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Feddersen, Takuya Komori, Frank Kwasniok, Hugh McNamara, Bob Plant, Petri Räisänen, David 
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Our group considered the desirability of including representations of uncertainty in the development of 
parameterizations. (By ‘uncertainty’ here we mean the deviation of sub-grid scale fluxes or tendencies 
in any given model grid box from truth.) We unanimously agreed that the ECWMF should attempt to 
provide a more physical basis for uncertainty estimates than the very effective but ad hoc methods 
being used at present. Our discussions identified several issues that will arise.  

1) How can physical representations of uncertainty be developed in the 
context of existing techniques (SPPT, SKEB, etc.)? 

Currently, the most successful technique for representing model uncertainty in ECMWF ensemble 
system is SPPT. This technique is the baseline, in the sense that improvements going forward will be 
judged relative the efficacy of SPPT.  

There remains considerable scope for improvement in SPPT including calibration and a more 
individual, process-based variant.  In particular, coarse-graining studies with IFS forecasts should 
make it possible to assign more credible levels of uncertainty to each of the parameterisation schemes.  
SPPT modifies the total parameterisation tendency and is based on a pattern generator.  A natural 
evolution is to perturb different parametrization scheme differently, and possibly even with different 
patterns.   

Beyond this however, the Centre should directly target the physical parameterisation schemes with 
respect to their inherent uncertainties.  There is general agreement that deep convection, especially in 
the tropics, would make a good first target. There may also be opportunities to treat the uncertainty in 
gravity wave drag associated with unresolved orography, especially because this process is known to 
be very sensitive to wind profiles.  

SPPT is based on pattern generators and these could also be used to modulate key parameters 
associated with parameterizations.  Observations or process models such as CRMs can be used 
calibrate the spatial, temporal and structural nature of perturbations to refine the pattern generator in 
SPPT.  It should be possible to improve on the ad hoc correlation scales associated with the three 
patterns in SPPT (and likewise for modulating parameters). 

Recent coarse-graining studies using the IFS have been applied at the process level and have clarified 
the relationship between the magnitude of the uncertainty in the parameterization tendency and the 
mean tendency. There is growing evidence that the variance is proportional to the mean tendency. This 
conflicts with the underlying assumption in SPPT but is consistent with an underlying Poisson 
process.  There also appears to be an additive component in that uncertainty exists even at zero mean 



WORKING GROUP REPORTS 

 
 
viii ECMWF Workshop on Model Uncertainty, 20 – 24 June 2011 

tendency.  Further investigation is required and EPS simulations carried out to explore the possibility 
that increased probabilistic skill results from using a more appropriate probability distribution 
function. 

There was some discussion about the desirability of achieving a shallower slope in the model’s energy 
spectrum.  This could be realised through new techniques such as the vorticity confinement algorithm 
or other numerical methods that give non-local upscale energy transport.  This may lead to improved 
parameterisation responses at the near grid scale. 

An issue that arises when physical process uncertainty is treated individually concerns its effect within 
the sequential call structure of parametrization code. For instance, radiation uncertainty generally 
derives from cloud uncertainty and one would want to have that causality respected in the subroutine 
calling sequence.  There was also some concern expressed about physical inconsistency in SPPT, such 
as the lack of surface energy flux perturbations when SPPT perturbs parametrization tendencies in the 
column above. 

Lastly, the cultural gap between physical parametrization development and EPS development was 
noted as a problem, particularly for the EPS community.  Traditionally, parametrization development 
has had deterministic NWP as its context and this can lead to problems (e.g. reduced model stability) 
when stochastic perturbations are generated out of the parametrization tendencies. 

Recommendations 
• ECMWF should test new formulations that address physical parameterisation uncertainty.  For 

instance, the cellular automation pattern generator should be tested to perturb 
parameterizations.  

• Tropical convection appears to be the best candidate for initial efforts, both because it has 
been the subject of several studies (including talks by Jakob, Majda, and Plant at this 
workshop) and because it impacts many other aspects of the model.   

• The broader research community should be encouraged to invest effort in establishing a firm 
physical basis for stochastic perturbations. The most likely place to put this is directly into the 
physical parametrization scheme. 

2) In what circumstances and for which processes do stochastic 
perturbations project onto the large-scale flow? 

Both existing stochastic methods presently used at ECMWF to represent model uncertainty impose 
one or more large-scale patterns to the perturbations. This is because many algorithms that introduce 
noise at the grid scale do not affect forecast evolution in a significant way. But is at least one counter 
example in which methods operating at the grid scale do indeed change the large-scale flow. In order 
to be able to invest wisely in stochastic methods for representing model uncertainty we need to 
delineate under what circumstances and at what spatial and temporal scales do stochastic perturbations 
impact the large-scale dynamics.  

At this stage it is unclear to what extent spatial and temporal coherence play a role in this process. In 
addition, it is also not clear how these effects depend on the specifics of the parameterizations, the 
spatial and temporal resolution, and the large-scale numerics.  

It seems impossible to assess these dependencies without a concerted research effort using different 
methodologies and large-scale models. This effort should take place in the context of international 
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coordinating groups such as the Working Group on Numerical Experimentation (WGNE), in order not 
only to entrain the overall modelling community, but also to ensure that the results of such a study are 
as generic and applicable as possible. 

Recommendations: 
• Initiate a community study, possibly within the auspices of an international group such as 

WGNE, to investigate this issue by testing different yet simple (to implement) stochastic 
perturbation methodologies (including different spatial and temporal correlations) in the 
context of simplified GCM simulations.     

3) Implementation issues in the development of stochastic physical 
parameterizations 

There are three existing techniques for introducing uncertainty at the model level: running multiple 
models, running multiple physical parameterizations within a given model, and varying parameters 
within a given model. The path we endorse here – developing parameterization with explicitly random 
elements to represent the uncertain response to a given forcing – has been less well-explored to date. 
Within this context, one can introduce stochastic behaviour into schemes in several ways: by varying 
the inputs, by perturbing parameters and assumptions within the scheme, or by introducing 
randomness into the scheme’s response to a given forcing (e.g. through transition probabilities or finite 
sample sizes). Since the goal is to provide a strong physical basis for uncertainty estimates, it seems 
likely that each method is most appropriate for a different category of uncertainty.  

Where process knowledge is high - radiation is one example – it is most sensible to perturb the inputs. 
That might mean sampling or integrating over a distribution, depending on the relative scales of the 
relevant variability and the grid size. This is a way to reflect “external” uncertainty and/or variability 
when the process depends strongly on the inputs.  

Where process knowledge is uncertain one can perturb parameters and/or assumptions within the 
scheme. This approach could be used to represent uncertainty in ice habit distributions, for example.  

Uncertainty and errors also arise when assumptions used to build the parameterization break down. 
This is so far most obvious in the treatment of deep convection: it’s clear that grid sizes are now far 
too small to encompass a large number of deep convective elements. This can be treated by averaging 
the process outcome over a finite (and presumably scale-dependent) number of samples.  

Some kinds of uncertainty are more ambiguous. Convection, for example, can be very sensitive to 
initial conditions at both the small and the large scale. It is not clear to what extent the construction of 
the initial ensemble samples the large-scale variability, but it’s presumably important not to count this 
uncertainty twice. Similarly, it’s important not to double-count uncertainties by adding stochastic 
elements and then inflating tendencies after the fact.  

Enumerating various sources of uncertainty and finding appropriate ways to represent each is expected 
to be a significant task.  

Recommendations:  
• ECMWF should invest in the development of stochastic parameterizations where the physical 

basis for uncertainty is made explicit. We support a substantial investment, i.e. by hiring a 
scientist to work on the problem full time, as we expect this area to attract increasing attention 
in the coming years.  
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• ECMWF should explicitly include uncertainty treatments (likely stochastic treatments) in the 
development of future parameterizations for both the ensemble prediction system and the 
deterministic model. The latter provides a good test of the physical plausibility of the error 
treatment. 

4) How do we make the link with fine scale models and observations? 
There is a strong community working on the development of traditional parameterization, in particular 
in the area of clouds and convection, which is organized in programs such as GCSS. This community 
employs observations and high-resolution process models (CRMs, LESs) in the evaluation and 
development of parameterizations.  We encourage the developers of stochastic parameterizations to 
engage in the existing activities by, for example, participating in the existing intercomparison studies. 
This will both enable the confrontation of new ideas in stochastic parameterization with observations 
and process models and help integrating what are currently somewhat separate communities. 

A more comprehensive evaluation of stochastic parameterizations will require new approaches to the 
analysis of both observations and process model output. Observational and modelling studies 
presented in this workshop allowed for the quantification of the degree of stochastic behaviour of the 
convective response  (i.e. precipitation) in relation to the large scale forcing (i.e. moisture 
convergence). To facilitate such studies will require the collection and storage of full 3D output at 
high temporal frequency of process models as well as a more comprehensive analysis of existing and 
future observations. 

Intercomparison studies for traditional parameterizations focus on their capability of representing the 
mean effects of sub-grid scale processes on the large scale.  For stochastic parameterization,  it is 
necessary  to evaluate whether the variability of these effects is represented realistically and to what 
extend these perturbations lead to realistic variability on the larger resolved scales (e.g. realistic 
ensemble spread).  This will require the application of innovative evaluation techniques and will likely 
necessitate dedicated intercomparison effort for stochastic parameterizations at both the process and 
full model application level. 

Recommendations: 
• We encourage the developers of stochastic parameterization to engage in existing 

(intercomparison) activities wherever possible. 

• The broader community should consider designing and making available dedicated CRM and 
observational data sets that support the development and evaluation of stochastic based 
parametrization (in particular clouds and convection).   

We support a dedicated stochastic parametrization  intercomparison project. 

5) How do we represent “structural” errors in physical parametrization 
A part of the uncertainty (or model error) that is not readily addressed by current methods relates to 
error in regions that are not targeted by the perturbed tendency, random parameters or stochastic 
backscatter approaches. For instance, convection parametrization may completely fail to trigger 
convection in some places and therefore this uncertainty will be completely missed by SPPT and 
random parameters which generate perturbations from the parametrization tendencies.  Another 
structural error that might exist in convection parametrization concerns the vertical profile of 
convective heating which is known to play a critical role in forcing equatorially-trapped waves. 
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Varying parameters such as the entrainment rate might help to achieve this uncertainty in the profile of 
diabatic heating but SPPT would not directly address this issue. 

The fact that physical parametrization is column-based also imposes structural error. An example of 
this is orographic gravity wave drag parametrization that assumes wave packets remain in the same 
grid column whereas there have been many studies recently that show that wave activity (and 
associated momentum fluxes) can be carried long distances from their mountain source. 

Lastly, there remains the possibility of model error that is not presently recognized or understood.  

Recommendation 
• Address potential ‘unknown random error’ by including some additive background forcing 

noise to EPS perturbed forecasts  (e.g. an isotropic, global vorticity forcing function) 
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Report of Working Group 2: Merits and drawbacks of different 
methods of representing model uncertainty 

Co-chairs: Judith Berner and Andreas Weigel 

Rapporteur: James Murphy 
Participants: Jian-Wen.Bao, Tony Eckel, Normand Gagnon, Jose Garcia-Moya Zapata, Christoph 
Gebhardt, Chiara Marsigli, Tim Palmer, Cecile Penland, Jonathan Rougier, Erica Thompson, 
Claudio Sanchez, Kevin Sieck, Nils Wedi 

 

Note: Recommendations for the international modelling community and specifically for ECMWF are 
shown in italics below, accompanied by supporting comments based on the group’s discussions.  

General Recommendations 

1. Design concepts for the systematic comparison of different 
schemes representing model uncertainty across a range of space 
and time-scales, both in full and hierarchically less complex models 
(including small planet). 

Different weather and climate prediction centres have developed different strategies for sampling 
model uncertainties in their forecasts. While the use of multi-model ensembles of opportunity is 
established in forecasting across a range of time scales, the development of more specific uncertainty 
methodologies (multi-parameterisation methods, stochastic parameterisation and perturbed parameter 
approaches) has varied between centres, and between applications. For example, there are currently 
several different implementations of stochastic or perturbed parameter schemes available, and the 
relative utility of these two approaches may vary according to the forecast time scale. Also, more work 
is needed to assess the benefits of combining complementary aspects of methods for sampling 
structural, parameter and stochastic types of uncertainty. We therefore recommend moving towards a 
coordinated effort to assess different approaches more systematically, across a range of prediction time 
scales. If international agreement could be reached on a common systematic approach, this could 
reduce duplication of effort in the development of multiple models and uncertainty schemes at 
different centres. A first step should be to agree experimental design and assessment criteria for such a 
comparison. This should involve the use of evidence from observations and data assimilation to 
diagnose the direct impacts of model perturbations (see also recommendation (10)), as well as the 
impacts on skill and spread in forecasts (recommendation (3)), so that the reasons for the success or 
failure of different schemes can be elucidated. The experience of the statistical community working on 
inference of complex systems from computer experiments should be used to help design appropriate 
experiments (e.g. Santer et al., 2003). We also recommend greater collaboration between developers 
of model components, to ensure that the use of alternative schemes in multi-parameterisation or multi-
dynamical core experiments reflect alternatives which are judged equally credible a priori (see also 
recommendation (5) below), based on current understanding of the relevant physical processes. 
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2. The principles the different model uncertainty schemes are based 
upon should be stated (bottom-up). 

Estimates of model uncertainty, regardless of the methodology used to obtain them, are necessarily 
conditional on the underlying assumptions and principles. For example, what principle prevents us 
from perturbing the gravitational constant g in perturbed parameter experiments?  And to which 
degree can this principle be generalised to locate all of the coefficients in a NWP model somewhere on 
a spectrum that runs from g to, say, the entrainment coefficient?  

The probabilistic interpretation of a multi-model ensemble requires that assumptions are made 
concerning the statistical properties of the individual models contributing to the ensemble. For 
example, are the individual models sampled from a distribution around truth, or are the individual 
ensemble members assumed to be “exchangeable” with the other members and the real system? 
Similarly, probabilistic interpretations of multi-parameter approaches are conditioned on the 
likelihood assigned to the choice of parameters. In addition, the outcome of stochastic 
parameterizations and perturbed parameter approaches depends both on the first principles within the 
physical process parameterizations and on the assumptions inherent to the implemented perturbation 
schemes. Therefore, we recommend that the basic principles applied to a model uncertainty scheme 
should always be explicitly stated, and that the sensitivity of the projection outcomes to these 
principles should be assessed in a more systematic way (see recommendation (1) above). 

As developers of physical parameterizations move more towards explicitly probabilistic formulations 
based on first principles, these formulations should be used to emphasize the underlying physical 
assumptions and may help to justify, e.g. the choice of a particular parameter or stochastic 
perturbation. 

3. The effects of different schemes generating spread should be 
compared and validated (top-down). 

In addition to designing stochastic parameterizations from first principles within the physical process 
parameterizations, ensemble forecasts/climate projections should be analyzed top-down to understand 
the sources of ensemble spread in different model-error schemes. Emphasis should not only be on the 
average amplitude of spread and error but also on their spatial and temporal correlations (e.g. do 
unpredictable situations show larger spread than predictable situations?). Postprocessing, e.g. to create 
ensembles with comparable spread across different experiments, could be used to discount impacts 
arising purely from increased spread, allowing the effectiveness of different methodologies in 
reducing root mean square prediction error to be isolated (see also recommendation (8)). 

4. Include uncertainty resulting from the dynamical core and physics-
dynamics interactions in the assessment of model uncertainty. 

In addition to uncertainty arising from the need to represent and parameterize physical processes, 
uncertainty arises from the truncation error of the different dynamical cores and, more importantly, 
interactions between the physics and the dynamics. While the difference in precision and accuracy 
between different dynamical cores might be small compared to typical physical parameterization 
errors, there is increasing evidence that the same physics parameterization might behave differently 
when coupled to different dynamical cores (e.g. Reed and Jablonowski, 2011). The study of 
uncertainty related to using different dynamical cores coupled to physics-packages is an emerging 
field in the “dynamical core community” and their findings should be in the awareness of the 
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“uncertainty community”, e.g. as part of the systematic intercomparison proposed in recommendation 
(1). A separate source of dynamical model error is associated with truncation error per se and can lead 
to different kinetic energy spectra in the model and potentially different predictability behavior 
(limited vs unlimited). 

5. Models participating in a multi-model ensemble should satisfy 
similar standards in terms of model quality (can on short time-
scales be identified by evaluation of reforecasts, e.g. BMA). 
Methods to identify structural similarities between models should 
be pursued. 

Multi-model ensembles are often interpreted as sets of equally likely realizations of future 
weather/climate. Such an interpretation requires, amongst other considerations, that (1) the individual 
models are considered equally credible, and that (2) the individual models are structurally independent 
from each other. To satisfy (1), one must ensure that the models participating in a multi-model 
ensemble satisfy similar standards in terms of model quality. For predictions on short time-scales, this 
can be tested by the evaluation of a sufficiently large set of representative reforecasts, if available. If 
the models differ in their quality, such reforecasts can also be used for the computation of 
probabilistically meaningful model weights, e.g. by techniques such as Bayesian Model Averaging 
(BMA, Raftery et al. 2005). For projections on longer time-scales (e.g. multi-decadal climate 
projections), or when no reforecasts are available, it is less straightforward to decide whether the 
participating models satisfy similar standards, or how model weights should be derived. In fact, no 
general all-purpose metric has so far been found that unambiguously identifies how a model ranks in 
comparison to other models, or when a set of models should be called “similar” in terms of their 
quality (IPCC, 2010). Consequently, there is a need to formulate minimum standards a model is 
required to fulfil in order to be included into a multi-model ensemble. Probably even more problematic 
is the assumption of structural independence (2), which is often tacitly made but in the general case 
not satisfied, given that some subsets of models may share more similarities than others, for example 
in terms of the parameterizations and numerical schemes applied, or in terms of model components 
being shared, e.g. a land surface model (e.g., Masson and Knutti 2011).  To enhance the reliability of 
probabilistically interpreted multi-model ensembles, we therefore recommend that techniques and 
methods are pursued that allow identifying and quantifying structural uncertainties between different 
models.  

Specific Aspects  

6. The comparison of different strategies for estimating model 
uncertainty should also take into account practical aspects, such as 
operational costs.  

In principle, a systematic comparison of model uncertainty schemes (see recommendation (1) above) 
could involve many thousands of alternative model variants, constructed by sampling large parameter 
spaces or stochastic physics options in a single model, or by constructing many different structural 
combinations of dynamical cores and physical parameterisation schemes.  In practice, operational 
weather forecasting centres can only entertain ensembles of limited size (given their need for timely 
production of high resolution forecasts), and the same is true of climate prediction centres, given their 
needs to use sufficient resolution to achieve credible simulations, while also including a range of earth 
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system components. We recommend that comparisons focus on sampling model uncertainties 
efficiently within realistic resource constraints, with future rather than current operational set-ups in 
mind. Relevant approaches could involve use of short experiments (e.g. climate models run in NWP 
mode) and observational constraints to rule out unpromising modelling options, and deployment of 
appropriate statistical designs to sample plausible model variants, once identified, in a limited 
ensemble of forecasts.    

7. Avoid confirmation biases1 by carrying out “damn fool” 
experiments (e.g. vary gravitational constant). 

Schemes for representing model error or improving models are typically assessed through their 
impacts on key emergent properties, for example the degree to which they increase forecast spread to 
be more consistent with forecast error, or whether a particular change to a physical parameterisation 
reduces a bias in a key customer-relevant variable. However, there is a risk that the experimenter’s 
first successful attempt at achieving the desired outcome will be accepted somewhat uncritically, 
without having established that the outcome is being achieved for good physical reasons. This should 
occasionally be tested by carrying out experiments where physics settings known to be incorrect are 
tried in the forecast system, to test whether apparent improvements in skill, or related uncertainty 
estimates, could arise through a chance compensation of systematic biases, or an incorrect diagnosis of 
the true sources of forecast error.  

8. Assess possibilities to avoid artificial clustering as introduced by 
multi-model ensemble systems. 

In multi-model (including multi-physics) ensemble systems, artificial clustering of solutions due to 
shared model deficiencies among members can occur and have the potential to be very misleading if 
the clustering is interpreted as meaningful (i.e., physical/dynamical clustering).  This can lead to 
problems such as over-confidence in some forecast solutions, suppression of important outliers, and 
biased or unrealistic probabilistic forecasts. While some such clustering is obviously synthetic and can 
be easily be spotted, much of it is very complex and flow dependent so cannot be sorted out. In other 
words: Multi-model or multi-physics approaches, while carrying the advantage of producing several 
forecast sub-clusters with [at least] partially independent sampling of structural model biases, give the 
tricky problem of interpreting the relative likelihood of the clusters. Stochastic ensembles, on the other 
hand, while producing a more homogeneous set of members which are easier for forecasters to use, 
carry the risk that all members might be wrong in the same way, hence leading to overconfident 
forecasts as well, but there is hope that this might be remedied as stochastic parameterizations 
improve. Given the current limitations of both multi-models and current stochastic parameterizations, 
a transitional strategy is therefore recommended: 

a) Multi-model (multi-physics) ensemble members should be designed to be as diverse as 
possible (i.e., share fewest possible assumptions, techniques, schemes, etc., and sample as 
much structural uncertainty as possible) 

b) Develop methodologies to distinguish between artificial clusters on the one hand and 
physical/dynamical clustering caused by flow-dependent growth of initial state errors on the 
other hand 

                                                      
1  Tendency to favour information confirming preconceptions, regardless of whether the information is 
true. 



WORKING GROUP REPORTS 

 
 
xvi ECMWF Workshop on Model Uncertainty, 20 – 24 June 2011 

c) Assess how statistical postprocessing may be used to detect and correct artificial clustering 

d) Assess and compare the loss of prediction skill due to the artificial clustering in multi-model 
ensembles on the one hand, and due to the possible lack of sampling of structural errors in 
stochastic ensembles on the other hand. 

Recommendations for ECMWF 

9. Statistical postprocessing techniques based on thorough hindcast 
sets should be used as a benchmark strategy for assessing schemes 
quantifying model uncertainty. 

Statistical postprocessing approaches (often referred to as calibration, recalibration or model output 
statistics) have been shown to represent a very efficient strategy to improve the reliability of 
probabilistic projections a posteriori. The efficiency and robustness of such statistical postprocessing 
schemes depends thereby largely on the number of independent reforecasts available. Experience has 
shown that bigger sets of hindcast years give better calibration statistics than larger ensemble sizes in 
short hindcast sets. Despite their success in improving forecast reliability, statistical postprocessing 
techniques are also subject to conceptual limitations. In particular, statistical postprocessing has been 
shown to be comparatively inefficient for improving the resolution2 of probabilistic forecasts (at least 
if the ground truth used in the calibration scheme is of the same scale or coarser compared to the 
forecasts). Moreover, particularly for forecasts on longer time-scales such as seasonal forecasts, the 
statistical properties of the reforecasts may be different from those of the actual forecasts, e.g. due to 
the effects of climate change, or due to differences in the observational data-sets used for initialization. 
However, given that the effects of statistical postprocessing on forecast reliability are not easy-to-beat 
by other schemes quantifying model uncertainty, they should therefore be used as a benchmark 
strategy for the assessment of such alternative approaches (see recommendation (3)). This of course 
requires the availability of a sufficient number of thorough reforecasts and we recommend ECMWF 
continue its hindcast commitment at least at the current level to allow for such post-processing.  

10. The uncertainty information should be relevant to the “best” 
forecast (e.g. differences in resolution between EPS and 
deterministic model). 

ECMWF’s medium-range ensemble forecast is run at lower resolution than their deterministic “best 
estimate” forecast. In order to be useful to forecasters, the probabilistic information in the EPS needs 
to be as traceable as possible to the deterministic forecast. In practice, this will depend on the forecast 
event of interest. For example, the deterministic model may capture some types of extreme events (e.g. 
an orographically-driven local downpour, or the development of a tropical cyclone) that are not 
represented in the EPS. It is therefore important that the EPS is designed to minimise the risk of 
missing such phenomena, in particular by maintaining resolution sufficiently close to the deterministic 
model configuration. Any outstanding structural differences in behaviour between the two systems 
should be clearly documented.  Many forecasters like to work with specific forecasts (deterministic 
single forecasts, or a limited set of outcomes from a multi-model or clustered ensemble), that they can 
interpret and potentially adjust by applying their expert knowledge. Presentation of EPS output as a 
limited set of clustered outcomes may therefore encourage forecaster take-up, but it is important that 
                                                      
2  Defined in the sense of the resolution term in the Brier score decomposition 
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the EPS is designed so that clusters represent approximately equiprobable real-world outcomes, rather 
than concentrations of forecast outcomes reflecting the prior sampling of similar model 
parameterisation options. 

11. Continue and extend the use of analysis increments to look at 
impacts of key parameters (identified by community) / stochastic 
methods on systematic bias, and investigate links to forecast skill. 

Running climate forecasts in NWP mode has been recognized as an important step towards isolating 
model problems and moving toward seamless weather and climate predictions (see recommendation 
(1)). In particular, initial tendencies or analysis increments (averaged over many initial dates) can be 
used to determine systematic biases between the model and analyses. This method provides an 
opportunity to confront the model with observed data and identify shortcomings in parameterizations 
(Klinker and Sardeshmukh, 1992, Rodwell and Palmer, 2007). ECMWF is ideally suited to test 
different parameters, physics packages and stochastic parameterization methods within this 
framework, and should do so. Key parameters or stochastic parameterization techniques could either 
be internally identified, or suggested by the wider community. Alternatively, the model error term 
computed by weak constraint 4DVar should be analyzed and its structure could aid in selecting 
superior stochastic or deterministic parameterization methods (e.g. in a system with model error 
representation one would hope the model error term is purely random and uncorrelated). 
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Working Group 3: Verification and evaluation of representations of 
model uncertainty 

Co-Chairs: Tom Hamill and Carolyn Reynolds 

Rapporteur: Mark Rodwell 
Participants: Gianpaolo Balsamo, Roberto Buizza,  Hannah Cloke, Tim Del Sole, Chris Farmer, Leo 
Gantner, Christian Jakob, Daniel Klocke, Mio Matsueda, Irene Moroz, Tetsuo Nakazawa, Scott 
Sandgathe, Stefan Siegert, Susanne Theis, Antje Weisheimer. 

 

Below, we outline recommendations for the data sets and observations that are likely to facilitate 
model uncertainty verification and evaluation.  We then discuss general principles of verification and 
evaluation relevant to model uncertainty.  Finally, we highlight several new and established techniques 
that may be of relevance to model uncertainty evaluation, many of which were discussed during the 
workshop.  

1) Data sets and observations 
We may need additional data sets when we are developing and evaluating stochastic parameterizations 
(as compared to those needed when conducting process studies and improving deterministic 
parameterizations). In particular, we need data sets that can resolve the multiple time and space scales 
of interest and that will contain sufficient samples to estimate PDFs.  

The most valuable observations may be ones of the fields that are produced by the parameterization 
scheme one is developing or evaluating.  Unfortunately, such data sets may be hard to obtain, or they 
may be diagnosed from products of observed variables (e.g., fluxes), with concomitant increases in the 
uncertainty of the verification data.  

As will be discussed below, we believe that a sound verification practice is to first evaluate new 
stochastic parameterizations at the process level, then to examine their broader impacts in the full 
weather and climate prediction systems.  Accordingly, we provide separate recommendations for 
process-level and full-system testing, followed by some suggested programs where building 
collaborations on data sets and observations might be helpful. 

Recommendations for process-level parameterization development:  

1. Promote the development of nature runs from cloud-resolving models.  These can be useful 
for the evaluation of hard-to-observe variables and may provide data that will be useful for 
evaluating the efficacy of stochastic parameterizations across multiple time and space scales. 

2. Re-examine existing field data (GATE, BOMEX, etc.) to assess utility. Consider 
GEWEX/CEOP Coordinated Energy and Water-Cycle Observations Project, river discharge 
data (WMO GRDC), NEXRAD 4-km, hourly precipitation (radar reflectivity and rain-gauge 
data).  

3. Utilize satellite data and derived products more widely (e.g., for cloud organization and 
frequency classification). 
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Recommendations for full-system testing:   

1. Model uncertainty parameterizations such as stochastic parameterization are likely to affect 
the low-frequency variability of the model, such as the Madden-Julian Oscillation.  These 
phenomena have time scales of weeks to months.  To diagnose the effects on these time 
scales, forecasts will need to be conducted that span several seasons to years.  Operational 
centres may need to plan for the computational resources to permit testing over such large 
samples, if they are not already doing so. 

2. Given that testing is proposed to span several years, reanalyses will be an important data set 
for model initialization and as a surrogate for truth in the evaluation and verification.  Given 
the recommendation (see below) that the uncertainty of the observation/analysis data be 
considered in the verification process, multiple reanalyses may be helpful.  The differences 
between reanalysis products provide some estimate of the uncertainty in any one reanalysis.  
Differences between reanalyses may be particularly large for variables important for seasonal 
prediction, such as SST, ice cover, and land-surface properties.  

3. Use satellite data more widely.  As with parameterization development, satellite data is 
generally under-utilized.   

Recommendations for teaming with other initiatives:  

1. We recommend integrating or at least coordinating stochastic development with the GEWEX 
Cloud System Study (GCSS).  This would include modifying the GCSS verification 
framework to include probabilistic verification. 

2. EUCLIPSE (European Union Cloud Intercomparison, Process Study and Evaluation Project) 
may be useful to team with, as this group is collecting data from various campaigns. 

3. Grey Zone project. Their cloud-resolving nature runs and focus on the development of 
parameterizations below 10 km is of mutual interest. 

2) Principles of verification and evaluation 
Verification generally refers to the process of learning about the characteristics of the forecast model 
by comparing forecast data with observations and/or analyses.   A typical verification question might 
be “do forecasts from model version B resemble the observations more closely than model version 
A?”   However, verification should also answer questions about how models go wrong as much as 
how they go right.  Below, we provide some general guidance for the verification process that may 
improve the development of model uncertainty parameterizations. 

Recommendations 

1. Eyeball the data first.  Having objective verification is desirable, but coding up a verification 
scheme can be time-intensive, and your own eyes may tell you what aspect of the forecast 
appears to be unrealistic and should be subject to the more rigorous objective testing. 

2. Compare against tough reference standards.  For example, a suitable test for a stochastic 
convective parameterization in an ensemble system may be to compare its forecasts against 
forecasts using another existing standard for stochastic convective parameterization, rather 
than against forecasts with a deterministic parameterization. 
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3. As verification is applied to, e.g., stochastic convective parameterizations, test them over a 
range of grid spacings in order to demonstrate that they are generally applicable across the 
range of resolutions at which the forecast model can be run in the foreseeable future. 

4. Verification commonly is used to compare an instantaneous model state to observations or 
analyses valid at that time; this is a limited use of the verification process.  In stochastic 
parameterization we are interested in getting the correct variability in time as well as space.   
Existing verification techniques can and should be applied to the time dimension as well, e.g., 
is the temporal change in forecast precipitation from one hour to the next rate consistent with 
the observed? 

5. Consider verifying forecast grids averaged over different periods of time and space. A bias 
may be harder or easier to detect when forecasts are verified from their instantaneous state to 
their daily average, their monthly average, or when they are averaged over grid points or 
latitude bands or, say, different land-surface classifications. 

6. Stochastic parameterizations, we hope, may improve the representation of larger-scale 
processes.  Existing verification techniques can and should be applied to the verification of 
these physical phenomena (blocking, diurnal cycles, equatorial waves) to see if their 
representation has changed.  

7. Incorporate observation/analysis uncertainty.  Verification involves the comparison of forecast 
data with some surrogate for truth, typically observations or analyses.  These contain errors, 
and the estimated error should be quantified prior to verification.  Once quantified, for most 
probabilistic metrics there are established methods for incorporating the uncertainty of these 
surrogates for truth into the verification process. Similarly, it can make a difference where the 
“truth” comes from - own (ensemble) analysis, another centre’s (ensemble) analysis, or 
observations. When comparing the performance of different systems, it is important to check 
whether the same verification results are obtained when analyses are inter-changed. 

8. Apply “falsification” concepts.  When comparing one stochastic physics scheme with another, 
a hierarchy of falsifying tests can be conducted. At the first level, one can ask whether the 
stochastic physics scheme invalidates physical constraints such as producing unphysical 
super-saturation, unphysically large tendencies, or unphysical estimates for parameters. A top 
level might involve comparing proper verification scores (of process outputs, or the entire 
forecast system) against those of the same system with a “benchmark” stochastic physics 
scheme. 

9. Share verification code and stochastic parameterization code using agreed-upon coding and 
interface standards.  This will allow model developers to validate using better reference 
standards (see point (2) above) and may make it easier to compare results across different 
organizations. 

10. Similarly, use standard observational databases.  For example, it would be desirable for the 
community to agree upon and use a common cloud-resolving model and observational 
database to compare the various stochastic parameterizations.  

11. Determine what new forecast elements should be saved to facilitate the verification of 
stochastic parameterizations, and save them.  This includes saving sufficient model output to 
translate into observation space (e.g., precipitation/runoff catchment, satellite radiances). 
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3) Useful new techniques 
Several new verification techniques have been proposed in the literature recently and/or were 
discussed at the workshop.  Model uncertainty developers are encouraged to explore the relevance of 
these new techniques. 

a) Data assimilation diagnostics.  T. Del Sole discussed feasibility of performing parameter 
estimation through an augmented state parameter estimation technique (e.g., DelSole). This 
can help determine whether the parameter can be constrained reasonably at all by the data.  
Diagnostics of the data assimilation output, e.g., the spatial variability or temporal 
“jumpiness” of parameter pdfs may be informative .  Failure of this may be informative about 
model errors, and/or whether there are compensating model errors in situations where many 
parameters are being estimated simultaneously.  Hence, even DelSole’s techniques do not 
yield a reasonable parameter estimate, one may learn from the process.  

b) Test using new multi-variate verification techniques, e.g., minimum spanning tree (& Tillman 
Gneiting’s more recent version,  http://www.springerlink.com/content/q58j4167355611g1/). 

c) Apply Satterfield / Szunyogh approach, which may prove useful for diagnosing how much of 
forecast error lies within and outside the space spanned by ensemble. 
http://journals.ametsoc.org/doi/pdf/10.1175/2010MWR3439.1  

d) Verify covariances, correlations. Data assimilation techniques such as the EnKF can be used 
to use evaluate whether a particular stochastic parameterization is improving the model of 
covariances in an ensemble.  The EnKF uses the flow-dependent covariances in the data 
assimilation, so a closer fit to observations provides some evidence of a more appropriate 
covariance model. 

General recommendation for ECMWF 
The ECMWF Ensemble prediction system accounts for initial uncertainty and model error. With the 
use of ensemble-based data assimilation, it is getting more difficult to disentangle these aspects. As 
models get better (for example systematic errors are decreased), there should be less need for ad-hoc 
strategies to inflate initial spread. In an ideal world, one should only need to perturb the observations 
and the model (through perturbations to the tendencies, parameters, or parametrizations). In particular, 
the need for singular vectors in the initial conditions should decrease. This aspect should be 
continuously monitored to assess progress towards the ideal situation. Comparison with the initial 
spread in other centre’s ensemble systems would be useful. (E) 

  

http://www.springerlink.com/content/q58j4167355611g1/
http://journals.ametsoc.org/doi/pdf/10.1175/2010MWR3439.1
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In data assimilation (DA), the statistics of all sources of error need to be estimated, including the 
uncertainty in the model used to evolve error statistics in time. An accurate specification of model 
uncertainty is needed both to provide the best possible single analysis and to provide estimates of 
analysis uncertainty for use in initializing ensemble prediction systems.  For these reasons, 
representation of model uncertainty is a key component of any data assimilation system.   

DA systems can play a key role in developing and testing new methods for representing model 
uncertainty.  They provide a mechanism for bringing observations to bear on the problem, and can act 
as a testbed for model error representation schemes.   If simple methods like variance inflation are 
used as a baseline in ensemble DA systems, a model error scheme should improve multivariate 
covariances, not just spread/error consistency.   The improved covariances will allow more 
information to be extracted from the observations and thus improve analysis quality.    

When developing and evaluating model error schemes in DA systems, special care must be taken to 
separate other sources of error (such a mis-specification of observation error covariances) from model 
uncertainty. 

The working group recommends that the international community focus on the following issues: 

How to separate model uncertainty from other sources of error in data 
assimilation. 

Ensemble DA systems can be tuned to provide an appropriate overall level of spread.  However, it is 
desirable to treat different sources of unrepresented covariance separately. For example, we would 
expect that different methods are appropriate for treating finite ensemble size effects and errors due to 
deficiencies in the forecast model.  Therefore, we recommend an approach that utilizes a hierarchy of 
idealized experimental environments, where the different sources of DA error can be controlled.  
Source of error in DA may include errors associated with finite sample size, errors in forward 
operators, errors associated with mis-specification of observation error statistics, and errors in the 
forecast model.  

Experiments could be performed in which the “nature run” is generated by running a full NWP model 
that is different from the model used in the data assimilation.  In addition, experiments in which the 
model used in the nature run and in the assimilation are the same can be used to develop methods to 
correct for sampling error, as well as verify that the methods used to estimate model uncertainty are 
not incorrectly attributing other sources of error to the model.  Observing system experiments (OSE) 
can be utilized to check that methods for estimating model uncertainty are not sensitive to the 
observing network.  
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Developing new tools for validating schemes for representing model uncertainty in DA  

For example, methods could be developed for assessing the consistency between actual and predicted 
error covariances in observation space. 

Develop methods for estimating systematic errors in the prior and observations, so 
that the random component can be isolated.  

Current operational systems estimate observation bias, but not forecast model bias. Methods for 
estimating the random component of model uncertainty often assume that the systematic component is 
zero. 

The working group makes the following specific recommendations for 
ECMWF: 

• Separate time scales in model error estimation for weak constraint 4DVar, so that Q represents 
the “random” component that is not correlated with the previous estimate of the model error. 

This is needed in order that the methods used in ensemble systems to estimate model 
uncertainty can be used also to provide Q for 4DVar. 

• Perform a posteriori diagnostics of model error estimates produced by weak constraint 4DVar. 

This is needed in order to evaluate the physical realism of the model error estimates in 
collaboration with the model development group. 

• Develop a fully interactive ensemble DA system (like the EnKF) in which the estimated 
covariances are used in the ensemble DA (and not just in a separate control analysis). 

A fully interactive system will provide a more consistent framework for developing and 
testing model error representation schemes.  

 

 


