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ABSTRACT

This paper presents the main results of a recent publication(Kwasniok, 2011a).

A new approach for data-based stochastic parametrisation of unresolved scales and processes in numerical weather
and climate prediction models is introduced. The subgrid-scale model is conditional on the state of the resolved
scales, consisting of a collection of local models. A clustering algorithm in the space of the resolved variables is
combined with statistical modelling of the impact of the unresolved variables. The clusters and the parameters of
the associated subgrid models are estimated simultaneously from data. The method is implemented and explored
in the framework of the Lorenz ’96 model using discrete Markov processes as local statistical models. Perfor-
mance of the cluster-weighted Markov chain (CWMC) scheme isinvestigated for long-term simulations as well
as ensemble prediction. It clearly outperforms simple parametrisation schemes and compares favourably with
another recently proposed subgrid modelling scheme also based on conditional Markov chains.

1 Introduction

The dynamics of weather and climate encompass a wide range ofspatial and temporal scales. Due to
the nonlinear nature of the governing equations, which are the laws of fluid dynamics, thermodynamics,
radiative energy transfer and chemistry, the different scales are dynamically coupled to each other. Finite
computational resources limit the spatial resolution of weather and climate prediction models; small-
scale processes such as convection, clouds or ocean eddies are not properly represented. The necessity
arises to account for unresolved scales and processes through the use of some form of subgrid modelling.
This is usually referred to as a closure in fluid dynamics and theoretical physics, and as a parametrisation
in meteorology and climate science.

Traditionally, parametrisations of unresolved scales andprocesses in numerical weather and climate
prediction models have been formulated deterministically. Such bulk formulae are expected to capture
the mean effect of small-scale processes in terms of some larger-scale resolved variables. However,
there is in general a strong non-uniqueness of the unresolved scales with respect to the resolved scales.
Thus, no one-to-one correspondence between values of the resolved variables and subgrid-scale effects
can be expected; rather, a particular realisation of the subgrid term can be imagined to be drawn from a
probability distribution conditional on the resolved variables.

Adding stochastic terms to climate models, in an attempt to capture the impacts of unresolved scales has
been suggested in a seminal paper by Hasselmann (1976). First implementations of this concept were in
the context of sea-surface temperature anomalies (Frankignoul and Hasselmann, 1977) and a conceptual
zonally averaged climate model (Lemke, 1977). Another early study looked at regime behaviour in a
very simple atmospheric model under stochastic forcing (Egger, 1981).

Despite impressive improvements in the forecast skill of numerical weather and climate prediction in the

ECMWF Workshop on Model Uncertainty, 20–24 June 2011 137



KWASNIOK, F.: CLUSTER-WEIGHTED STOCHASTIC SUBGRID-SCALE MODELLING

past decades, there are still limitations due to model uncertainty and error as well as problems in gen-
erating initial conditions for ensembles. Forecast ensembles tend to be underdispersive (e. g., Buizza,
1997), leading to overconfident uncertainty estimates and an underestimation of extreme weather events.
Systematic biases are significant in subgrid-scale weatherphenomena and state-of-the-art ensemble pre-
diction systems occasionally miss extreme weather events in the ensemble distribution. One way of
addressing these issues relating to model imperfection is to deliberately introduce an element of un-
certainty into the model. This can be done by randomisation of existing parametrisation schemes;
approaches include multi-model, multi-parametrisation and multi-parameter ensembles (Palmer et al.,
2005). A more systematic and comprehensive representationof model uncertainty may be achieved by
introducing stochastic terms into the equations of motion.This has been implemented in the form of
stochastically perturbed tendencies (Buizza et al., 1999)and, most recently, stochastic-dynamic subgrid
schemes (Palmer, 2001; Shutts, 2005; Berner et al., 2008). Ageneral feature of stochastic parametrisa-
tions is that they enable the forecast ensemble to explore important regions of phase space better than
more restricted deterministic parametrisations. See Palmer et al., 2005; Weisheimer et al., 2011 for an
overview and comparison of different methods for representing model uncertainty and error in weather
and climate prediction models.

There has been a lot of research activity on subgrid modelling in recent years in various contexts, from
theoretical studies constructing deterministic equations for moments of coarse-grained variables using
a constrained measure of the system (Chorin et al., 1998), toa systematic stochastic mode reduction
strategy based on stochastic differential equations (Majda et al., 1999, 2003), to various approaches
to stochastic convection parametrisation (Lin and Neelin,2000; Majda and Khouider, 2002; Plant and
Craig, 2008). A particular class of subgrid models are schemes which are derived purely from data
(Wilks, 2005; Crommelin and Vanden-Eijnden, 2008). While being less transparent from a physics
point of view, they are potentially more accurate as they areless restricted by a priori assumptions.

The purpose of the present paper is twofold: Firstly, it generally proposes a new approach to data-based
stochastic subgrid parametrisation using the methodologyof cluster-weighted modelling. Secondly and
more specifically, a cluster-weighted Markov chain subgridscheme is outlined, building on recent work
on conditional Markov chains (Crommelin and Vanden-Eijnden, 2008).

The paper is organised as follows: Section 2 introduces the general framework of cluster-weighted
modelling for subgrid parametrisation. In section 3, we describe the Lorenz ’96 system which is here
used as a testbed to explore the method. The detailed formulation of the subgrid parametrisation in the
context of the Lorenz ’96 system and how to estimate its parameters from data is discussed in section
4. Then the results are presented in section 5. The paper concludes with some general discussion and
implications.

2 Subgrid-scale parametrisation using cluster-weighted modelling

Assume the climate system is described by a high-dimensional state vectoru which is decomposed as
u = (x,y) wherex is the part resolved in a given weather or climate predictionmodel of a particular
spatial resolution and complexity, andy is the unresolved part. The true tendency ofx is schematically
given by

ẋ = R(x)+ U(x,y) (1)

with R(x) being the resolved tendency, arising from the interactionsamong the resolved variablesx, and
U(x,y) being the unresolved tendency, arising from interactions with the unresolved variablesy. In a
simulation with the model resolving onlyx, we need to parametriseU(x,y). Such a parametrisation has
the general form

U(x,y) ∼ f(x)+ η(x) (2)
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where f(x) is the deterministic part of the closure model andη(x) is a stochastic process generally
dependent onx. A canonical choice for the deterministic part would be the conditional mean of the
unresolved tendency:

f(x) = 〈U(x,y)|x〉 (3)

The stochastic componentη(x) is represented by a collection of local subgrid models, conditional on
the state of the resolved variables. We build on the approachof cluster-weighted modelling (Gershenfeld
et al., 1999; Kwasniok, 2011b) which is suitably adapted here. A finite number of clusters is introduced
in a space of clustering variablesz. The number of clusters isM andm is the cluster index, running from
1 to M. The integer variablec takes values from 1 toM, according to which cluster has been chosen.
Each cluster has an overall weightwm = p(c = m), satisfying the probabilistic constraintswm ≥ 0 and
∑mwm = 1, as well as a clustering probability densityp(z|c = m), describing its domain of influence
in the space of clustering variablesz. The vectorz is a suitably chosen (low-dimensional) subset or
projection ofx; it may also contain past values ofx, that is, a time-delay embedding (Sauer et al.,
1991). Each cluster is associated with a local probabilistic subgrid modelp(η |v,c = m) which depends
on a vector of variablesv. The vectorv might encompass present and past values of components or
projections ofx as well as past values ofη. The conditional probability density of the stochastic subgrid
termη is expanded into a sum over the clusters:

p(η |z,v) =
M

∑
m=1

gm(z) p(η |v,c = m) (4)

The state-dependent weightsgm of the individual models are given by Bayes’ rule:

gm(z) = p(c = m|z) =
wm p(z|c = m)

∑M
n=1wn p(z|c = n)

. (5)

The local model weights satisfygm ≥ 0 and∑mgm = 1. The cluster-weighted subgrid model has two
types of conditioning on the resolved variables: the dependence of the model weightsgm on z and the
explicit dependence of the subgrid models onv. The vectorsz andv might overlap.

The clustering densitiesp(z|c = m) and the local subgrid modelsp(η |v,c = m) can take various forms.
The canonical choice for the clustering densitiesp(z|c= m) in the continuous case is Gaussian. For non-
negative or strongly skewed variables other choices may be more appropriate. One may also partition
the space ofz into a finite number of bins; the clustering probabilities are then discrete probability
distributions over these bins. The subgrid modelsp(η |v,c = m) may be regression models onv with
Gaussian uncertainty. In the present study, they are actually Markov chains governing the switching
between discrete values ofη.

The parameters of the clusters and the subgrid models are estimated simultaneously from a learning data
set by maximising a suitably defined likelihood function. The number of clustersM is a hyperparameter
of the method controlling the overall complexity of the subgrid model. It may be determined within the
fitting procedure of the subgrid model by minimising the Akaike or Bayesian information criterion in the
learning data set, or by maximising the cross-validated likelihood function in a data set different from
the learning data set. Alternatively, the number of clusters may be determined from the performance of
the subgrid model in finite-time prediction or a long-term integration measured by a suitable metric of
interest.

3 The Lorenz ’96 model

The Lorenz ’96 (L96) model (Lorenz, 1996) is used as a testbedto explore the new subgrid parametri-
sation scheme. It has become popular in the weather and climate science community as a toy model
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Figure 1: Left: Scatterplot of the subgrid term Bk versus the state Xk. The solid line indicates the
conditional mean as estimated by a fifth-order polynomial least-squares fit. Right: Scatterplot of the
deviation from the conditional mean,B̂k = Bk −〈Bk|Xk〉, versus the state Xk. The solid horizontal
lines indicate the valuesβil used in the CWMC subgrid scheme (see text).

of the atmosphere to test concepts and algorithms relating to predictability, model error, ensemble
post-processing and subgrid parametrisation (e. g., Lorenz, 1996; Palmer, 2001; Fatkullin and Vanden-
Eijnden, 2004; Wilks, 2005; Crommelin and Vanden-Eijnden,2008). The model equations are

Ẋk = Xk−1(Xk+1−Xk−2)−Xk +F +Bk (6)

Ẏj,k =
1
ε

[

Yj+1,k(Yj−1,k−Yj+2,k)−Yj,k +hyXk
]

(7)

with

Bk =
hx

J ∑
j

Yj,k (8)

andk = 1, . . . ,K; j = 1, . . . ,J. The variablesXk andYj,k are arranged on a circle. They can be interpreted
either as variables on a circle of constant latitude or as meridional averages, each representing a segment
of longitude. As such, the model is a spatially extended system. TheXk are large-scale, slow variables,
each coupled to a collection of small-scale, fast variablesYj,k. The variables are subject to the periodic
boundary conditionsXk = Xk+K , Yj,k = Yj,k+K andYj+J,k = Yj,k+1 reflecting the periodicity of the spatial
domain. The system is invariant under spatial translations; therefore all statistical properties are identical
for all Xk. The model formulation employed here (Fatkullin and Vanden-Eijnden, 2004) is exactly
equivalent to the original formulation by Lorenz (1996). With X∗

k andY∗
j,k denoting the variables in

the original system (Lorenz, 1996) with parametersF, h, c and b, the corresponding system in the
formulation of eqs.(6)–(8) is obtained by a linear scaling of the variables (Xk = X∗

k andYj,k = bY∗
j,k)

and the parameter settingε = 1
c , hx = −hcJ

b2 andhy = h, leaving the forcingF unchanged. The present
formulation of the system makes the time scale separation between the slow and fast variables explicit in
the positive parameterε . If ε → 0, we have infinite time scale separation; ifε ≈ 1, there is no time scale
separation. We here use the parameter settingK = 18, J = 20, F = 10, ε = 0.5, hx = −1 andhy = 1,
which is the same as in Crommelin and Vanden-Eijnden (2008).The system has 18 large-scale and 360
small-scale variables, 378 variables in total.

In a reduced model of the L96 system, only the variablesXk are resolved explicitly. The impact of
the unresolved variablesYj,k on the resolved variablesXk is described by the termBk which is referred
to as the subgrid term or unresolved tendency. It needs to be parametrised somehow in a reduced
model in order to account for the impact of the unresolved variables. This constitutes the subgrid-scale
parametrisation problem in the context of the L96 model.

Figure 1 displays a scatterplot of the subgrid termBk versus the stateXk obtained from a long (post-
transient) numerical integration of the L96 model. The meanof Bk conditional onXk as estimated
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by a fifth-order polynomial least-squares fit is also indicated. A higher order of the polynomial does
not improve the fit significantly. In practice, all numericalvalues of the conditional mean〈Bk|Xk〉 are
calculated using the fifth-order polynomial. There is a strong non-uniqueness of the subgrid term with
respect to the resolved state: For a fixed value ofXk, Bk can take on a range of values. The conditional
mean explains only 52.4% of the variance of the subgrid termBk. The properties of the conditional
probability density functionp(Bk|Xk) depend strongly onXk. In particular, it is markedly non-Gaussian
for a range of values ofXk. Figure 1 also shows a scatterplot of the deviation of the subgrid term from
its conditional mean,̂Bk = Bk−〈Bk|Xk〉, versusXk.

4 Subgrid-scale modelling with cluster-weighted Markov chains

As an example for the methodology outlined in Section 2, a cluster-weighted subgrid scheme based on
local Markov chains is developed and implemented for the L96model.

4.1 Model formulation

We here combine the framework of cluster-weighted modelling (Gershenfeld et al., 1999; Kwasniok,
2011b) with the use of conditional Markov chains (Crommelinand Vanden-Eijnden, 2008) for stochas-
tic subgrid-scale parametrisation. The subgrid termB̂k is replaced by a collection of discrete Markov
processes conditional on the state of the resolved variables. The closure model is formulated indepen-
dently for each resolved variableXk as there is only little spatial correlation in the subgrid term Bk in
the L96 system (Wilks, 2005). We choose to condition the subgrid model at timet both on the current
stateXk(t) and the incrementδXk(t) = Xk(t)−Xk(t −δ t) whereδ t is the sampling interval of the data.
This choice is motivated by the fact that the probability density function of the subgrid termBk has been
shown to depend also on the incrementδXk (Crommelin and Vanden-Eijnden, 2008). It seems conceiv-
able that the probability density of the subgrid term could be further sharpened by conditioning on more
past values ofXk but we restrict ourselves to just one past value for simplicity.

The subgrid model is derived from an equally sampled data setof lengthN, {Xα
k ,δXα

k , B̂α
k }

N
α=1. Here

and in the following, a subscript or superscriptα refers to time in an equally sampled time series with
sampling intervalδ t and runs from 1 toN. A data point(Xk,δXk, B̂k) is mapped to a discrete state(s,d,b)
by partitioning the(Xk,δXk, B̂k)-space into bins. TheXk-space is divided intoNX disjoint intervals

{I X
i }NX

i=1; we haves= i if Xk ∈ I X
i . TheδXk-space is divided intoNδX disjoint intervals{I δX

j }NδX

j=1
;

we haved = j if δXk ∈ I δX
j . Givens= i, the range of possible values ofB̂k is divided intoNB disjoint,

equally populated intervals{I B
il }

NB

l=1; we haveb= l if B̂k ∈I B
il . The subgrid term̂Bk is then represented

by a set ofNB discrete values{βil }NB
l=1 given by the mean of̂Bk in each interval:

βil =
∑α B̂α

k 1(sα = i)1(bα = l)

∑α 1(sα = i)1(bα = l)
(9)

We introduceM clusters in the discrete(s,d,b)-space. Each cluster has an overall weight or probability
of that cluster being chosen,wm = p(c = m), and a clustering probability distributionψmi j = p(s =
i,d = j|c = m), describing its domain of influence in(s,d)-space. The parameters of the clusters sat-
isfy a couple of probabilistic constraints. The overall weights form a probability distribution:wm ≥ 0,
∑mwm = 1. The clustering probability distributions satisfyψmi j ≥ 0 and∑i, j ψmi j = 1. The clusters
are required to add up to the joint climatological distribution (invariant measure) ofs andd, that is,
∑mwmψmi j = p(s= i,d = j) = ρi j whereρi j is empirically given as the fraction of data points in these
bins: ρi j = 1

N ∑α 1(sα = i)1(dα = j). It follows that the clusters also sum up to the marginal climato-
logical distributions:∑m, j wmψmi j = p(s= i) = ∑ j ρi j as well as∑m,i wmψmi j = p(d = j) = ∑i ρi j .
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Each cluster is associated with a Markov chain in the discrete spaceb described by an(NB×NB) tran-
sition matrixAm with componentsAml1l2 = p(bα = l2|bα−1 = l1,cα = m). The matricesAm are row-
stochastic matrices, that is,Aml1l2 ≥ 0 and∑l2 Aml1l2 = 1.

The conditional probability distribution forbα is modelled as a sum over the clusters:

p(bα |bα−1,sα ,dα) =
M

∑
m=1

gm(sα ,dα)Ambα−1bα . (10)

The state-dependent model weights are given by Bayes’ rule as

gm(i, j) = p(c = m|s= i,d = j) =
wmψmi j

∑M
n=1wnψni j

=
wmψmi j

ρi j
. (11)

The Markov chain is effectively governed by local transition matricesAloc(i, j) = ∑mgm(i, j)Am which
as a convex combination of row-stochastic matrices are always row-stochastic matrices. The subgrid
model jumps according to the local Markov process between the NB possible values{βil }NB

l=1 given by
eq.(9) fors= i. The mean local model weights are found to be〈gm〉 = 1

N ∑α gm(sα ,dα) = wm. Hence
the overall weightwm can be interpreted as the fraction of the data set (or the invariant measure of the
system) accounted for by the clusterm.

The number of clustersM, the numbers of binsNX andNδX as well as the number of statesNB of the
Markov chain are hyperparameters of the method which have tobe fixed beforehand; they control the
overall complexity of the closure model. We call this subgrid model a cluster-weighted Markov chain
(CWMC) model.

Given an equally sampled learning data set of lengthN, {b0,s1,d1,b1, . . . ,sN,dN,bN}, the parameters
of the CWMC subgrid model are estimated according to the maximum likelihood principle using the
expectation-maximisation (EM) algorithm (Dempster et al., 1977; Kwasniok, 2011a, 2011b).

4.2 Model integration

The time integration of the reduced model with the CWMC subgrid scheme proceeds as follows: The
subgrid scheme is constructed at time stepδ t; the deterministic equations for the resolved variables are
integrated with time steph determined by the employed numerical scheme, stability andthe desired
accuracy. These two time steps may be different; typically,δ t is larger thanh. Assume for simplicity
that δ t is an integer multiple ofh: δ t = Nsteph. We then use a split-integration scheme (Crommelin
and Vanden-Eijnden, 2008). The resolved dynamics are integrated with time steph; the subgrid model
is propagated with time stepδ t, updated only everyNstep time steps. At timetα−1, let the system
state beXα−1

k falling in bin sα−1 and let the state of the Markov chain of the subgrid model bebα−1.
The stateXα

k at time tα is calculated by propagating the resolved variablesNstep times with step size
h using the derivative given by eq.(6) withBk set to〈Bk|Xα−1

k 〉+ βsα−1bα−1. If Xα
k falls in bin sα and

δXα
k = Xα

k −Xα−1
k falls in bin dα the next state of the Markov chainbα is determined by randomly

drawing from the probability distribution given by eqs.(10) and (11). Then the subgrid termBk is set to
〈Bk|Xα

k 〉+ βsα bα for the next integration cycle. One could also choose to update the deterministic part
of the closure model at time steph. In the present model setting there is virtually no difference between
these two possibilities provided the sampling intervalδ t is not too large as the dependence of〈Bk|Xk〉
on Xk is quite smooth. The rarer update is computationally more efficient.

5 Results

The full L96 model is integrated for 1000 time units of post-transient dynamics using the Runge-Kutta
scheme of fourth order with step size 0.002. The state vectoris archived at a sampling intervalδ t = 0.01,
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resulting in a data set containing 100000 data points. The CWMC closure scheme is constructed from
this data set. Such a large learning data set, virtually corresponding to the limit of infinite data, is used
here to get rid of any sampling issues for the parameter estimates and study the ideal behaviour of the
method. It should be noted that a very similar performance ofthe reduced model to that presented here
can already be obtained with a much shorter learning data set(∼ 5000 data points). We useNX = 4 in-
tervals inXk-space. They are located between -5.5 and 10.5 and have equalsize. We then extend the first
and the last interval to minus and plus infinity, respectively. Thus, the intervals areI X

1 = (−∞,−1.5],
I X

2 = (−1.5,2.5], I X
3 = (2.5,6.5] andI X

4 = (6.5,∞). In δX-space we useNδX = 2 intervals given
asI δX

1 = (−∞,0] andI δX
2 = (0,∞), corresponding to downwards and upwards direction of the tra-

jectory. The number of bins for the subgrid term, that is, thenumber of states of the Markov chain is
set toNB = 3. The valuesβil used in the CWMC scheme given by eq.(9) are displayed in Fig. 1. The
resolution of the binnings was determined from the performance of the resulting reduced model. We
studied larger values for all of the parametersNX, NδX andNB but a higher resolution in the binning of
any of the variables does not visibly improve the model. CWMCclosure schemes were estimated from
the data set with increasing number of clusters, starting from M = 1. Based on the performance of the
reduced model,M = 2 is found to be the optimal number of clusters. There is no significant further
improvement when using more than 2 clusters.

The CWMC scheme is compared to two simple generic parametrisation schemes: a deterministic clo-
sure scheme and the AR(1) scheme proposed by Wilks (2005). The deterministic scheme consists in
parametrisingBk by the conditional mean as estimated by the fifth-order polynomial fit shown in Fig. 1:
Bk ∼ 〈Bk|Xk〉. The AR(1) scheme modelsBk by the conditional mean plus an AR(1) process:

B̂α
k = Bα

k −〈Bk|Xα
k 〉 = φ B̂α−1

k + σξ (12)

ξ denotes Gaussian white noise with zero mean and unit variance, σ is the standard deviation of the
driving noise. ForBk, this amounts to an AR(1) process with state-dependent mean〈Bk|Xk〉 but constant
autoregressive parameter and standard deviation of the noise. A least-squares fit to the time series ofB̂k

at time stepδ t = 0.01 yieldsφ = 0.9977 (corresponding to ane-folding time of 4.25 time units) andσ =
0.059. The standard deviation of the AR(1) process isσ√

1−φ2
= 0.866, equal to the standard deviation

of B̂k. The reduced models with the deterministic and the AR(1) subgrid schemes are integrated in time
in a manner analogous to that described in subsection 4.2 forthe CWMC scheme, updating the subgrid
term at time stepδ t.

The CWMC scheme is also compared to the subgrid modelling study by Crommelin and Vanden-Eijnden
(2008) based on conditional Markov chains using the L96 system with exactly the same parameter
setting as an example. They condition the Markov chain onXα

k andXα−1
k , both partitioned into 16 bins.

Taking into account that due to the autocorrelation of the system at lagδ t only transitions within the
same bin and into neighbouring bins actually occur this roughly (not exactly) corresponds toNX = 16
andNδX = 3 in the present setting. Then a separate transition matrix (with NB = 4) is determined for
each pair of bins, amounting to about 45 active transition matrices. We occasionally refer to this subgrid
model for comparison as the full Markov chain scheme. The present CWMC scheme offers a much
more condensed description of the subgrid term. It uses onlyM = 2 independent transition matrices.
Moreover, a much coarser binning (NX = 4, NδX = 2) and onlyNB = 3 states in the Markov chain are
used. The number of parameters to be estimated from data is actually about 40 times larger in the full
Markov chain scheme than in the CWMC scheme. Consequently, alonger learning data set is necessary
to estimate the full Markov chain model.

5.1 Long-term dynamics of the reduced model

We investigate to what extent the reduced models with the various subgrid schemes are able to reproduce
the statistical properties of the long-term behaviour of the large-scale variablesXk in the full L96 model.
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Mean Std. dev. D

Full L96 model 2.39 3.52
Deterministic scheme 2.53 3.56 0.017
AR(1) scheme 2.51 3.57 0.015
CWMC scheme 2.40 3.51 0.004

Table 1: Mean and standard deviation of Xk in the L96 model and the reduced models with the
various subgrid schemes. The last column gives the Kolmogorov-Smirnov distance between the
probability distribution of Xk in the reduced model and that in the full L96 model.
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Figure 2: Probability density function of Xk in the full L96 model (solid) and in reduced models with
deterministic subgrid scheme (dot-dashed), AR(1) scheme (dotted) and CWMC scheme (dashed).

The reduced models are integrated in time as described in subsection 4.2 using a fourth-order Runge-
Kutta scheme with step sizeh= 0.002. The closure model is updated every fifth time step. The reduced
model with CWMC subgrid scheme runs more than 30 times fasterthan the full L96 model. Starting
from random initial conditions, after discarding the first 50 time units of the integration to eliminate
transient behaviour 2500 time units worth of data are archived at a sampling interval ofδ t = 0.01,
resulting in time series of length 250000. All the results reported below are calculated from these time
series.

Figure 2 shows the probability density function ofXk in the reduced models with the three different
closure schemes and that of the full L96 model for comparison. Additionally, table 1 gives the mean
and the standard deviation of the PDFs. It also lists the deviation of the probability distributions of
the reduced models from that of the full L96 model as measuredby the Kolmogorov-Smirnov statistic
D = maxXk|Φ(Xk)−Φr(Xk)| whereΦ is the (cumulative) probability distribution of the L96 model and
Φr is the probability distribution of the reduced model. All models reproduce the PDF quite well.
The deterministic and the AR(1) schemes are very close to each other. The CWMC scheme offers an
improvement on the two other schemes; it is about as good as the full Markov chain scheme (Crommelin
and Vanden-Eijnden, 2008). The deterministic and the AR(1)schemes exhibit a considerable shift in
the mean state and slightly too much variance. The CWMC scheme has almost exactly the correct mean
and variance.

In order to monitor the spatial pattern of variability in thesystem, the Fourier wave spectrum of the
system is displayed in Figure 3. At each instant in time, the discrete spatial Fourier transform of the
state vectorX = (X1, . . . ,XK) is calculated, giving the (complex) wave vectorG = (G0, . . . ,GK−1) with
Gν = G∗

K−ν for ν = 1, . . . ,K − 1. The wave variance of wavenumberν is then 〈|Gν −〈Gν〉|2〉 for
ν = 0, . . . ,K−1 where〈·〉 denotes the time average. Figure 3 also shows the correlation of two variables
Xk andXk+l , separated by a lagl on the circle. The deterministic and the AR(1) closure schemes give
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Figure 3: Left: Wave variances in the full L96 model (solid) and in reduced models with deter-
ministic subgrid scheme (dot-dashed), AR(1) scheme (dotted) and CWMC scheme (dashed). Right:
Correlation of Xk and Xk+l in the full L96 model (solid) and in reduced models with deterministic
subgrid scheme (dot-dashed), AR(1) scheme (dotted) and CWMC scheme (dashed).
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Figure 4: Left: Autocorrelation function of Xk in the full L96 model (solid) and in reduced mod-
els with deterministic subgrid scheme (dot-dashed), AR(1)scheme (dotted) and CWMC scheme
(dashed). Right: Cross-correlation function of Xk and Xk+1 in the full L96 model (solid) and in
reduced models with deterministic subgrid scheme (dot-dashed), AR(1) scheme (dotted) and CWMC
scheme (dashed).

very similar results. They exhibit large error; the peak in the wave spectrum is too small and broad,
spread out over wavenumbers 3 and 4. The CWMC scheme capturesthe sharp peak at wavenumber 3
correctly and reproduces the whole spectrum almost perfectly; it performs as well as the full Markov
chain model (Crommelin and Vanden-Eijnden, 2008). The sameeffect manifests itself in the spatial
correlations. With the deterministic and the AR(1) schemes, the maximum positive correlation at lag 6
(associated with wavenumber 3) is shifted to lags 4 and 5 due to too much variance in the shorter waves
with wavenumbers 4 and 5. The CWMC scheme reproduces the spatial correlations almost perfectly.

We now look at the behaviour of the models in the time domain. Figure 4 gives the autocorrelation
function of Xk and the cross-correlation function of neighbouring variables Xk and Xk+1. They both
have oscillatory behaviour over long time scales. The deterministic and the AR(1) scheme have the
amplitude of the oscillations too small and there is a phase shift compared to the full L96 model. The
CWMC scheme performs much better; the amplitude of the oscillations is correct and there is only a
small phase shift visible at large time lags. The full Markovchain model is slightly better than the
CWMC scheme; it reproduces the auto- and cross-correlationfunctions almost perfectly (Crommelin
and Vanden-Eijnden, 2008).
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Figure 5: Rank histograms for ensembles with the deterministic subgrid scheme (top left), the AR(1)
scheme (top right) and the CWMC scheme (bottom). Predictionlead time isτ = 2; ensemble size is
Nens= 20. The dashed horizontal lines indicate the expected relative frequency under rank unifor-
mity.

5.2 Ensemble prediction

We investigate the predictive skill of the reduced models with the different parametrisations. Given the
stochastic nature of the models an ensemble prediction framework appears to be most appropriate. We
construct ensembles which account for both model and initial condition uncertainty. In these ensembles,
each ensemble member starts from a randomly perturbed initial condition. We follow the procedure in
Crommelin and Vanden-Eijnden (2008). The perturbations are drawn from a Gaussian distribution with
zero mean and a standard deviation of 0.15 (about 4% of the climatological standard deviation ofXk),
independently for each componentXk. The predictive skill turns out to be rather insensitive to the exact
value of the amplitude of the perturbations. This simple generation of ensembles appears to be sufficient
here for the purpose of comparing different subgrid-scale models. We do not sample unstable directions
in phase space more heavily (as is done by Wilks (2005)) or identify fastest-growing perturbations using
singular vectors. 10000 initial conditions are used taken from a long integration of the full L96 model,
separated by 5 time units.

In order to assess the ensemble spread we use rank histograms(Hamill, 2001). Rank histograms give
the relative frequency of the rank of the true state in theNens+ 1 member distribution formed by the
ensemble members and the true state. Ideally, the rank histogram should be flat corresponding to a
uniform distribution of the rank of the true state. For underdispersed ensembles the true state occupies
the extreme ranks too often, showing up in a U-shaped rank histogram. Conversely, for overdispersed
ensembles the extreme ranks are occupied too rarely, givingan inverse U-shape in the rank histogram.
Figure 5 shows rank histograms for the different parametrisation schemes. The ensemble size isNens=
20; the prediction lead time isτ = 2. The rank histograms are representative also for other lead times.
With the deterministic closure scheme the ensembles are strongly underdispersed. For the AR(1) scheme
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Figure 6: Prediction skill of the ensemble mean. Left: Anomaly correlation with the deterministic
scheme (dotted), the AR(1) scheme (dashed) and the CWMC scheme (solid). Curves from bottom
to top refer to ensemble sizes Nens= 5, Nens= 20 and Nens= 50. Right: Root mean square error
with the deterministic scheme (dotted), the AR(1) scheme (dashed) and the CWMC scheme (solid).
Curves from top to bottom refer to ensemble sizes Nens= 5, Nens= 20 and Nens= 50. The solid
horizontal line indicates the root mean square error of the climatology forecast.

the rank histogram is nearly uniform apart from some bias theorigin of which is unclear. The rank
histogram for the AR(1) scheme is in accordance with the findings by Wilks (2005). Crommelin and
Vanden-Eijnden (2008) report a substantial underdispersion for the AR(1) scheme. It is not clear where
this discrepency comes from; it may be due to a different initialisation of the AR(1) process at initial
time (Kwasniok, 2011a). For the CWMC model there is an almostideal ensemble spread.

We now evaluate the actual predictive skill of the forecastswith the various subgrid schemes. We con-
sider the deterministic forecast given by the ensemble mean. Figure 6 provides the anomaly correlation
and the root mean square error with the three closure schemesfor ensemble sizesNens= 5, Nens= 20
andNens= 50. For all schemes the prediction skill improves monotonically with the ensemble size for
all lead times and is virtually converged atNens= 50. The CWMC scheme clearly outperforms the
two other schemes at all lead times; withNens= 5 it is already better than the two other schemes with
Nens= 50. The AR(1) scheme cannot consistently outperform the deterministic scheme. The CWMC
subgrid model is not worse than the full Markov chain scheme (Crommelin and Vanden-Eijnden, 2008);
it is even better at small and medium lead times, probably dueto the state-dependent initialisation of the
Markov chain at initial time (Kwasniok, 2011a).

6 Discussion

A new approach to data-driven stochastic subgrid modellinghas been proposed. The closure consists
of a collection of local statistical models associated withclusters in the space of resolved variables.
As an example, the method has been implemented and tested in the framework of the Lorenz ’96 model
using discrete Markov chains as local models. The present scheme substantially outperforms two simple
generic closure schemes, a deterministic one given by the conditional mean of the subgrid term and a
stochastic one given by the conditional mean plus an AR(1) process. The cluster-weighted Markov
chain (CWMC) scheme performes about as well as the conditional Markov chain scheme proposed by
Crommelin and Vanden-Eijnden (2008) but the number of parameters is smaller by a factor of about 40.

The present method has the potential to be used in atmospheric and oceanic models based on grid point
discretisation. In some sense, the L96 model is a spatially extended system on a one-dimensional grid.
In a more realistic model two or three dimensions are present. The scheme could be run independently
at each grid point which is still computationally feasible even for a very large number of grid points.
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In a more realistic model setting the vector of variablesz one would like to condition the model on is
likely to be of higher dimension than in the L96 model. A conditioning based on binning into disjoint
intervals as in Crommelin and Vanden-Eijnden (2008) then becomes rapidly impractical and some form
of clustering may be crucial to construct any feasible subgrid scheme.

The method of cluster-weighted subgrid modelling is more general than just a refinement or improve-
ment of the conditional Markov chain scheme of Crommelin andVanden-Eijnden (2008). Different
clustering algorithms can be combined with various local statistical models. The method has also been
used to construct a closure for a low-order model of atmospheric low-frequency variability based on
empirical orthogonal functions (EOFs) (Kwasniok, 2011c).

The present approach is purely data-driven and not based on physical considerations. This may be
a strength as well as a weakness. Empirical schemes are potentially more accurate as they are free
from constraining a priori assumptions. On the other hand, data-based models are sometimes criticised
as not helping with our understanding of the physics of the system. This drawback is here mitigated
by the transparent architecture of cluster-weighted modelling. The local models have meaningful and
interpretable parameters. Indeed, the clusters here represent phases of an oscillation in(Xk, B̂k)-space
(Kwasniok, 2011a). This gives some hope that clusters couldpotentially be linked to physical processes
when the technique was applied to a more realistic system.

There might be potential for improvement in combining predictive, purely data-driven subgrid schemes
like the present approach with parametrisation schemes based more on physical reasoning or stochastic
dynamical systems theory. Approaches like Majda et al. (1999, 2003) are able to derive the structural
form of the closure model for a given system. This information might be used to guide the choice of
statistical model or place a priori constraints on the parameters.
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