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ABSTRACT

In 2005, the ECMWF held a workshop on stochastic paramat@is at which the convection was seen as being
a key issue. That much is clear from the working group reprtsparticularly the statement from working group
1 that “itis clear that a stochastic convection scheme igalgle”. The present note aims to consider our current
status in comparison with some of the issues raised and lexpesssed in that working group report.

1 Introduction

A good indication that some substantial progress have beegle since the 2005 ECMWF workshop is
that this note will necessarily be a rather partial and sona\wubjective review. It aims to offer some
examples rather than attempting to be comprehensive. s o it may have been unnecessary to
make that caveat. Fortunately various other contributiorise current workshop also deal with stochas-
tic aspects of convection, and we recommend the reader sult@iso the contributions by Majda and
by Randall in order to obtain a more complete picture of theeru state of the art. In particular, to
avoid undue overlap, some useful work from their groups meapdyglected, or else mentioned only in
passing here.

2 Typical convective parameterization

We begin with a reminder of some basic structural featurédeeparameterizations that are commonly
used in current NWP and climate models. Most current parnizations belong to the tradition of
Arakawa and Schube(tl974) in which convection is characterised by an ensemble ofddowithin
some area of tolerably uniform forcing (Fi). Each cloud is averaged over its life cycle and its vertical
structure is modelled as a “plume”, which is described imtepf the mass flux. The plumes interact
with their environment but in all other respects are assuindoe independent and non-interacting.
Given that the usual plume equations are (almost) linearassnflux then a common simplification is
to make a summation over plumes, thereby representing tive ensemble with an equivalent “bulk”
plume. The great strengths of this bulk, mass-flux approaetthet it avoids any separate, explicit
consideration of each type of cloud that occurs in the enteearid also of the cloud area and updraft
velocity within each type. Even assuming that we can acdepsimplified picture in Fig2, these are
clearly very strong simplifications of that picture. It istrsurprising then that the great weaknesses
of the approach are exactly the same points. For exampleryacvede treatment of cumulus cloud
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FiG. 1. A unit horizontal area at some level between cloud base and the highest
clowd top. The ialler clouds are shown penetrating cvhis level and entraining environ-
meental air. A cloud which has lost buoyancy is shown detraining cloud air into the
environment.

Figure 1: Schematic of the idealization of convection usethany current parameterizations: an ensemble of
cumulus clouds is contained within a grid box of the parentieioTaken fronArakawa and Schube(iL974.

microphysics (which is not linear and which does distinspubetween area and vertical velocity) is
required for consistency.

Given a description of the vertical structure, it then remsaio provide an overall amplitude for the
strength of convective activity: in effect, to determinevhmany clouds are present within the grid area.
This can be determined by assuming “convective quasideguin,” the notion that the tendency of
the convective ensemble to stabilize the atmosphere ig ¢tobeing in balance with the tendency for
destabilization (i.e., the convective “forcing”) arisifim large-scale processes, such as radiative or
advective cooling.

The uncertainties associated with parameterization aea abnsidered in three categories:

1. Structural errors. Clearly there are some fundamergaks with and strong assumptions in the
methodology outlined above.

2. Parameter uncertainties. The results of massive matltirpeter experiments have highlighted the
entrainment rate of a bulk mass-flux scheme as being thestasgarce of parameter uncertainty
for climate projections (e.dnight et al, 2007).

3. Inherent process uncertainties. Given a particulae sfeghe parent NWP or climate model, it may
not be possible, even in principle, to determine propedfdabe unresolved state sufficiently well
for the feedback to the resolved state to be unambiguous.xtkeree example would be where
convective initiation is very marginal and sensitive totieiinhomogeneous details of boundary
layer structure (e.ddanley et al.2011). More generally, various coarse-graining studies of CRM
simulations (e.gShutts and Palme2007) have demonstrated that a given large-scale state is
consistent with many sub-grid states.

In the remainder of this note, we will discuss some aspectsatdgory 3. Before doing so, it may
be worth remarking that the distinction between categdriasd 2 is not clear. The bulk entrainment
rate (and any dependencies associated with it in some ylartischeme) may itself be regarded as a
parmeterization embedded within the convective pararzaten. Entrainment parameterizes cloud-
environment interactions, and in a bulk scheme it also icithliencodes assumptions about the relative
occurence of different cloud types. Indeed, uncertairfties all three categories might reasonably be
considered to also apply to the treatment of entrainment.
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Figure 2: Time-averaged profiles of ensemble spread in teatype for: the deterministic MetUM with small
initial-condition perturbations (dashed); default mplicative noise SPPT method, with random numbers chosen
for stochastic multipliers applied to the total parametex tendencies of T and q (black); multiplicative noise
with separate uncorrelated random numbers chosen for thehsistic multipliers of each parameterized process
(blue); and, multiplicative noise with separate uncorteldrandom numbers chosen for the stochastic multipliers
of T /dt anddq/dt (red).

3 The physics of fluctuations

There is now good evidence from various studies that intindusome stochastic component to an
ensemble weather forecasting model may be helpful, inlieegpread-error relationship of the ensemble
can be improved without any undue damage to skill measuiese Such outcomes have been achieved
for various forms of the stochastic component, one mighttioee be tempted to adopt a purely practical
approach towards specifying that component. Howeverwboigh stressing that one can never become
completely agnostic about the relevant physics. In othedsjdntroducing a stochastic component to
the model automatically carries with it assumptions abloefahysics that require some justification.

As a trivial example, let us consider a possible additives@abntributiong, to the potential temperature
equation:

006

EJrQ.Q@:Pe(X’G)JrE 1)
wherePy represents deterministic parameterizations that deppod a set of parametetsand on the
resolved-scale stad. Suppose now that we decide to reformulate our model in tefrine transformed

variablen = €°. This evolves according to

17}

0—?+u.gn =P (X,a)+en @
so that additive noise has become multiplicative noise. ddfse, such phrases are quite meaningless
in themselves: it is necessary to specify for what variabke rioise is to be considered additive or

multiplicative. And, such a choice of variable cannot be enadthout consideration of the physics.

To give a specific example, let us consider some variatiornth@$PPT method as used at ECMWF. In
that method, multiplicative noise is applied to the totalgmaeterized tendencies 8T /dt anddq/dt.
Ball and Plant(2008 studied the method, amongst others, in a single-columnelm@dgeriment with
the Met Office Unified Model (MetUM) for the TOGA-COARE testsga As an extension to that study,
Fig. 3shows the ensemble spread in temperature for the SPPT naettdabme simple modifications of
it. There is little impact from treating each parametei@aseparately but a strong impact from treating
the temperature and moisture tendencies separately. dntteespread produced by decorrelating the
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Figure 3: Auto-correlation function for parameterized mdkix, and the convection-scheme tendencies for mois-
ture and potential temperature. Results taken from a sitimravith the MetUM at N48L38 resolution. Taken
from Stiller (2009.

noise in the two tendencies is larger than that produced bypahed random noise (not shown). The
reason for such artificially large spread is that the pararimtd increments td andq are strongly
negatively correlated. Condensation and evaporationgr@&rameterized processes, and a scatter plot
of the total parmeterization tendencies reveals that métiyeototal increments lie on or very close to
the lineCy,AT = —LAqg which would indicate a pure phase change. Decorrelatingidise applied to

the two increments obscures that fundamental physicaior&hip, and so damages the fidelity of the
simulations.

Let us now return to the working group report 1 from the eaHEEMWF workshop Craig et al, 2005
and reconsider issues highlighted there.

3.1 Physical and artificial noise

When a mass-flux convective parameterization is used in af M\¢limate model, it does not behave
in a smooth way but rather exhibits strong on/off behavioith wtrong timestep-to-timestep variabil-
ity. This remains the case even in highly-idealized sirggikimn model experiments performed by the
authors in which the forcing for convection is specified aodsirained to be time invariant. This small-
scale, high-frequency variability has not been well chisr@med or studied, and there is rather little in
the journal literature that explicitly addresses the issDee exception iStiller (2009 who highlights

the problem that it produces for data assimilation. Figileshows that there is a very rapid fall off of
the auto-correlation function for parameterized convecténdencies, on a timescale that appears to be
set by the model timestep rather than anything physicalrelisealmost no correlation in the tendencies
at neighbouring timesteps.

Such artificial on/off noise is present in many NWP and cliemaibdels and may be having upscale ef-
fects. It would seem to be worthy of dedicated study, nottleasause artificial noise in the output from
one physics scheme implies that artificial noise is pregettie input to other physics schemes. That
may potentially lead to systematic errors in respreser{sag) cloud-radiation effects. For the purposes
of the present discussion, however, we will content oueseWith noting an important consequence. If
one wishes to develop an explicit representation for sonysipal source of inherent convective fluc-
tuations then a naive application of that representatidhnet necessarily produce fluctuations in the
parent model with the desired characteristics. Certainyjili be essential to make careful checks that

1j.e., using the default method and randomly choosing temydemultipliers at the first timestep only which are then left
fixed throughout the model integration
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those characteristics are reproduced in practice, andhbpisnay be necessary to take steps to remove
the artificial noise.

3.2 Scale-dependence of parameterization

The purpose of a parameterization scheme such as that feeatan is to represent the effects of pro-
cesses that take place below the parent model’s filter scatemediately follows that any change to the
filter may require a change in the appropriate representafiovhat is sub-filter. Most parameterizations
in operational use contain no explicit recognition of thegta and timescales on which they operate.
That may well be an acceptable approximation over a widegafghe filter length and timescales, at
least for the mean response of the unresolved processeshdtiever less plausible as an acceptable
approximation for the stochastic aspect of a paramet@izaas the simple considerations below indi-
cate. The consequence is that ideally a parameterizatigrpéticularly a stochastic parameterization)
should adapt automatically to the grid size of the parentehothis is important in the sense that one
test for a good representation of the fluctuations is antatdicapture their variation with lengthscale.
It may also be important for practical reasons, certainlyafameterization is to be handled in a satis-
factory way in conjunction with some of the new dynamicalesothat are being developed, which have
adaptive grids.

Convective instability is released in a discrete fashiofiniie number of clouds appearing in a finite
area in response to some large-scale destabilization misama For a typical GCM grid box of size
(say)(100km)? the number of deep convective clouds that are typically donrthe box is on the order
of a few, or maybe less, and certainly far from being largeughato produce a steady response to a
steady forcing Plant and Craig2008 Shutts and PalmeR007). The fluctuations in mass flux about a
mean response can be determined theoretically from atstaltisiechanics approach, subject to certain
assumptionsGraig and Coher2006. Fortunately the key assumptions required are very familhes
from the perspective of a traditional deep convective patanzation (Sec2): specifically, that there

is an equilibrium between the large-scale forcing and treemible-mean convective response and that
the clouds can be assumed to be non-interacting. Moredwempriedictions are in good agreement
with CRM simulations, even in organized and time-varyingasawhere one might expect the main
assumptions to have broken dow@ohen and Craig2006 Davoudi et al.2010.

Notice that the key point of this analysis is the need for arctistinction to be made between ensemble
and spatial averaging. Only for a strong enough forcing dady@ enough grid box do the two coincide,
but more generally, the spatially-averaged convectivie $sza sample from the full cloud ensemble that
is the basis of a mass-flux convective parameterization.

TheCraig and Cohe(2006) theory has been translated into a practical parametienizby Plant and Craig
(2008. Their scheme uses the mass-flux formalism, and operafeiass.

1. Anaverage in the horizontal and over time is performedeteminine the large-scale state.

2. Properties of equilibrium statistics are determinecedejent upon the large-scale state: the ensemble-
mean cloud-base mass flux is determined from the scheme’€@aBed closure, and the mean
mass flux of a single cloud must also be determined. Thig lgttentity is important in setting a
scale for the fluctuations. In principle, it may be a functidrthe large-scale state (Davies, 2011,
personal communication) but available CRM data seem toesidhgat at cloud base it is a weak
function, and so a constant value is used in the parameieriza

3. Given the above quantities, the theoretical pdf's ara folly specified for the number and prop-
erties of the clouds within a single grid box. Those pdf'ssampled randomly.

4. Output tendencies are computed for the sampled set ad<lou
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Figure 4: PDFs of total parameterized mass flux over a horiabarea of (64km)? in RCE simulations with
32km grid length with the MetUM. Left: a simulation in which ada-scale state for input to thelant and Craig
(2008 scheme has been computed by averaging ever60)kn? and for~ 1hr. Right: with no such averaging.
Crosses show simulation data and the solid line is the theadgorediction.
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Figure 5: Normalized standard deviation in a trial of tféant and Craig(2008 parameterization in MOGREPS.
Results (green) and compared to those from the MetUM staindeterministic parameterization (blue). The
convcetive rainfall was averaged ov@¥8km)? (left) and(120km)? (right).

Notice that the parameterization distinguishes betweegtid-scale state and the large-scale state, with
the pdfs being a function of the latter. In order to demonstiiae practical importance of the distinction
Keane and Plant2011) performed idealized radiative-convective equilibriumperiments in a three-
dimensional domain with parameterized convection. Thia tontrolled situation that matches well
with the picture of convection in Fi@, so it is an important test of any parameterization that Giusth

be able to describe the situation well (i.e., in good agregmiéth equivalent CRM experiments). The
underpinning theoretically-predicted pdf for mass fluxraadinite area can be successfully reproduced
(Fig. 3.2) regardless of the grid length used. That is not the casegVwif grid-scale input is used. In
essence, fluctuations (whether physically-based or othejwn the input state can damage the closure
calculations for determining the mass flux that is requicedalance the imposed forcing.

The scheme is currently being trialled in the Met Office MOGFEensemble system, and some pre-
liminary results are shown in Fi§.2. This indicates that enhanced variability remains on sdaleger
than the 24km grid length.
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Figure 6: An example solution of the ordinary differentigjuations ofPan and Randal{1999 (blue) is shown
alongside numerical results from an equivalent, individieael stochastic model. The system size was such that
there are an average of 10 clouds present at equilibriumiwithe simulated system. The green line shows a
single realization of the individual-level model and thd tme the ensemble mean from 100 realizations.

3.3 Prognostic closures

Non-equilibrium closures for convective parameterizagibave been explored on the basis of the convective-
energy-cycle equations. The first attempt to do this waBday and Randa(ll998 who considered the
equation set

dA dK; Ki

E:H—Vlej ; E:AiMi_?i 3

supplemented by an ansatz

Ki = aM? (4)

HereA is the cloud work function oArakawa and Schube(l974) (a generalization of the CAPEY)

is the mass fluxK the convective kinetic energ¥; the forcing andy and t are vertical-structure and
dissipation parameters that are treated as constants. ubseripts label cloud types. In the past few
years there has been a revival of interest in these and atleted equation set®avies et al. 2009
Wagner and Graf01Q Yano and Plant2017).

A natural question to ask is how one might treat stochastecesf from finite cloud number in out-of-
equilibrium systems such as these. One possibility is tsiden a model formulated at the individual
cloud level using simple birth and death probabilities alif modulated by the evolving cloud work
function. RecenthPlant(2011) showed that such models can be formulated so that they arpletely
equivalent to the above ordinary differential equationghie sense that the ode’s are reproduced in the
limit of infinite system size. A numerical example is giverfiy. 3.3. Moreover, the birth—death rules
used and the associated probabilities are very stronglgt@ned by making the link to appropriate
ode’s. The individual level model can also be made condistéth the equilibrium fluctuations in a
finite-size system that were predicted ®saig and Coheli2006).

Note that stochastic birth—death processes have preyibesin used to describe deep convection (e.g.
Majda and Khouider2002), albeit in a rather different context and motivated by utaigeties in the
triggering process. See also the contribution to this wasgsfrom Majda for details of a further appli-
cation.
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Figure 7: On the left is shown an example of a perturbatiordfegplied to the temperature within the boundary-
layer in a convective-scale simulation of a case of widesp@nvection across the UK. On the right are shown
the fractions of rainy grid points in a control (without bodery layer perturbations) and a perturbed simulation.

3.4 Effects of sub-grid variability

There have been various demonstrations in the recenttliterfrom simulations at convective-scale
resolution (i.e., without convective parameterizatidmttsmall boundary layer fluctuations can easily
shift the locations of precipitating convective cells . A@mple is given in Fig3.4, taken from the study
by Leoncini et al.(2010. Such fluctuations provide a source of ensemble spread\\dP forecasts at
convective-scale resolution. It may be needless to rentekthis provides a simple example of how
the absence of a convective parameterization certainlg doemean that we remove the uncertainties
associated with convection.

In terms of accounting for boundary layer fluctuations wheimgi a convective parameterization, we
refer the reader to earlier work ylajda and Khouide{2002 andBright and Mullen(2002), the for-
mer study having been mentioned earlier and the latter aygptochastic perturbations to the trig-
gering function in the Kain-Fritsch parameterization. Blepment of theMajda and Khouide(2002)
approach has been reported lhajda et al.(2008 but we are not aware of any other recent studies
explicitly dealing with this issue.

It may be worth noting, however, that there seems to be isgrganterest in mass flux closures related
to the quantity exp—CIN/TKE). See for example the poster contribution to this workshomfHo-
henegger. Such closures are strongly motivated by ideadg Bbandary layer fluctuations, but so far at
least do not seem to have been considered in a stochast& sens

More generally, this topic clearly raises important issaiesut the coupling between the boundary-layer
and the convective parameterizations, which remain to decaded.

3.5 Propagation

There are longstanding and well documented issues in NWRlgmdte models regarding propaga-
tion and organization of convection. At least in part, thiaynbe due to the lack of communication
between grid cells. At the 2005 workshop, there were twoipdisies raised. One was that a cellular-
automata approach might provide a suitable mechanismtiaraell communication. Some work along
these lines has recently been conducte@éggtsson-Sedlar et 2011 and is further described in her
contribution to this workshop.

The other possibility was that communication could be aaueby allowing for cold pool propagation
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between grid boxes. A recent study to mention in this coniex@randpeix and Laforé2010 who
proposed a density current parameterization for cold paaspled to a convective parameterization.
The authors suggest that it might be extended to provide aamésm for horizontal propagation. Their
approach is not stochastic, although a stochastic aspeddveppear natural in any such extension,
given that the cold pool propagation out of a grid box mustime extent depend on where within the
grid box the downdraft source is assumed to occur.

4  Summary

Some issues in the stochastic parameterization of covebtve been discussed. It is clear that there
has been considerable progress made since the 2005 ECMVKBhept However, some important is-
sues raised then remain important issues now, while otheessidentified then have still to be addressed
in any concerted way.
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