single region. Initial tests
of MPAS on the sphere and at convective scales on Cartesian doubly-periodic planes using the smooth
mesh transitions are producing consistent results withoutnoticeable distortion.

2.4 Discretization considerations

There are a number of new aspects in the MPAS solver formulation, compared with other icosahedral-
mesh formulations, that appear to provide beneficial characteristics in the solver for global multiscale
(hydrostatic- and nonhydrostatic-scale) atmospheric simulation.

The first significant advance in the MPAS formulation is the formulation for the C-grid staggering of the
prognostic variables.Ničković et al.(2002) examined the problem of the hexagonal C-grid geostrophic
mode. The problem arises because the tangential velocity needs to be reconstructed from the prognosed
normal velocities on the cell faces in order to evaluate the Coriolis term, and Ničković et al showed that
the stationary geostropic mode in the linearized shallow water equations will be nonstationary using the
most obvious reconstruction of the tangential velocity. The nonstationary geostrophic mode renders the
scheme useless for global applications.Thuburn(2008), Thuburn et al.(2009) andRingler et al.(2010)
developed a method to reconstruct the tangential velocity such that the geostrophic mode remains sta-
tionary and also that allows for potential vorticity conservation, enstrophy conservation or dissipation
following Sadourny and Basdevant(1985), and energy conservation to the time truncation error. This
critical advance is based on the constraint that the horizontal mass divergence on the triangular mesh
(the dashed triangular cell in figure1; the dual of our hexagonal mesh), that is computed using the re-
constructed tangential velocities, be equal to the area-weighted sum of the divergences in the hexagons
underlying the triangular cell. This formulation makes possible the conservation of potential vortic-
ity, enstrophy and energy, and these conservation properties can be considered a generalization of the
conservative rectangular mesh discretizations ofSadourny(1975) andArakawa and Lamb(1981).

Our use of the C grid staggering is guided by theory and by practical experience. Mesoscale and cloud-
scale motions are dominated by horizontally divergent motions, and C-grid staggering provides twice
the resolution of divergent modes than the unstaggered (A) grid and it does not require any averaging of
the velocities or pressures as is required on the A, B, D and E-grid staggerings. Pressure and velocity
averaging lead to stationary grid-scale modes that must be filtered, and the parasitic modes associated
with the divergence and pressure gradient terms will require a higher level of filtering on these meshes.
Our experience is that the level of filtering needed on these other meshes is considerably higher than
that needed to provide sinks for the downscale energy and enstrophy cascades in our full nonlinear
simulations using the C-grid staggering. In practice, we find that solvers not using C-grid staggering
need finer meshes to produce similarly resolved features (such as clouds). Our experience also indicates
that higher-order differencing of the mass divergence and pressure gradient terms does not apprecia-
bly change these results; stationary modes remain, increased filtering is still needed on the non-C-grid
meshes, and higher mesh densities are still needed to produce comparably-resolved solutions. Gener-
ally speaking, all meshes can be made to work with some level of filtering; the choices affect scheme
efficiency (accuracy versus cost), and we have found that theC-grid discretization results in the highest
efficiency.
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The analysis ofRandall(1994) examining geostrophic adjustment indicates that the C-grid staggering is
not optimal for large-scale flows. Our intended applications for MPAS are cell spacings of order 100 km
and less. Our tests to date show that MPAS produces solutionssimilar in accuracy to other finite-volume
and finite difference models for large scale flows (based on results inRingler et al.(2010) for shallow-
water tests, and our results for theJablonowski and Williamson(2006) baroclinic wave tests). We have
not identified any problems arising from the C-grid discretization, neither with the computational Rossby
modes addressed inThuburn et al.(2009), nor with other potential inaccuracies noted in the literature.

The second advance incorporated into MPAS is the use of advection schemes making use of higher-order
operators. Unstructured, irregular meshes often use simple nominally second order operators within the
advection algorithms. For example, the flux divergence termin the scalar conservation equation requires
that mass flux be evaluated at the cell edge, and a second-order formulation could use the average of the
scalar values in the two cells sharing that edge. However, these simple schemes do not produce solutions
on hexagonal meshes that are as accurate as our rectangular mesh cloud and mesoscale models. We
have implemented a scheme for use with the MPAS Runge-Kutta time integration, based on the 3rd and
4th order transport schemes used in the ARW modelSkamarock and Klemp(2008) using least-squares
polynomial fits for scalars, that allow us to reproduce the accuracy we obtain on the regular rectangular
meshes on the irregular MPAS meshes. Without the use of thesemore accurate schemes, we are not able
to produce solutions with accuracy similar to ARW.

Finally, unstructured mesh solvers such as MPAS make use of indirect addressing when building the
horizontal operators during a timestep. We keep vertical columns contiguous in memory in our Fortran
implementations, and we find that the our solvers have similar computational efficiencies as our rect-
angular (structured) grid solvers.MacDonald et al.(2010) have examined the question of efficiency in
3D atmospheric solvers and find that, on cache-based computer architectures, having vertical columns
contiguous in memory produces solvers as efficient as their structured-mesh counterparts.

3 Simulations on the sphere

A standard test for 3D solvers on the sphere is theJablonowski and Williamson(2006) baroclinic wave
test. We have simulated the test as described in the reference using horizontal mesh resolutions from
approximately 480 km cell-center spacing (2562-cell icosahedral mesh) to approximately 30 km cell
spacing (655362-cell icosahedral mesh). The initial stateconsists of identical zonally symmetric unsta-
ble jets in both the northern and southern hemispheres. The initial state represents an unstable steady-
state solution, and a baroclinic wave is triggered with a small perturbation in the northern hemisphere
zonal wind. Figure3 depicts the surface pressure at day 9 for the 120 km average-cell-spacing mesh.

Figure 3: Jablonowski and Williamson baroclinic wave test simulation.
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The solution on this mesh and for the other mesh densities compare well with the published solutions in
Jablonowski and Williamson(2006). We have also used this test case to examine model behavior using
different advection schemes. We have found that using higher-order schemes for the transport of poten-
tial temperature in this dry simulation significantly improves the accuracy of the solution with respect
to both phase and amplitude errors (Skamarock and Gassman, 2011).

The baroclinic wave train depicted in figure3 is initiated using an unbalanced perturbation. We have
also computed the most unstable normal mode for the jet, and the structure of the normal mode in the
surface pressure field is depicted in figure4.

Figure 4: Surface pressure for the fastest growing normal mode of the Jablonowski and Williamson
baroclinic jet.

The most unstable mode has wavenumber 9. The normal mode is computed by putting in a perturbation
at a particular zonal wavenumber, integrating forward in time with periodic rescaling of the perturbation
fields. Note that the icosahedral mesh used in these simulations inserts its own perturbation into the
solution in the form of a zonally varying truncation error inwavenumber multiples of 5, and the normal
mode depicted in these results shows good wavenumber 9 symmetry even though the icosahedral grid
does not promote this wavenumber mode.

day 4.5 day 5.5surface pressure (c.i. = 4 hPa)

surface temperature θ (c.i. = 10 K)

Figure 5: Moist baroclinic wave simulation.

We have used the normal mode initialization and added moisture to the initial state along with Kessler
warm-rain microphysics to test the model response at large scales to stable precipitation processes.
The initial moisture distribution specifiies an atmospherewith approximately 40% relative humidity
below approximately 500 hPa decreasing to zero quickly above that level. The moist baroclinic wave
simulation at days 4.5 and 5.5 (beginning from the amplitudedepicted in figure4) is shown in figure
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5. The solutions remain smooth and well resolved, and the addition of latent heating has not resulted in
any decrease in solver robustness at these scales. We are in the process of implementing a complete set
of physics for full NWP simulations, and preliminary tests indicate that the solver retains its robustness
for the case of unstable convection and parameterized convection in similar baroclinic wave simulations
but with increased moisture.

4 Convective-scale simulations

It is very difficult to test the nonhydrostatic response of global solvers because very high resolutions are
needed to resolve nonhydrostatic scales, particularly convection where cell spacings of a few kilometers
or less are needed. An advantage of the unstructured Voronoimesh and solver is that we can use our
solver on both the sphere and on doubly-periodic Cartesian planes. We have performed extensive tests
of the solver for nonhydrostatic scale motions in the Cartesian planes using both 2D(x,z) and 3D test
cases, including mountain waves, 2D and 3D squall lines and 3D supercells thunderstorms. For the
mountain wave cases we have exact linear and nonlinear solutions, and these tests have helped us verify
the correctness of our coding.

(a) Hexagonal mesh simulation (b) Rectangular mesh simulation

Figure 6: 3D depiction of supercell simulation results at 6000 seconds. approximately 500 m cell
spacing horizontally and 500 m vertical spacing. The vertical velocity is contoured at 1, 5, and 10
km (c.i. = 3 m/s), the 30 m/s vertical velocity isosurface is shaded in red, rainwater surfaces are
shaded as transparent shells, and perturbation surface temperature is shaded on baseplane.

Our experience is that deep moist convection provides one ofthe most challenging tests for nonhydro-
static solvers, in terms of solver robustness (stability) and accuracy due to the significant latent heating
occurring near the grid scale. Figure6 shows the results of supercell simulations using the MPAS
model and a rectangular mesh model with the initial soundingfrom Weisman and Klemp(1982) and
unidirectional-shear hodograph. Mirror-image right and left moving supercells are produced in these
simulations, and the right mover is shown in the figure. The two models produce very similar solu-
tions, and we generally find that MPAS produces convective solutions of similar accuracy and quality as
our state-of-the-art cloud models such as the Advanced Research WRF model (Skamarock and Klemp,
2008). We also find that MPAS is as robust and as efficient as the rectangular mesh models (e.g. ARW).
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5 Summary

We have described the formulation of a fully compressible nonhydrostatic model discretized on (spher-
ical) centroidal Voronoi meshes using a C-grid staggering of the prognostic variables. The Voronoi
meshes are unstructured meshes that permit variable horizontal resolution, and our nonhydrostatic model
solves the equations of motion directly on these unstructured meshes. The potential benefits of this for-
mulation for the compressible flow solver are made possible by three advances. First, we are making
use of the C-grid discretization techniques for Voronoi (hexagonal) meshes described byThuburn et al.
(2009) andRingler et al.(2010) that solve the problems associated with the non-stationary geostrophic
mode analyzed by Ničković et al (2002). Second, we are using higher-order transport operators asde-
scribed inSkamarock and Gassman(2011); the higher-order transport scheme allows the MPAS model
to produce solutions of similar accuracy to present day state-of-the-art cloud and mesoscale models, and
also improves the large-scale response in early test simulations of baroclinic waves. Finally, MPAS is
demonstrating computational efficiency similar to our rectangular mesh formulations on existing cache-
based supercomputer architectures.

We have tested the MPAS nopnhydrostatic solver on large-scale flows (theJablonowski and Williamson
(2006) baroclinic wave on the sphere) and on small scale flows (e.g.supercell thunderstorms). MPAS
has produced results comparable to other state-of-the-artmodels in these test. We are in the process of
incorporating a full atmospheric physics suite into MPAS and we anticipate beginning to produce global
NWP test forecasts early next year, along with full-physicsvariable-resolution tests in anticipation of
using local refinement for NWP forecasts and for regional climate applications.
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Ničković, S., M. B. Gavrilov, and I. A. Tošić, 2002: Geostrophic adjustment on hexagonal grids.Mon.
Wea. Rev., 130, 668–683.

Randall, D. A., 1994: Geostrophic adjustment and the finite-difference shallow-water equations.Mon.
Wea. Rev., 122, 1371–1377.

Ringler, T., L. Ju, and M. Gunzburger, 2008: A multiresolution method for climate system modeling:
application of spherical centroidal voronoi tessellations. Ocean Dyn., 58, 475–498.

ECMWF Workshop on Non-hydrostatic Modelling, 8-10 November 2010 129



SKAMAROCK ET AL .: THE MPAS MODEL

Ringler, T., J. Thuburn, J. B. Klemp, and W. C. Skamarock, 2010: A unified approach to energy con-
servation and potential vorticity dynamics for arbitrarily-structured C-grids.J. Comp. Phys., 229,
3065–3090.

Sadourny, R., 1975: The dynamics of nite-difference modelsof the shallow-water equations.J. Atmos.
Sci., 32, 680–698.

Sadourny, R. and C. Basdevant, 1985: Parameterization of subgrid scale barotropic and baroclinic eddies
in quasi-geostrophic models - anticipated potential vorticity method.J. Atmos. Sci.., 42, 1353–1363.

Skamarock, W. C. and A. Gassman, 2011: Conservative transport schemes for spherical geodesic grids:
High-order flux operators for ODE-based time integration.Mon. Wea. Rev., to be submitted.

Skamarock, W. C. and J. B. Klemp, 2008: A time-split nonhydrostatic atmospheric model for weather
research and forecasting applications.J. Comp. Phys., 227, 3465–3485.

Thuburn, J., 2008: Numerical wave propagation on the hexagonal C-grid.J. Comp. Phys., 227, 5836–
5858.

Thuburn, J., T. Ringler, W. C. Skamarock, and J. B. Klemp, 2009: A unified approach to energy con-
servation and potential vorticity dynamics for arbitrarily-structured C-grids.J. Comp. Phys., 228,
8321–8335.

Weisman, M. L. and J. B. Klemp, 1982: The dependence of numerically simulated convective storms
on vertical wind shear and buoyancy.Mon. Wea. Rev., 110, 504–520.

Wicker, L. J. and W. C. Skamarock, 2002: Time-splitting methods for elastic models using forward time
schemes.Mon. Wea. Rev., 130, 2088–2097.

130 ECMWF Workshop on Non-hydrostatic Modelling, 8-10 November 2010


	1 Introduction
	2 Governing Equations and Discretization
	2.1 Continuous equations
	2.2 Discretization
	2.3 Nonuniform meshes
	2.4 Discretization considerations

	3 Simulations on the sphere
	4 Convective-scale simulations
	5 Summary

