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ABSTRACT

This paper presents the main results of a recent publicétiasasniok, 2011a).

A new approach for data-based stochastic parametrisdtiomesolved scales and processes in numerical weather
and climate prediction models is introduced. The subgealesmodel is conditional on the state of the resolved
scales, consisting of a collection of local models. A clustgalgorithm in the space of the resolved variables is
combined with statistical modelling of the impact of the eswlved variables. The clusters and the parameters of
the associated subgrid models are estimated simultanefoosi data. The method is implemented and explored
in the framework of the Lorenz '96 model using discrete Markoocesses as local statistical models. Perfor-
mance of the cluster-weighted Markov chain (CWMC) schemisvisstigated for long-term simulations as well
as ensemble prediction. It clearly outperforms simple pa@taisation schemes and compares favourably with
another recently proposed subgrid modelling scheme alsedoan conditional Markov chains.

1 Introduction

The dynamics of weather and climate encompass a wide ranggatil and temporal scales. Due to
the nonlinear nature of the governing equations, whichtadaws of fluid dynamics, thermodynamics,
radiative energy transfer and chemistry, the differentescare dynamically coupled to each other. Finite
computational resources limit the spatial resolution o&thier and climate prediction models; small-
scale processes such as convection, clouds or ocean edeliest gproperly represented. The necessity
arises to account for unresolved scales and processeglthiteeiuse of some form of subgrid modelling.
This is usually referred to as a closure in fluid dynamics aeditetical physics, and as a parametrisation
in meteorology and climate science.

Traditionally, parametrisations of unresolved scales prmtesses in numerical weather and climate
prediction models have been formulated deterministic@lych bulk formulae are expected to capture
the mean effect of small-scale processes in terms of sorgeriacale resolved variables. However,

there is in general a strong non-uniqueness of the unresehaes with respect to the resolved scales.
Thus, no one-to-one correspondence between values ofsblwed variables and subgrid-scale effects
can be expected; rather, a particular realisation of thgriiberm can be imagined to be drawn from a

probability distribution conditional on the resolved \aies.

Adding stochastic terms to climate models, in an attempafiwe the impacts of unresolved scales has
been suggested in a seminal paper by Hasselmann (1978)iniptementations of this concept were in
the context of sea-surface temperature anomalies (Fraokigind Hasselmann, 1977) and a conceptual
zonally averaged climate model (Lemke, 1977). Anotheryestddy looked at regime behaviour in a
very simple atmospheric model under stochastic forcingyéegl981).

Despite impressive improvements in the forecast skill ehatical weather and climate prediction in the
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past decades, there are still limitations due to model t@icy and error as well as problems in gen-
erating initial conditions for ensembles. Forecast ensesntend to be underdispersive (e. g., Buizza,
1997), leading to overconfident uncertainty estimates anthderestimation of extreme weather events.
Systematic biases are significant in subgrid-scale weptieromena and state-of-the-art ensemble pre-
diction systems occasionally miss extreme weather eventsel ensemble distribution. One way of
addressing these issues relating to model imperfectioa @eliberately introduce an element of un-
certainty into the model. This can be done by randomisatioexsting parametrisation schemes;
approaches include multi-model, multi-parametrisatiod enulti-parameter ensembles (Palmer et al.,
2005). A more systematic and comprehensive representatiorodel uncertainty may be achieved by
introducing stochastic terms into the equations of motidhis has been implemented in the form of
stochastically perturbed tendencies (Buizza et al., 1886) most recently, stochastic-dynamic subgrid
schemes (Palmer, 2001; Shutts, 2005; Berner et al., 2008gnaral feature of stochastic parametrisa-
tions is that they enable the forecast ensemble to explgperiignt regions of phase space better than
more restricted deterministic parametrisations. See &adnal., 2005; Weisheimer et al., 2011 for an
overview and comparison of different methods for représgnnodel uncertainty and error in weather
and climate prediction models.

There has been a lot of research activity on subgrid modgitimecent years in various contexts, from

theoretical studies constructing deterministic equatifam moments of coarse-grained variables using
a constrained measure of the system (Chorin et al., 1998),sistematic stochastic mode reduction
strategy based on stochastic differential equations (Mejdal., 1999, 2003), to various approaches
to stochastic convection parametrisation (Lin and Ne@@9Q0; Majda and Khouider, 2002; Plant and

Craig, 2008). A particular class of subgrid models are s@wemhich are derived purely from data

(Wilks, 2005; Crommelin and Vanden-Eijnden, 2008). Whikdinlg less transparent from a physics
point of view, they are potentially more accurate as theylesg restricted by a priori assumptions.

The purpose of the present paper is twofold: Firstly, it gelhe proposes a new approach to data-based
stochastic subgrid parametrisation using the methodaddgluster-weighted modelling. Secondly and
more specifically, a cluster-weighted Markov chain subgaddeme is outlined, building on recent work
on conditional Markov chains (Crommelin and Vanden-Eimd2008).

The paper is organised as follows: Section 2 introduces #mergl framework of cluster-weighted

modelling for subgrid parametrisation. In section 3, wecdég the Lorenz '96 system which is here
used as a testbed to explore the method. The detailed faiotutaf the subgrid parametrisation in the

context of the Lorenz '96 system and how to estimate its patara from data is discussed in section
4. Then the results are presented in section 5. The papeludescwith some general discussion and
implications.

2 Subgrid-scale parametrisation using cluster-weighted modelling

Assume the climate system is described by a high-dimenisgtate vectomu which is decomposed as
u = (x,y) wherex is the part resolved in a given weather or climate predictiwdel of a particular
spatial resolution and complexity, agds the unresolved part. The true tendencyk & schematically
given by

X =R(x)+U(x,y) 1)
with R(x) being the resolved tendency, arising from the interactaoneng the resolved variablgsand
U(x,y) being the unresolved tendency, arising from interactioith the unresolved variables In a

simulation with the model resolving onk; we need to parametridé(x,y). Such a parametrisation has
the general form

U(x,y) ~f(x) +n(x) (@)
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wheref(x) is the deterministic part of the closure model apk) is a stochastic process generally
dependent ox. A canonical choice for the deterministic part would be tbeaditional mean of the
unresolved tendency:

f(x) = (U(xy)[x) ®3)

The stochastic component(x) is represented by a collection of local subgrid models, itmmal on
the state of the resolved variables. We build on the appro&cluster-weighted modelling (Gershenfeld
et al., 1999; Kwasniok, 2011b) which is suitably adapteahérfinite number of clusters is introduced
in a space of clustering variablesThe number of clusters i andmis the cluster index, running from

1 to M. The integer variable takes values from 1 t¥, according to which cluster has been chosen.
Each cluster has an overall weight, = p(c = m), satisfying the probabilistic constraintg, > 0 and

S mWm = 1, as well as a clustering probability densjiyz|c = m), describing its domain of influence
in the space of clustering variables The vectorz is a suitably chosen (low-dimensional) subset or
projection ofx; it may also contain past values »f that is, a time-delay embedding (Sauer et al.,
1991). Each cluster is associated with a local probahil®sibgrid modep(n |v,c = m) which depends
on a vector of variables. The vectorv might encompass present and past values of components or
projections ofx as well as past values gf. The conditional probability density of the stochastic gudh
termn is expanded into a sum over the clusters:

M
p(nlz.v) = am(@) p(nlv.c=m) 4)
m=1

The state-dependent weiglyig of the individual models are given by Bayes’ rule:
Wm p(zlc=m)
ShLaWn p(zlc=n)

The local model weights satisfy, > 0 andy ,gm = 1. The cluster-weighted subgrid model has two
types of conditioning on the resolved variables: the depeoe of the model weightg, on z and the
explicit dependence of the subgrid modelsworThe vectors andv might overlap.

Om(z) = p(c=m|z) = (5)

The clustering densitieg(z|c = m) and the local subgrid modetgn|v,c = m) can take various forms.
The canonical choice for the clustering densif€sc = m) in the continuous case is Gaussian. For non-
negative or strongly skewed variables other choices may dre mgppropriate. One may also partition
the space of into a finite number of bins; the clustering probabilitieg &énen discrete probability
distributions over these bins. The subgrid modglg |v,c = m) may be regression models orwith
Gaussian uncertainty. In the present study, they are &ctMarkov chains governing the switching
between discrete values pf

The parameters of the clusters and the subgrid models areést simultaneously from a learning data
set by maximising a suitably defined likelihood function.eThiumber of cluster! is a hyperparameter
of the method controlling the overall complexity of the stidgnodel. It may be determined within the
fitting procedure of the subgrid model by minimising the Adeadr Bayesian information criterion in the
learning data set, or by maximising the cross-validateelililood function in a data set different from
the learning data set. Alternatively, the number of clissteay be determined from the performance of
the subgrid model in finite-time prediction or a long-ternegration measured by a suitable metric of
interest.

3 ThelLorenz’96 modd

The Lorenz '96 (L96) model (Lorenz, 1996) is used as a testbe&xplore the new subgrid parametri-
sation scheme. It has become popular in the weather andtelisc@&nce community as a toy model
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By
By - <B/X,>

Figure 1: Left: Scatterplot of the subgrid termy Bersus the state X The solid line indicates the
conditional mean as estimated by a fifth-order polynomiastesquares fit. Right: Scatterplot of the
deviation from the conditional meaBy = By — (Bk|Xk), versus the stategX The solid horizontal
lines indicate the value§; used in the CWMC subgrid scheme (see text).

of the atmosphere to test concepts and algorithms relatingreédictability, model error, ensemble
post-processing and subgrid parametrisation (e. g., zorE996; Palmer, 2001; Fatkullin and Vanden-
Eijnden, 2004; Wilks, 2005; Crommelin and Vanden-Eijnd2008). The model equations are

Xe = X1(Xier1—Xe—2) — X+ F + By (6)
Yik = % Yiak(Yio1k = Yisak) = Yik+ hyX] (7

with hy
Bk = 3 ij,k (8)

andk=1,...,K; j=1,...,J. The variables( andY; x are arranged on a circle. They can be interpreted
either as variables on a circle of constant latitude or asdiomial averages, each representing a segment
of longitude. As such, the model is a spatially extendedesystTheXy are large-scale, slow variables,
each coupled to a collection of small-scale, fast varialfjgs The variables are subject to the periodic
boundary conditionXx = Xiik, Yjk = Yjk+k andYj ik = Y] k1 reflecting the periodicity of the spatial
domain. The system is invariant under spatial translatithresefore all statistical properties are identical
for all Xc. The model formulation employed here (Fatkullin and Van8§nden, 2004) is exactly
equivalent to the original formulation by Lorenz (1996). thiVK; ande’jk denoting the variables in
the original system (Lorenz, 1996) with parametEtsh, ¢ and b, the corresponding system in the
formulation of eqs.(6)—(8) is obtained by a linear scalifighe variables Xx = X andYjx = ij’jk)

and the parameter settirgg= % hy = —hFCJ andhy = h, leaving the forcing= unchanged. The present
formulation of the system makes the time scale separatiovnees the slow and fast variables explicit in
the positive parameter. If € — 0, we have infinite time scale separationg i 1, there is no time scale
separation. We here use the parameter seking18,J = 20,F = 10,& = 0.5, hy = —1 andhy =1,
which is the same as in Crommelin and Vanden-Eijnden (200&.system has 18 large-scale and 360
small-scale variables, 378 variables in total.

In a reduced model of the L96 system, only the variatdgsre resolved explicitly. The impact of
the unresolved variableg x on the resolved variables is described by the ter, which is referred

to as the subgrid term or unresolved tendency. It needs tcabtmmetrised somehow in a reduced
model in order to account for the impact of the unresolvedbisdes. This constitutes the subgrid-scale
parametrisation problem in the context of the L96 model.

Figure 1 displays a scatterplot of the subgrid teBgversus the stat&y obtained from a long (post-
transient) numerical integration of the L96 model. The me&By conditional onXy as estimated
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by a fifth-order polynomial least-squares fit is also indéciat A higher order of the polynomial does
not improve the fit significantly. In practice, all numericalues of the conditional mea(By|Xy) are
calculated using the fifth-order polynomial. There is arsgraon-uniqueness of the subgrid term with
respect to the resolved state: For a fixed valu¥oBy can take on a range of values. The conditional
mean explains only 52.4% of the variance of the subgrid tBgmThe properties of the conditional
probability density functiorp(Bx|Xk) depend strongly oX. In particular, it is markedly non-Gaussian
for a range of values ofy. Figure 1 also shows a scatterplot of the deviation of thgsdlderm from

its conditional mearB, = B — (By|Xk), versusX.

4 Subgrid-scale modelling with cluster-weighted M arkov chains

As an example for the methodology outlined in Section 2, ateluweighted subgrid scheme based on
local Markov chains is developed and implemented for the iin®@lel.

41 Mode formulation

We here combine the framework of cluster-weighted modgl({i@ershenfeld et al., 1999; Kwasniok,
2011b) with the use of conditional Markov chains (Crommaeilid Vanden-Eijnden, 2008) for stochas-
tic subgrid-scale parametrisation. The subgrid t&nis replaced by a collection of discrete Markov
processes conditional on the state of the resolved vasiablee closure model is formulated indepen-
dently for each resolved variab¥ as there is only little spatial correlation in the subgridhteBy in
the L96 system (Wilks, 2005). We choose to condition the gdbgodel at time both on the current
stateXy(t) and the incremendXy(t) = Xk(t) — Xk(t — ot) wheredt is the sampling interval of the data.
This choice is motivated by the fact that the probability signfunction of the subgrid terrBy has been
shown to depend also on the increméii, (Crommelin and Vanden-Eijnden, 2008). It seems conceiv-
able that the probability density of the subgrid term cowddinther sharpened by conditioning on more
past values 0Ky but we restrict ourselves to just one past value for simglici

The subgrid model is derived from an equally sampled datafdengthN, {Xk",éxf,éﬁ}'::l. Here
and in the following, a subscript or superscriptefers to time in an equally sampled time series with
sampling intervabt and runsAfrom 1tdN. A data point Xy, dXx, Bx) is mapped to a discrete stdted, b)

by partitioning the(Xy, dX, Bk)-space into bins. Th&y-space is divided intdNx disjoint intervals
{#X1¥ : we haves =1 if X, € .#X. The 5X-space is divided intdsy disjoint intervals{ffx}'j\'ixl;

we haved = | if dX, € Jj‘”(. Givens= i, the range of possible values 8 is divided intoNg disjoint,
equally populated interval{sﬂif‘}:\'jl; we haveb =1 if By € 8. The subgrid tern, is then represented
by a set ofNg discrete value$f3; }l'\fl given by the mean dB, in each interval:

5  YaBi sy =i)1(bg =1)
' Yallsa =1)1(bg =1)

9)

We introduceM clusters in the discretes, d, b)-space. Each cluster has an overall weight or probability
of that cluster being chosemi, = p(c = m), and a clustering probability distributiofmij = p(s =

i,d = j|c = m), describing its domain of influence {i3,d)-space. The parameters of the clusters sat-
isfy a couple of probabilistic constraints. The overall gégs form a probability distributionwv,, > 0,
YmWm = 1. The clustering probability distributions satisfynij > 0 andy; ; Ymij = 1. The clusters
are required to add up to the joint climatological distribot(invariant measure) of andd, that is,

S mWmmij = p(s=i,d = ) = pij wherep;; is empirically given as the fraction of data points in these
bins: pij = & Y4 1(se =) 1(dg = j). It follows that the clusters also sum up to the marginal ation
logical distributions:y m j WmWmij = p(s=1i) = ¥ j pij as well asy n Wmmij = p(d = j) = 3 fij -
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Each cluster is associated with a Markov chain in the discspticéb described by arfiNg x Ng) tran-
sition matrix A with componentdny,1, = p(by = I2|bg—1 = 11,64 = m). The matriceA, are row-
stochastic matrices, that iBy,,;, > 0 andy |, Ay, = 1.

The conditional probability distribution fdy, is modelled as a sum over the clusters:

M
P(bg [bg—1,S¢,da) = Z Om(Sa, dar) Amby_1bg - (10)
m=1
The state-dependent model weights are given by Bayes’ sule a
.o . . Wm L.Umij Wm l/—’mij
i,j)=plc=m|s=id=j) = = . 11
Om(i ) = p( | ) ST o (11)

The Markov chain is effectively governed by local transitimatricesA'°C(i, ) = S mOm(i, j) Am which

as a convex combination of row-stochastic matrices areyslwaw-stochastic matrices. The subgrid
model jumps according to the local Markov process betweemNghpossible valuegf3; },'\El given by
eq.(9) fors=i. The mean local model weights are found to(bg) = %za Om(Sq,da) = Wm. Hence
the overall weightvy, can be interpreted as the fraction of the data set (or theiamtaneasure of the
system) accounted for by the clustar

The number of clustersl, the numbers of binslxy andNsx as well as the number of stathlg of the
Markov chain are hyperparameters of the method which habe tixed beforehand; they control the
overall complexity of the closure model. We call this subigriodel a cluster-weighted Markov chain
(CWMC) model.

Given an equally sampled learning data set of lefgtH bo,s;,d1,bs, ..., Sy, dn, by}, the parameters
of the CWMC subgrid model are estimated according to the mami likelihood principle using the
expectation-maximisation (EM) algorithm (Dempster et H.77; Kwasniok, 2011a, 2011b).

4.2 Model integration

The time integration of the reduced model with the CWMC sitbgcheme proceeds as follows: The
subgrid scheme is constructed at time shepthe deterministic equations for the resolved variables ar
integrated with time step determined by the employed numerical scheme, stabilitytheddesired
accuracy. These two time steps may be different; typicallyis larger tharh. Assume for simplicity
that ot is an integer multiple oh: ot = Nse1. We then use a split-integration scheme (Crommelin
and Vanden-Eijnden, 2008). The resolved dynamics areriied) with time stefn; the subgrid model

is propagated with time stedt, updated only everfNsi, time steps. At timeg,_1, let the system
state b@)(k""l falling in bin s5_1 and let the state of the Markov chain of the subgrid modebhe,.
The stateX? at timet, is calculated by propagating the resolved variatNegs, times with step size

h using the derivative given by eq.(6) wiiy set to(Bk|Xk°"1> + Bsy_1by 1~ I X falls in bins, and
SXZ = X3 — X2~ falls in bin dy the next state of the Markov chaby is determined by randomly
drawing from the probability distribution given by eqgs.JEhd (11). Then the subgrid terBy is set to
(Bk|XZ) + Bs,b, for the next integration cycle. One could also choose to teptlee deterministic part
of the closure model at time stép In the present model setting there is virtually no diffeehetween
these two possibilities provided the sampling interdtis not too large as the dependence(Bg|Xy)

on Xy is quite smooth. The rarer update is computationally mdieiefit.

5 Results

The full L96 model is integrated for 1000 time units of pastrsient dynamics using the Runge-Kutta
scheme of fourth order with step size 0.002. The state vectochived at a sampling intervat = 0.01,
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resulting in a data set containing 100000 data points. ThéICWlosure scheme is constructed from
this data set. Such a large learning data set, virtuallyesponding to the limit of infinite data, is used
here to get rid of any sampling issues for the parameter atgrand study the ideal behaviour of the
method. It should be noted that a very similar performanab@feduced model to that presented here
can already be obtained with a much shorter learning dat@-s&d00 data points). We udé = 4 in-
tervals inXg-space. They are located between -5.5 and 10.5 and havesezpidiVe then extend the first
and the last interval to minus and plus infinity, respecgiv@lhus, the intervals argZ}* = (—o, —1.5],
IX = (-15,25], 7 = (25,6.5] and .#; = (6.5,»). In 5X-space we usdlsx = 2 intervals given
as #%X = (—o0,0] and . = (0,0), corresponding to downwards and upwards direction of the tr
jectory. The number of bins for the subgrid term, that is, ibienber of states of the Markov chain is
set toNg = 3. The valueg3; used in the CWMC scheme given by eq.(9) are displayed in Fighe
resolution of the binnings was determined from the perfareeaof the resulting reduced model. We
studied larger values for all of the parametiiig Nsx andNg but a higher resolution in the binning of
any of the variables does not visibly improve the model. CWald3ure schemes were estimated from
the data set with increasing number of clusters, startiogntl = 1. Based on the performance of the
reduced modelM = 2 is found to be the optimal number of clusters. There is noifsggnt further
improvement when using more than 2 clusters.

The CWMC scheme is compared to two simple generic pararagtnisschemes: a deterministic clo-
sure scheme and the AR(1) scheme proposed by Wilks (2009.dé&terministic scheme consists in
parametrising3i by the conditional mean as estimated by the fifth-order pmtyial fit shown in Fig. 1:
Bk ~ (Bk|X«). The AR(1) scheme modeBx by the conditional mean plus an AR(1) process:

BY =B — (BuX) = ¢Bf *+0¢ (12)

¢ denotes Gaussian white noise with zero mean and unit vaiiants the standard deviation of the
driving noise. FoBy, this amounts to an AR(1) process with state-dependent fig&Xi) but constant
autoregressive parameter and standard deviation of tise.n@ileast-squares fit to the time serie8pf
at time stepdt = 0.01 yieldsg = 0.9977 (corresponding to amfolding time of 4.25 time units) and =
0.059. The standard deviation of the AR(1) proces?% = 0.866, equal to the standard deviation

of By. The reduced models with the deterministic and the AR(1ysdischemes are integrated in time
in a manner analogous to that described in subsection 4tBdd€WMC scheme, updating the subgrid
term at time stept.

The CWMC scheme is also compared to the subgrid modellirtty $ty Crommelin and Vanden-Eijnden
(2008) based on conditional Markov chains using the L96esgysivith exactly the same parameter
setting as an example. They condition the Markov chaiv(@randxk“‘l, both partitioned into 16 bins.
Taking into account that due to the autocorrelation of thetesy at lagdt only transitions within the
same bin and into neighbouring bins actually occur this hbugnot exactly) corresponds tdy = 16
andNsyx = 3 in the present setting. Then a separate transition matitk (Ng = 4) is determined for
each pair of bins, amounting to about 45 active transitiotriges. \We occasionally refer to this subgrid
model for comparison as the full Markov chain scheme. ThegreCWMC scheme offers a much
more condensed description of the subgrid term. It uses Mnly 2 independent transition matrices.
Moreover, a much coarser binninilhy{ = 4, Nsx = 2) and onlyNg = 3 states in the Markov chain are
used. The number of parameters to be estimated from datausllgcabout 40 times larger in the full
Markov chain scheme than in the CWMC scheme. Consequendggear learning data set is necessary
to estimate the full Markov chain model.

5.1 Long-term dynamicsof the reduced model

We investigate to what extent the reduced models with thewssubgrid schemes are able to reproduce
the statistical properties of the long-term behaviour efldrge-scale variable& in the full L96 model.
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\ | Mean| Std. dev.] D |

Full L96 model 2.39 3.52

Deterministic schem¢ 2.53 3.56 0.017
AR(1) scheme 2.51 3.57 | 0.015
CWMC scheme 2.40 3.51 0.004

Table 1: Mean and standard deviation of X the L96 model and the reduced models with the
various subgrid schemes. The last column gives the Kolmwegdmirnov distance between the
probability distribution of X in the reduced model and that in the full L96 model.

0.05 |-

probability density

15

Figure 2: Probability density function ofi{n the full L96 model (solid) and in reduced models with
deterministic subgrid scheme (dot-dashed), AR(1) schdottefl) and CWMC scheme (dashed).

The reduced models are integrated in time as described Bestibn 4.2 using a fourth-order Runge-
Kutta scheme with step size= 0.002. The closure model is updated every fifth time step. THeaed
model with CWMC subgrid scheme runs more than 30 times falsger the full L96 model. Starting
from random initial conditions, after discarding the firg€t 8me units of the integration to eliminate
transient behaviour 2500 time units worth of data are aethiat a sampling interval ot = 0.01,
resulting in time series of length 250000. All the resulsorted below are calculated from these time
series.

Figure 2 shows the probability density function Xf in the reduced models with the three different
closure schemes and that of the full L96 model for comparissaditionally, table 1 gives the mean
and the standard deviation of the PDFs. It also lists theatiewi of the probability distributions of
the reduced models from that of the full L96 model as meashyetthe Kolmogorov-Smirnov statistic
D = max, |P(Xk) — Pr(Xk)| where® is the (cumulative) probability distribution of the L96 meddnd

@, is the probability distribution of the reduced model. All dads reproduce the PDF quite well.
The deterministic and the AR(1) schemes are very close to ether. The CWMC scheme offers an
improvement on the two other schemes; it is about as goocedslttMarkov chain scheme (Crommelin
and Vanden-Eijnden, 2008). The deterministic and the AR¢hemes exhibit a considerable shift in
the mean state and slightly too much variance. The CWMC seltes almost exactly the correct mean
and variance.

In order to monitor the spatial pattern of variability in tegstem, the Fourier wave spectrum of the
system is displayed in Figure 3. At each instant in time, tiserdte spatial Fourier transform of the
state vectoiX = (Xy,...,Xk) is calculated, giving the (complex) wave vec@®@r (Go,...,Gk_1) with

G, =G, forv=1... K—1. The wave variance of wavenumberis then (|G, — (G,)|?) for
v=0,...,K—1where(-) denotes the time average. Figure 3 also shows the correfzftio/o variables
Xk and Xy |, separated by a lalgon the circle. The deterministic and the AR(1) closure saegive
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05 1

correlation

wave variance

wavenumber spatial lag |

Figure 3: Left: Wave variances in the full L96 model (solidjdain reduced models with deter-
ministic subgrid scheme (dot-dashed), AR(1) scheme (Jaited CWMC scheme (dashed). Right:
Correlation of % and X, in the full L96 model (solid) and in reduced models with deii@istic
subgrid scheme (dot-dashed), AR(1) scheme (dotted) and@¥¢heme (dashed).
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time lag time lag

Figure 4: Left: Autocorrelation function of Xin the full L96 model (solid) and in reduced mod-
els with deterministic subgrid scheme (dot-dashed), AR¢heme (dotted) and CWMC scheme
(dashed). Right: Cross-correlation function of #nd X% ; in the full L96 model (solid) and in
reduced models with deterministic subgrid scheme (dolield)s AR(1) scheme (dotted) and CWMC
scheme (dashed).

very similar results. They exhibit large error; the peakhia tvave spectrum is too small and broad,
spread out over wavenumbers 3 and 4. The CWMC scheme cafitereharp peak at wavenumber 3
correctly and reproduces the whole spectrum almost p&rfetperforms as well as the full Markov
chain model (Crommelin and Vanden-Eijnden, 2008). The saffeet manifests itself in the spatial
correlations. With the deterministic and the AR(1) schenttes maximum positive correlation at lag 6
(associated with wavenumber 3) is shifted to lags 4 and Salte@tmuch variance in the shorter waves
with wavenumbers 4 and 5. The CWMC scheme reproduces thialspatelations almost perfectly.

We now look at the behaviour of the models in the time domaiiguie 4 gives the autocorrelation
function of X and the cross-correlation function of neighbouring vdeaatXx and Xx. 1. They both
have oscillatory behaviour over long time scales. The ddtastic and the AR(1) scheme have the
amplitude of the oscillations too small and there is a phagfe @mmpared to the full L96 model. The
CWMC scheme performs much better; the amplitude of thelaioihs is correct and there is only a
small phase shift visible at large time lags. The full Marlahain model is slightly better than the
CWMC scheme; it reproduces the auto- and cross-correldtinctions almost perfectly (Crommelin
and Vanden-Eijnden, 2008).
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Figure 5: Rank histograms for ensembles with the deteriirssibgrid scheme (top left), the AR(1)
scheme (top right) and the CWMC scheme (bottom). Preditgexhtime ist = 2; ensemble size is
Nens= 20. The dashed horizontal lines indicate the expected reddteguency under rank unifor-
mity.
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5.2 Ensemble prediction

We investigate the predictive skill of the reduced modelhthe different parametrisations. Given the
stochastic nature of the models an ensemble predictionefremk appears to be most appropriate. We
construct ensembles which account for both model and licitiadition uncertainty. In these ensembles,
each ensemble member starts from a randomly perturbedlioithdition. We follow the procedure in
Crommelin and Vanden-Eijnden (2008). The perturbatioesdaawn from a Gaussian distribution with
zero mean and a standard deviation of 0.15 (about 4% of thatdiogical standard deviation ),
independently for each componefit The predictive skill turns out to be rather insensitivette éxact
value of the amplitude of the perturbations. This simplesgation of ensembles appears to be sufficient
here for the purpose of comparing different subgrid-scadelers. \We do not sample unstable directions
in phase space more heavily (as is done by Wilks (2005)) etiigefastest-growing perturbations using
singular vectors. 10000 initial conditions are used takemfa long integration of the full L96 model,
separated by 5 time units.

In order to assess the ensemble spread we use rank histogifamd!, 2001). Rank histograms give
the relative frequency of the rank of the true state inpgs+ 1 member distribution formed by the
ensemble members and the true state. Ideally, the rankghéstoshould be flat corresponding to a
uniform distribution of the rank of the true state. For urdigpersed ensembles the true state occupies
the extreme ranks too often, showing up in a U-shaped ran&gnan. Conversely, for overdispersed
ensembles the extreme ranks are occupied too rarely, garirigverse U-shape in the rank histogram.
Figure 5 shows rank histograms for the different pararmaide schemes. The ensemble sizBligs=

20; the prediction lead time is= 2. The rank histograms are representative also for othdrtieges.
With the deterministic closure scheme the ensembles anegtyrunderdispersed. For the AR(1) scheme
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Figure 6: Prediction skill of the ensemble mean. Left: Anbnearrelation with the deterministic
scheme (dotted), the AR(1) scheme (dashed) and the CWM®@eckelid). Curves from bottom
to top refer to ensemble sizeg = 5, Nens= 20 and Nips= 50. Right: Root mean square error
with the deterministic scheme (dotted), the AR(1) scheashétl) and the CWMC scheme (solid).
Curves from top to bottom refer to ensemble sizgg N 5, Nens= 20 and Nyps= 50. The solid
horizontal line indicates the root mean square error of thimatology forecast.

the rank histogram is nearly uniform apart from some biasottigin of which is unclear. The rank
histogram for the AR(1) scheme is in accordance with the figgliby Wilks (2005). Crommelin and
Vanden-Eijnden (2008) report a substantial underdisperfsr the AR(1) scheme. It is not clear where
this discrepency comes from; it may be due to a differeniailisaition of the AR(1) process at initial
time (Kwasniok, 2011a). For the CWMC model there is an alnuestl ensemble spread.

We now evaluate the actual predictive skill of the forecagth the various subgrid schemes. We con-
sider the deterministic forecast given by the ensemble neignre 6 provides the anomaly correlation
and the root mean square error with the three closure schiemeasemble sizeNlgns= 5, Nens= 20
andNgns= 50. For all schemes the prediction skill improves monotalhjowith the ensemble size for
all lead times and is virtually converged ld,s= 50. The CWMC scheme clearly outperforms the
two other schemes at all lead times; with,s= 5 it is already better than the two other schemes with
Nens= 50. The AR(1) scheme cannot consistently outperform thergetistic scheme. The CWMC
subgrid model is not worse than the full Markov chain sche@reifhmelin and Vanden-Eijnden, 2008);
itis even better at small and medium lead times, probablytaltiee state-dependent initialisation of the
Markov chain at initial time (Kwasniok, 2011a).

6 Discussion

A new approach to data-driven stochastic subgrid modehiag) been proposed. The closure consists
of a collection of local statistical models associated vditinsters in the space of resolved variables.
As an example, the method has been implemented and testealfiamework of the Lorenz '96 model
using discrete Markov chains as local models. The preséense substantially outperforms two simple
generic closure schemes, a deterministic one given by théittanal mean of the subgrid term and a
stochastic one given by the conditional mean plus an AR(@ygss. The cluster-weighted Markov
chain (CWMC) scheme performes about as well as the conditidiarkov chain scheme proposed by
Crommelin and Vanden-Eijnden (2008) but the number of patars is smaller by a factor of about 40.

The present method has the potential to be used in atmosgretioceanic models based on grid point
discretisation. In some sense, the L96 model is a spatiatBneded system on a one-dimensional grid.
In a more realistic model two or three dimensions are predém scheme could be run independently
at each grid point which is still computationally feasibleee for a very large number of grid points.
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In a more realistic model setting the vector of varialteme would like to condition the model on is
likely to be of higher dimension than in the L96 model. A cdimfiing based on binning into disjoint
intervals as in Crommelin and Vanden-Eijnden (2008) therobees rapidly impractical and some form
of clustering may be crucial to construct any feasible sigbggheme.

The method of cluster-weighted subgrid modelling is moneegal than just a refinement or improve-
ment of the conditional Markov chain scheme of Crommelin &adden-Eijnden (2008). Different
clustering algorithms can be combined with various locatistical models. The method has also been
used to construct a closure for a low-order model of atmasphaw-frequency variability based on
empirical orthogonal functions (EOFs) (Kwasniok, 2011c).

The present approach is purely data-driven and not basedysicpl considerations. This may be
a strength as well as a weakness. Empirical schemes aretipltyemore accurate as they are free
from constraining a priori assumptions. On the other haath-hased models are sometimes criticised
as not helping with our understanding of the physics of trstesy. This drawback is here mitigated
by the transparent architecture of cluster-weighted niiodel The local models have meaningful and
interpretable parameters. Indeed, the clusters heresaqrehases of an oscillation @(k,ék)—space
(Kwasniok, 2011a). This gives some hope that clusters qoatieintially be linked to physical processes
when the technique was applied to a more realistic system.

There might be potential for improvement in combining petide, purely data-driven subgrid schemes
like the present approach with parametrisation schemesibasre on physical reasoning or stochastic
dynamical systems theory. Approaches like Majda et al. §12003) are able to derive the structural
form of the closure model for a given system. This informatinight be used to guide the choice of
statistical model or place a priori constraints on the patans.
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