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ABSTRACT

This article uses radiation parameterization as a lensugiravhich to view some general issues related to the
representation of model error and uncertainty. | desclib&inds of radiation calculations required by forecasting
models and consider the error sources and budgets for cldal@udy skies. This demonstrates that, with respect
to radiation, process understanding is high, benchmarksibiguous, and uncertainty due almost entirely to
limited knowledge available to the radiative transfer paggerization. | identify thee areas that may be ripe for
representing uncertainty though the perturbations thabesexpected are small. Still, some relevant lessons for
stochastic parameterization and model uncertainty haseraby accident from experience with two stochastic
radiation parameterizations developed to reduce modet,enot to represent uncertainty. Most importantly,
experience has shown that perturbations introduced atthfiest temporal and spatial scales do not affect model
evolution or spread/skill relationships in ensembles. sehkessons have implications for the development of
physically-based estimates of uncertainty.

1 Radiation asa problem in parameterization

1.1 Context

Electromagnetic radiation is the fundamental source ofggrier all atmospheric motions.The equation
describing the transfer of monochromatic (at a single feeqy or wavelength) radiation through the
atmosphere is fundamental, in that it can be derived fromwédils equationsMishchenkg 2008, and

is remarkably simple and unambiguous. The equation canledsgiven boundary conditions and the
spatial distribution of optical properties (extinction phase functior?, and single scattering parameter
wp) and temperature (for computing blackbody emission). @sgibution need only be known down
to resolutions of a few hundred meters in cloudy skies araheiter scales in clear skies since radiation
smooths over variations smaller than this.

Weather forecasting models have fairly specific needs froadetion transfer parameterization: heat-
ing rates in the the interior of the atmosphere and surfacedltio compute the surface temperature
evolution - that is, profiles of broadband flux&oadbandmeans that fluxes are integrated over the en-
tire electromagnetic spectrum afidxes(sometimes called irradiances) that only hemisphericames

of the radiation field are necessary. For the purposes ofttiide I'll assert that the present state-of-

the-art for this problem is to use correlatedistributions (Lacis and Qinas1991; Fu, 1992 to do the

1Gas optical properties vary by orders of magnitude over weryow wavelength intervalk-distributions re-order the
integration so it is smoother and requires many fewer quadgoints.
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spectral integration and some two-stream approximaticg keador and Weaverl 980 to the one-
dimensional radiative transfer equation to compute fluXeadiation is often treated as two distinct
calculations, one for the shortwave (wavelengtless than about 3.m, dominated by the multiple
scattering of sunlight) and one for the longwavel¢nger than about 3.m, dominated by emission
and absorption of radiation from the earth and atmosphefég approximation of the 3D radiative
transfer equation by a 1D version is the first significant epipnation; a second common simplification
is to ignore scattering in the longwave calculation.

Radiation is unique among physical processes becauseiaktto the long-term evolution of the atmo-
sphere but normally pretty unimportant to the short-termabvér. Radiative heating/cooling rates are,
in most circumstances, quite small relative to other terRadiation affects temperatures (and hence
the atmospheric flow) when it acts steadily over a long tinhinkt, for example, of the slow clear-sky
cooling that drives subsidence in the subtropics, or thedstop radiative cooling in the boundary-layer
clouds at the base of this subsidence. One practical coesegus that radiative parameterizations are
frequently invoked less frequently than other physicabpaeterizations in atmospheric models.

The representation of radiation in dynamical models, tigea,relatively pure exercise in trading com-
putational cost for accuracy. This is very different frore flarameterization of, say, convection, which
relies on far more abstract and empirical theories, and m#fsat model error due to the radiation pa-
rameterization are primarily associated with limitatiamthe problem description (i.e. the inputs) rather
then any uncertainty about the response of the system tcea giet of conditions. Nonetheless, expe-
rience with radiation in atmospheric models offers somduligesight on the larger question of how to

represent model error and uncertainty.

1.2 Clear-sky error budgets

Clear skies are not transparent; radiation still interadgth both gases and aerosol particles. But clear
skies are optically homogeneous in the horizontal, botlabse the concentration of aerosols and gases
varies slowly with location and because the “radiative sthing scale* Marshak et al.1995 is large
because the extinction is small. This means that the modafuental assumptions made by radiation
parameterizations — one-dimensional radiative transfer iomogeneous medium — are good approxi-
mations in clear skies. Errors in radiative fluxes mighteafiem

e Knowledge of the underlying spectroscopy: how absorptiprgéses depends on gas amounts,
temperature, pressure, etc.

e Angular discretization: the computation of fluxes using akmumber (typically two) of quadra-
ture points in polar angle.

e Spectral discretization: any errors introduced by appnating a line-by-line solution with a
correlatedk sum.

e Other approximations including the neglect of scattermthie longwave .

The US Department of Energy’s Atmospheric Radiation Mezm@nt Program has made efforts to
assess the size of these errors using “radiative closundiest in which carefully-calibrated observa-
tions of surface radiation are compared calculations madewa carefully-observed atmosphere (see
http://ww. arm gov/ dat a/ eval / 24). Eli Mlawer is involved in this effort; he suggests that
uncertainty due to spectroscopy causes a flux uncertainapofit 1 W/ni, spectral discretization in
well-tuned parameterizations about 1.5 \B/r&rrors in the comparison with observations, in fact, are
dominated by uncertainty in the characterization of thepemature and humidity structure of the at-
mosphere and the ability to measure broadband fluxes (MJa@@esonal communication, 2011). These
errors are tiny in the context of global-mean surface rasfiaftuxes of 240 W/r.
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1.3 Cloudy-sky error budgets

Error budgets for radiation parameterizations in cloudgslkre dominated by a single factor: the vari-
ability of cloud properties at scales below the filter scdlthe model. This variability has two sources.
One, usually called “cloud overlap,” arises because a profitloud fraction and in-cloud optical prop-
erties implies a distribution of cloud configurations (cembinations of cloudy and clear layers) within
a model column. The number of combinations can, in princip&equite larger( partially-cloud lay-
ers implies 2 possible configurations) but is also influenced by “overlsguanptions” prescribing the
correlation structure among layers.

Clouds in nature also exhibit variability in integrated pedties relevant to radiation calculations (optical
thickness, liquid water path) across a wide range of sc@labdlan and Snidet989. This variability

is almost uniformly neglected by global models. Methods ¢ooant for this variability have been
proposed (see Se®.1) but the more common path is to use the variability to justifg “tuning” of
cloud physical properties in the computation of opticalgenties (see Se@.1).

Calculations using cloud structures produced by fine-spaddels Barker et al. 2003 suggest that
horizontal and vertical structure have comparable impactshe radiative fluxes within domains about
the size of global models.

2 Stochastic radiation algorithmsin dynamical models

One approach to dealing with model error is to acknowledgtttie tendencies produced by the physical
parameterizations are themselves uncertain and to petar in some systematic fashion, either by
perturbing the total tendency or by targeting specific psees. In this context it's useful to look at two
stochastic radiation parameterizations even though thasgmeterizations were developed to reduce
model error rather than represent it explicitly.

2.1 Sampling subgrid-scale variability

As | pointed out in Sectiof.3error budgets for radiation calculations in cloudy skies@minated by
the treatment of sub-grid-scale variability in cloud pndjgs. A decade ago there were essentially three
ways to treat horizontal variability:

e Analytic closure in which some particular variant of the tatoeam approximation is integrated
over some particular distributions of optical thickrfesgBarker, 1996). This can be extended to
treat multiple layers@reopoulos and Barket 999 but is inflexible.

e Rescaling of the optical properties used in the radiatimadfer equation based on a description
of the inhomogeneity of the mediunCéirns et al. 2000 Petty, 2002. These methods are not
generally applicable to the kinds of variability presenthia atmosphere.

e “Tuning” i.e. the ad-hoc reduction of optical thickness byre (normally fixed) factor, sometimes
but not always justified on physical grounds (Eghalan et al1994 Tiedtke 1996. This has no
physical basis. Nonetheless, most models today still thémfactor as a free tuning parameter.

and two ways to treat “cloud overlap”

2Optical thicknesg is the vertical integral of extinctiod; in cloudsT varies slowly with wavelength (which is why clouds
are white).
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e Analytically, by computing clear- and cloudy-sky fluxes aadnbining them in some way. A vari-
ety of such methods existed; all of them were incorrect wiengared to benchmark simulations
(Barker et al.2003.

e Enumeration: performing radiative transfer calculati@mseach possible configuration within
each grid cell and averaging the results (suggestelddrgrette and Fouquafi986 and imple-
mented byStubenrauch et a{1997) andCollins (2001).) This benchmark calculation is accurate
but very expensive, since the number of possible configuratincreases rapidly with the number
of model layers.

The first stochastic radiative transfer parameterizatiowidespread use was aimed at finding a prac-
tical, uniform way to represent variability in cloud optigaoperties arising from vertical and/or hor-
izontal variability. The Monte Carlo Independent Columnpfgximation (McICA, seePincus et al.
2003 adopted the idea of sampling randomly from the distributid possible configurations originally
developed for diagnostic studigsléin and Jakob1999. The domain-averaged broadband ffufor a
single column with uniform optical properties is a sum o@espectral quadrature poings

G
f(Xayat) = ZWQFQ(Xayat)‘ (l)
[¢]

If sub-grid-scale variability is represented with a seSaandomly-chosen samples, the domain-mean
flux is the linear average of the flux computed independentlyaich sample:

F(xy,T Z ngFg xyT (2)

This calculation is quite expensive becauze- 100 so that even a small value &fimply thousands
of individual radiation computations. MCcICA subverts tipigoblem by settingS= G and randomly
associated each sample of the configuration space witheaatiftf quadrature point in thedistribution,

X y7 Z Wg Fg X7 y7 T ) (3)

with this association chosen randomly at each point in tintespace.

MCcICA is stochastic because of the random association leetge@nds so that any given realization
of Eq. 3 contains (unbiased) noise relative to Ethough even the latter is not guaranteed to sample
the distribution of possible cloud states). This noise ddpeon the number of sample points and on
how complicated a distribution of states is implied by a nisddimatology of cloud macrophysical
properties but is normally modest: tests in one mo@ahdus et al.2006), for example, put the noise

in surface fluxes aD(10 W/n?) and noise in heating rates at a few percent for individuldutations.
Noise of this magnitude does not affect the evolution of glabodels Barker et al. 2008).

2.2 Sampling spectrain time

This noise introduced by McICA is limited because Bgsamples the entire spectrum but experience
with that algorithm suggested that dynamical models mightdsilient in the face of grid-scale noise.
This success inspired a more radical approach. In a cloaig-snodel in which the cells are small
enough that sub-grid-scale variability can be neglectesljdeal calculation is the one that captures the
temporal evolution at every location in the domain, i.e. deery value ofk,y andt. Recall from Sec.
1.1, though, that radiation is so computationally expensia ithis normally computed less frequently
than most other physical processes in models of the atmospteeit is computed at discrete tim&s
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Choosing too large a radiation time stépt can excite numerical instabilitie$&uluis and Emanuel
2004), while choosing too small a value risks making the caléohaheedlessly expensive. Monte Carlo
Spectral Integration (MCSI, sé&ncus and Steveng009 trades the spectrally dense, temporally sparse
calculation for one which is dense in time but spectrallyrspa

E(X, yat) ~ WQFQ(Xa yat) (4)

Ol ®
oM o

with G < G and the set of quadrature points used is chosen indepepdtetich location and time step.

MCSI was originally implemented in large-eddy simulatiasfsturbulent marine boundary layers in
which even an approximation as drastic@s= 1 does not affect model evolution. Analytic insight
from this simple systemRincus and Steven2009 explains this result: the noise introduced by MCSI
depends on spatial and temporal scale. The noise is large attallest scales (where it diffuses away
quickly) but small at resolved scales relative to the enérgy other sources.

2.3 Two lessonsfrom stochastic radiation parameterizations

MCcICA (Sec. 2.1) and MCSI (Sec.2.2) are conceptually similar: they are approximate algorghm
aimed at replacing well-posed but computationally prdhibicalculations with affordable approximate
calculations that introduce random but unbiased noise yngaren realization. They are designed to
reducemodel error by providing approximate solutions to the fulbgem (i.e. broadband calcula-
tions fully resolved in time that completely sample intémariability) rather than exact solutions to
some approximate problem. This is fundamentally diffefesrh stochastic algorithms intendedrep-
resentmodel error (e.gBuizza et al. 1999, parameterization uncertainty (e.-fpmpkins and Berner
2008 Teixeira and Reynold2008, or uncertainty due to the discrete nature of a physicatgse
(Plant and Craig2008 Eckermann2011). This distinction reflects the fact that radiation is vergliw
understood, and that uncertainty in radiative fluxes is atreatirely due to uncertainty about the optical
properties of the atmosphere used in the calculation.

McCIA and MCSI “work” in the sense that neither approximatiaffects model forecasts systemati-
cally (though this is not universally true for MCSI). In oth&ords,unbiased random noise introduced
at the grid scale has no effect on the distribution of modeddasts.This implies that ensembles using
stochastic algorithms in which the noise is applied at the-gcale will not be any broader than unper-
turbed ensembles. With one counter-exampleiXgira and Reynold2008 | believe this has reflects

the community’s experience with stochastic scheme. Itekmdains why perturbations to physical ten-
dencies (e.@uizza et al. 1999 or to the circulation Berner et al.2009 must be correlated in space
and time in order to broaden ensembles, even if there is littino theoretical justification for those
correlations. This point seems relevant to any stochastitrhent of model error or uncertainty.

3 Opportunities

I've argued so far the there radiation is such a well-undersiprocess that there is very little room to

represent error or uncertainty in this aspect of atmospimeodels. In fairness, that’s almost strictly true

only once the problem is fully specified in terms of the disition of optical properties, and one can

argue that developing this specification from the modeéstatlso part of the radiation parameterization
process. In this section I'll briefly describe three placéswe there may be room for representing error
or uncertainty in radiation calculations in global modeisn outstanding issues with developing the

problem specification and one bedrock issue regarding titdgan we choose to solve.

ECMWEF Workshop on Model Uncertainty, 20-24 June 2011 69



PINCUS: RADIATION — FAST PHYSICS WITH SLOW CONSEQUENCES. .

3.1 Sub-grid-scalevariability

Radiative fluxes (and so heating rates) depend non-linearthhe atmosphere’s optical thicknessin
clear skiesr varies slowly with location but clouds exhibit significamtagial variability across scales.
The combination of variability and non-linearity meanstttiee mean albedo of a domain containing
clouds will always be less than the albedo implied by the dom@ean optical thicknes€@halan et aJ.
1994). (This problem is more relevant in the shortwave than inltmgwave since most clouds in the
atmosphere are opaque in the infrared.) The amount of \ityiatlepends on the size of the domain;
for domains of a few hundred km (the nominal grid size of cliemmodels a decade ago) the bias
can be several percerificus et al.1999 Oreopoulos and Davied998. This explains why almost
every global model “tunes” the optical thickness of clougisdducing the liquid water content used in
computingt by some arbitrary factor (see Sexl).

Unresolved spatial variability affects other nonlineavgasses, and particularly the formation of precip-
itation, in a similar way Rincus and Klein200Q Rotstayn 200Q Larson et al.2001). This has sparked
some interest in the use of cloud schemes that explicitlgipréhe probability distribution function of
cloud properties within each grid cell. Assumed-PDF schefse called because the distribution family
is normally assumed and the parameters of the distributiedigted) have been used to represent vari-
ability in boundary-layer cloudiness for several decadiéslipr, 1977 Sommeria and Deardorff977).
Several general versions of these schemes have been pitdpogee in global modelRjcard and Royer
1993 Tompkins 2002 Golaz et al, 2002 but this idea has never really taken off: I'm not aware of any
global model that routinely uses an assumed-PDF schem#s alat of a shame, since even diagnosing
a PDF of cloud condensate from (independently-predictmdcfraction and cloud water content and
treating this variability in radiation calculations cainmghate the need for tuning®{ncus et al.2006).

| expect that there’s still some low-hanging fruit down tliie of thinking.

3.2 lceoptics

One-dimensional radiative transfer calculations reqpiafiles of the atmosphere’s optical properties
(o,P, andwy; see Secl.1). These optical properties must be computed from the atheosfs phys-
ical properties, i.e. temperature, liquid and ice waterteots, aerosol loading, etc. The conversion is
more-or-less straightforward with one dramatic exceptioa clouds. Cloud ice is problematic because
the single scattering properties of particles depend ormpéntcle’'s habit (shape) and density, and the
properties of the medium must integrate over all particl@Sloud drops are easier because they are
round. Aerosol optical properties also depend on shape faehical composition but their size limits
their impact on the overall radiation budget.) Developdrsadiation parameterizations are still strug-
gling with finding appropriate geometric measures of pkrtiabit with which to predict ice optical
properties (e.gFu, 2007). Even the available observations can be ambiguous: thel gimbes used to
obtain images of ice crystal habits do not resolve the sistafiarticles, and uncertainty in the shapes
of these particles can lead to uncertainty in asymmetryrperarg (the first moment oP, and the one
relevant for flux calculations) of 20% Um and McFarquha2011); this corresponds to uncertainty in
albedo of~ 5%.

Global models are a long way from predicting these detailsrent state-of-the-art microphysics schemes
(e.g.Morrison and Gettelmar2008 predict only the bulk properties (total mass and total nerpbf

the ice distribution. Habit and density information areirety missing. Thus it wouldn’t be unreason-
able to use observations and off-line radiative transflrutations to estimate distributions of ice cloud
optical properties based on model predictors. It may alsadeful to introduce some local memory,
since particle habits systematically as the ice ages.
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3.3 Three-dimensional radiative transfer effects

The very first simplification made in radiation parametdites for atmospheric models is the replace-
ment of the three-dimensional radiative transfer equatiith a one-dimensional version that allows
for structure only in the vertical. Differences betweensthapproximations are most important in the
shortwave where multiple scattering can act, and in clodkigssn which significant variability exists.
Three-dimensional radiative transfer exhibits richerdsébr than the 1D analog, even in overcast skies,
including “smoothing” (the net transport of radiation fratense to tenuous portions of the medium, see
Marshak et al. 1995 when the sun is high and “roughening” caused by the shadpom variable
cloud tops when the sun is lowWMelch and Wielickj 1984). In broken clouds the illumination of cloud
sides increases reflection when the sun is IBimg¢us et al.2005).

This physics is clearly missing from radiation parametgians in global models; what is less clear
is how important this omission is. Computing three-dimenal radiative transfer is enormously ex-
pensive and the few experiments that have coupled clodd-goadels to three-dimensional radiative
transfer solvers have either seen no effect on cloud ewolyllechem et al.2008 or have failed to
demonstrate that small observed effects are statistisahjficant Cole et al, 2005. To me this seems
like evidence that the local heating rate anomalies pratibyethe one-dimensional approximation are
neither large enough nor persist for long enough to affeeflbw (Pincus and Steven2009 c.f. Sec.
2.2). There is evidence that very simple treatments, primdirgg-order corrections for the shadowing
of the direct solar beamVarnai and Davies1999, may have some influence on near-surface tempera-
tures Wapler and Mayer2008 Frame et al.2009 and it might be possible to represent these effects at
coarser scales.

But even if three-dimensional radiative transfer effeats tout to be important in some set of circum-
stances it is not at all clear how to include them in global etedThese effects depend on the two-point
statistics of the cloud field — how the clouds are arrangedétaied) in space — at the sub-grid-scale.
Global models do not typically produce even one-point stia at this scale (Se8.1). In this context,
the only way to treat 3D effects is to develag hocestimates of cloud structure and use this struc-
ture to modify the 1D radiation calculations in some appmade way. Though the one-dimensional
approximation certainly introduces error and uncertainty radiation calculations, it's hard to see the
advantage of inventing spatial structure just so it can be tsmake a small perturbation to the radiation
calculation.

4 Radiation and model uncertainty

One of the themes of this workshop was the quest to establiglora physical basis for treatments
of model error and uncertainty than inflating parameteidpatendencies or spinning the circulation
up. But the talks we saw made clear that no one solution apfaievery process or parameterization.
Radiation is at one extreme in that our understanding ofiasess is deep, the errors in a well-posed
problem are small, and parameterization accuracy can lextolgly assessed (see, as one example,
Collins et al, 2006. This suggests that that we should seek to represent aimtgrand error in the
problem inputs (e.g. Se&.2) rather than in the process itself. One specific implicat#othat varying

the radiative transfer parameterization in “multi-phg8iensembles (e.dgerner et al.2010 is poorly
founded, and certainly does not represent uncertainty.

Experience with two stochastic radiation algorithms (S2tis consistent with other experiences in
introducing stochastic elements to parameterizationgecids: any reasonable amount of fully random
(i.e. uncorrelated in space and time) noise does not projgctthe flow. In particular, grid-scale noise
neither changes the mean model trajectory nor the varigrme ensemble. The practical implication is
that stochastic perturbations are only effective at impgepread/skill relationships within ensembles
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if they are applied with spatial and temporal pattefBgi¢za et al. 1999 Berner et al.2009. Recon-
ciling this requirement with efforts to assign a more phgklzasis to parameterization uncertainty will
require moving away from a column-by-column view of paragnigation. This arises naturally for pro-
cesses in which parameterization statistics apply ovgelareas and can be sampled at smaller scales
(Plant and Craig2008 but will require deeper thinking in other circumstances.
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