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1. Introduction  
Regional numerical weather prediction (NWP) models have reached the limits of validity of the 
hydrostatic approximation, and the global ones are rapidly approaching these limits.  Vast experience 
with nonhydrostatic models has been accumulated in simulating convective clouds and storms, but 
this experience may not be directly or entirely applicable in NWP applications since NWP deals with 
phenomena on a much wider range of temporal and spatial scales.  In response to this situation, over 
the last decade or so, nonhydrostatic models specifically intended for weather forecasting have been 
developed and implemented (e.g. Davies et al., 2005; Doms and Schaettler, 1997; Janjic et al., 2001; 
Janjic, 2003; Room et al., 2006; Saito et al., 2007; Skamarock and Klemp, 2008; Steppeler et al. 2003; 
Yeh et al., 2002). 

Concerning the criteria that a successful nonhydrostatic NWP model should satisfy, there are several, 
rather obvious choices.  Apparently, the accuracy of the nonhydrostatic model must not be inferior to 
that of mature hydrostatic models running at the same resolution.  Moreover, particularly having in 
mind the uncertainties concerning the benefits that can be expected from nonhydrostatic dynamics at 
transitional, single digit resolutions in kilometers, the nonhydrostatic model should be sufficiently 
computationally efficient.  Finally, the model dynamics should be capable of reproducing strongly 
nonhydrostatic flows at very high resolutions.  Although such resolutions are beyond the resolutions 
that could be used in NWP in the near future, this condition must be satisfied in order to demonstrate 
that the model is indeed nonhydrostatic. 

Having in mind these considerations, a novel approach (Janjic et al., 2001; Janjic, 2003) has been 
applied in the NCEP regional Nonhydrostatic Mesoscale Model (NMM) that was developed within 
the Weather Research and Forecasting (WRF) initiative, and in the new unified Nonhydrostatic 
Multiscale Model on the Arakawa B grid (NMMB) (Janjic, 2005; Janjic and Black, 2007) that is 
being developed at NCEP within the NOAA Environmental Modeling System (NEMS).  The NMMB 
is designed for a broad range of spatial and temporal scales so that it can be used for a variety of 
applications from LES studies to weather forecasting and climate simulations on regional and global 
scales. 

In the NMM and NMMB models the hydrostatic approximation is relaxed in hydrostatic formulations 
based on modeling principles proven in practice.  These principles were applied in several generations 
of models preceding the NMM and NMMB (e.g., Janjic 1977, 1979, 1984), and have been thoroughly 
tested in NWP and regional climate applications, although the specific numerical schemes employed 
have evolved significantly over time, and over about two orders of magnitude in resolution.  By 
relaxing the hydrostatic approximation, the applicability of the model formulation is extended to 
nonhydrostatic motions, and at the same time, the favorable features of the hydrostatic formulation are 
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preserved.  In other words, following an evolutionary approach, the nonhydrostatic NWP models were 
built on NWP experience.  The nonhydrostatic effects are introduced in the form of an add-on 
nonhydrostatic module that can be turned on or off.  Following the prevalent NWP practice, the NMM 
and NMMB were formulated using a vertical coordinate based on mass (or hydrostatic pressure) 
(Janjic et al., 2001; Janjic, 2003). 

2. Nonhydrostatic model equations 
Let s denote a generalized mass based terrain following vertical coordinate that varies from 0 at the 

model top to 1 at the surface (Simmons and Burridge, 1981).  Let   be the hydrostatic pressure, and 

let S and T  be the hydrostatic pressures at the surface and at the top of the model atmosphere, 

respectively.  Then, the difference in hydrostatic pressure between the base and the top of the model 

column is TS   .  Here, T  is a nonnegative constant, whereas S  is a function of time and 

horizontal position. 

The hypsometric equation  

 
 



 


 (2.1) 

relates the geopotential   to the hydrostatic pressure.  Assuming that the atmosphere is dry, the 

specific volume is related to the temperature T and pressure p by the ideal gas law pRT , R  

being the gas constant.  Note that the ideal gas law does not involve the hydrostatic pressure but rather 
the actual pressure.  Using the ideal gas law, from (2.1), 

 
RT

s p s

  
 

 
. (2.2) 

Upon integration of (2.2) from the surface, where the geopotential is denoted by S , to an arbitrary 

level s , 
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
 

 . (2.3) 

 Using (2.1), the third equation of motion may be written as 

 1
dw p

g
dt 

    
. (2.4) 

Defining the ratio of the vertical acceleration and gravity g, 

 
1 dw

g dt
  , (2.5) 

(2.4) may be rewritten as 

 1
p 



 


,  (2.6) 

which defines the relationship between the hydrostatic and the nonhydrostatic pressures.  Integrating 

(2.6) with respect to  , one obtains the nonhydrostatic pressure at an arbitrary hydrostatic pressure, 

or on a coordinate surface s , 
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As can be seen from (2.6) and (2.7), should   vanish, the pressure and the hydrostatic pressure 

become equivalent. 

 In the hydrostatic s  coordinate system, the time derivative of a fluid property q  following 

the motion of an air parcel may be written as 

 v s
s

dq q q
q s

dt t s





                

 . (2.8) 

Here, s  is the vertical velocity and the subscripts indicate the variable that is kept constant while the 

differentiation is performed. 

The nonhydrostatic continuity equation takes the form 

 
1

v s
s

w s
g t s

  




                   
 , (2.9) 

i.e., reduces to the definition of the vertical velocity w .  The familiar hydrostatic mass continuity 

equation 

 0vs

s

s
t s s s s

                                
  (2.10) 

also follows from the nonhydrostatic continuity equation. 

Using the material surface boundary conditions dtdss /  at 0s  and 0s , one may obtain two 

equations from (2.10).  The first one gives the tendency of the hydrostatic surface pressure 
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          , (2.11) 

and the second one is used to calculate the vertical velocity term  
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Using the relations (2.1) and (2.6), in the case of a nonhydrostatic atmosphere one obtains 

 
1

1( )z s sp p  


        . (2.13) 

Using (2.13), the inviscid nonhydrostatic equation for the horizontal part of the wind takes the form 

 1
v

( ) k vs s

d
p f

dt
          . (2.14) 

Again, for vanishing  , (2.14) reduces to the form used in hydrostatic models. 

The first law of thermodynamics for adiabatic processes has the form 

 p

dT dp
c

dt dt
  (2.15) 
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in which pc  is the specific heat at constant pressure.  In hydrostatic models, the derivative dtdp  is 

replaced by the derivative of hydrostatic pressure dtd / , often denoted by the Greek letter omega.  

For this reason, the right hand side of the equation is frequently referred to as the “omega–alpha” 

term.  The derivative of pressure can be separated into a component 1  which reduces to the 

hydrostatic expression when   vanishes, and a component 2  which vanishes with vanishing  .  

Note that, generally, ),,,( tyxpp  .  Then 

 1( )
t

p p p p

t t t t t 

 


                             
, (2.16) 

where the subscripts indicate the variable that is kept constant while the differentiation is performed.  
In addition, as can be seen from (2.6), 

 1( )
p

s s
s s

 


              
  . (2.17) 

Thus, dtdp is written in the form 

 1 2

dp

dt
    (2.18) 

where 

 1 1 1( ) v ( )s p s
t s

              
 , (2.19) 

or taking into account (2.12), 
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s sp ds
s

           . (2.20) 

Note that the contribution of the second term of the pressure gradient force in (2.13) to the kinetic 
energy generation is compensated by the contribution of the horizontal advection of pressure in 

(2.19).  The second part of   is defined by 

 2 1( )
p

t t

  
  
 

. (2.21) 

Note that the term (2.21) vanishes for vanishing  . 

In view of the separation of omega into two parts, the thermodynamic equation is separated into two 
parts as well, 

 1
1

1
v ( )s
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and 
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2
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( )

p

T

t c
    

. (2.23) 

With the aid of (2.20), (2.22) may be rewritten as 
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Again, when   vanishes, (2.22) and (2.24) take the form used in hydrostatic models, and the equation 

for the second part (2.23) takes the trivial form 0)( 2  tT . 

The nonhydrostatic system of equations is closed by applying the operator (2.8) to the continuity 

equation (2.9) in order to obtain the vertical acceleration dtdw .  Then, from (2.5), 

 
1 1

v s
s

dw w w
w s

g dt g t s






                    
 . (2.25) 

The parameter   is the central point of the extended, nonhydrostatic dynamics.  Assume for a 

moment that   is zero.  Then, Eqs. (2.2), (2.10), (2.14) and (2.24), together with the gas law, 

represent the set of equations describing the hydrostatic, inviscid, adiabatic atmosphere.  However, the 

presence of nonzero   in (2.6), (2.14) and (2.24) demonstrates in a transparent way where, how, and 

to what extent relaxing the hydrostatic approximation affects the familiar hydrostatic equations.  Note 
that the system of equations developed above bears a close relation to the system discussed by Laprise 
(1992). 

On the synoptic scales,   is small and approaches the computer round–off error.  However, in case of 

vigorous convective storms, or strong vertical accelerations in flows over steep obstacles, the vertical 

velocity can reach the order of 110 ms  over the period of the order of s1000 .  This yields an 

estimate of the vertical acceleration of the order of 2210  ms , and consequently,   of the order of 
310 .  As can be seen from (2.6), for this value of   the nonhydrostatic deviation of pressure can 

reach Pa100 .  Bearing in mind that the typical synoptic scale horizontal pressure gradient is of the 

order of Pa100  over km100 , this suggests that significant local nonhydrostatic pressure gradients 

and associated circulations may develop on small scales. Nevertheless,   remains much smaller than 

unity in atmospheric flows, and therefore, the nonhydrostatic effects in (2.6), (2.14) and (2.24) are of 
a higher order magnitude.  An important consequence of this situation for the discretization is that 

high accuracy of computation of   does not appear to be of paramount importance, since the 

computational errors are of even higher order than  . 

As can be seen from (2.2), the geometric height z  is uniquely defined by the hydrostatic and 

nonhydrostatic pressures   and p , and temperature T .  Thus, if these three variables are known, the 

vertical velocity w  can be computed using the definition (2.8), or the nonhydrostatic continuity 

equation (2.9).  Hence, w  (and consequently  ) cannot be considered as an independent prognostic 

variable.  Nevertheless, for internal consistency, the vertical velocity w  must also satisfy the 

prognostic vertical equation of motion (2.4).  In the next section it will be shown how this can be 
done. 

3. Time stepping 
The NMM and NMMB time stepping scheme is presented in this section in order to illustrate how the 
extra terms appearing in the nonhydrostatic system are treated.  The economical forward–backward 
scheme (Ames, 1969; Gadd, 1974; Janjic and Wiin-Nielsen, 1977; Janjic 1979) is used for the 
adjustment terms.  Modified Adams-Bashforth scheme is used for the horizontal advection terms and 
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the Coriolis force.  Although the Adams-Bashforth scheme is slightly unstable, the instability is very 
weak so that the scheme can be safely used in practice.  Nevertheless, for conceptual reasons, in the 
scheme used in the NMM and NMMB the instability is removed by slight off-centering.  After the 
off-centering, the modified scheme becomes weakly dissipative (Janjic et al., 2010).  The Crank-
Nicholson scheme is used for the vertical advection. 

The superscripts n and n+1 will be used to denote the time levels for all variables with the exception 
of the vertical velocity w which is defined at intermediate time levels indicated by superscripts 

2/1n  or 2/1n .  The superscript 2/1n  will be used also in the advection and Coriolis force 

terms in order to indicate that centered in time schemes are used.  Because the nonhydrostatic 
equations have been separated into two components, the subscript 1 will be used to indicate that a 
variable has been advanced in time only by the first component equation.  For example, the solution 
of (2.24) starting from the time level n will be denoted by the subscript 1, since (2.23) remains to be 

solved before reaching the time level 1n . 

The vertical velocity term in the hydrostatic s  coordinate is computed integrating (2.10) 
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and the surface pressure tendency equation is 
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The first component of the nonhydrostatic pressure is computed using  
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and the first component of the thermodynamic equation is 
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The superscript 21n  in the advection terms indicates symbolically that centered schemes are used. 

The second component of the thermodynamic equation is  

 1 11
1 1

1

1
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p

RT
T T p p

c p
     (3.6) 

The hypsometric equation yields the geopotential associated with the first component solutions for 
temperature and pressure, 
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and the second component equation yields 
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The value of vertical velocity w associated with the first component solutions is obtained from 
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Note that 1  is an intermediate value of geopotential between n and 1n , i.e., 

 1
1 ( )n O t     . (3.10) 

Therefore, using 1  in the advection terms of (3.9) in order to compute w is a consistent numerical 

approximation.  On the other hand, neglecting the contribution tn  )( 1
1   would be wrong in 

view of (3.10).  Thus, 
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which must also satisfy the 3rd equation of motion, 
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The value of   associated with the first component solutions is obtained from 
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and the second component from 
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Upon solution of the preceding equations for thermodynamic variables, the pressure gradient force at 
the time level n+1 can be computed, and the horizontal equation of motion can be used to advance the 

wind components in time and thus complete the time step.  The superscript 21n  in the advection 

and Coriolis terms again indicates that centered schemes are used 
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Here, the specific volume 1n  is  
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4. Solution of the coupled equations 
Eqs. (3.6), (3.8), (3.11) and (3.12) are coupled equations.  Their solution will be sought by eliminating 

all unknowns except 1np , solving the resulting equation, and then back–substituting to obtain 
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1nT , 1n , 21nw  and 1n .  Namely, (3.7) and (3.8), together with (3.11) and (3.12), can be 

combined to give 
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Using (3.6) to eliminate , (4.1) may be rewritten as 
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where pcR .  Define a pressure *p  that satisfies the equation 
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subject to the boundary condition Tp *  at .0s   Upon inserting (4.3) into (4.2), one obtains 
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As pointed out in Janjic et al. (2001), after some manipulation, (4.4) can be solved iteratively.  
However, as will be shown here, it can be solved directly as well.  Note that 

 1 * ( )np p O t   , (4.5) 

so that, from (4.4), 
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which illustrates how subtle is the difference between  and 1np .  In order to visualize more 

clearly the procedure used to solve (4.4) for 1np  directly, it is convenient to consider vertically 

discretized form of (4.4).  Let each of the lm  model layers be denoted by index l  increasing from top 

down, and let the corresponding layer interfaces be denoted by half-indices 2/1l  and 2/1l .  In 

addition, let temperature be defined at mid-layers, and pressure variables at layer interfaces.  Then, 
using the simplest vertical two-point averaging and differencing operators denoted, respectively, by 

an overbar and symbol  , a discrete version of (4.4) can be written as 
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Define a pressure variable 

  2 1 2 1 1 2 2 1 2 1 1 1 2/ / / /l l l l lp p const p p         (4.8) 

by correcting 1p using the latest preliminary value of 1 .  Note that when 0const  , 2 1 2 1 1 2/ /l lp p  , 

and when 1const  , 2 1 2 1 2
*

/ /l lp p  .  Then, taking into account (4.6), (4.7) can be rewritten as 
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In practice, for historical reason, the correction weight const  in (4.8) is 0.35, but noticeable impact on 

the solution could not be detected when varying this parameter between 0 and 1.  Subtracting from 

(4.9) analogous expression defined on the level 1l , one obtains 
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Replacing averaging and differencing operators applied to 1np  by explicit algebraic expressions, 

(4.10) can be rewritten as 
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Inspection of (4.11) reveals that the unknown 1np  appears at three consecutive layer interfaces, 

2/1l , 2/1l  and 2/3l .  Thus (4.11) is a tridiagonal system which can be solved with suitably 

chosen boundary conditions.  A solution without the approximation (4.8) can be obtained by iterating 
(4.11), but that appears pointless in the light of (4.6). 

In order to address the problem of specification of boundary conditions for (4.11), consider a 
horizontally homogenous atmosphere at rest and in hydrostatic equilibrium.  Let the equations be 
linearized around such a basic state.  Also, consider only the solutions that preserve horizontal 
homogeneity.  As can be readily verified, the requirement for horizontal homogeneity eliminates all 
motions that belong to the first part of the time stepping procedure.  In other words, the intermediate 
solutions denoted by subscript 1 will coincide with the initial values denoted by superscript n.  The 
only solutions left will be those described by the linearized set of coupled equations leading to (4.4).  
In particular, from (3.6) 
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and after differentiation of (3.8) with respect to s , linearization and rearrangement, 
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Here, z is the height and the subscript 0 denotes the basic state variables.  From (3.11) and (3.12) 
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Introducing primes to denote the deviations from the basic state, applying the simplest time 
differencing operator to (4.12) and using (4.14), 
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Using (4.12) to eliminate T’ in (4.16), and differencing in time the resulting equation, one obtains  
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On the other hand, differentiating (4.15) with respect to , 
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Thus, combining (4.17) and (4.18), and taking into account that the basic state is hydrostatic, 
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The equation for vertically propagating sound waves is readily recognized in (4.19), although finite 
differencing is used instead of differentiation with respect to time on the left–hand side. 

Now that the physical nature of the processes involved in the second part of the integration procedure 
have been revealed, the question of the boundary conditions for (4.4) can be readdressed.  It appears 
natural to keep the upper end of the oscillator described by (4.19) fixed, and the lower end free.  Thus, 

p  is set at 0s , and 0)( *1   sppn  is set at 1s .  Such an upper boundary condition 

is perfectly justified for vanishing pressure at the top of the atmosphere of the model. 

5. NCEP’s unified grid point nonhydrostatic multiscale model 
The new unified Nonhydrostatic Multiscale Model on the Arakawa B grid (NMMB) has been under 
development at the National Centers for Environmental Prediction (NCEP) within the new NOAA 
Environmental Modeling System (NEMS) (Janjic, 2005; Janjic and Black, 2007).  The model is 
designed for a broad range of spatial and temporal scales so that it can be applied for a variety of 
applications from LES studies to weather forecasting and climate simulations on regional and global 
scales.  The NMMB represents the second generation of grid point nonhydrostatic models developed 
at NCEP.  Except for being reformulated for the B grid, the model formulation follows the general 
modeling philosophy of its predecessor, the NCEP’s regional Nonhydrostatic Mesoscale Model (WRF 
NMM).  The WRF NMM has been used for various applications at NCEP and elsewhere since early 
2000’s, and since 2006 it has become the main short-range forecasting regional North American 
Model (NAM). 

The NCEP grid point nonhydrostatic models have been developed building on NWP experience 
(Janjic et al., 2001; Janjic 2003).  As in their hydrostatic predecessors, mass based hydrostatic vertical 

0π
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coordinates have been used.  With the mass (hydrostatic pressure) coordinate the nondivergent flow 
remains on coordinate surfaces.  Note that a similar argument applies to adiabatic flows in isentropic 
coordinates.  However, important flow regimes on the meso scales are characterized by weak stability 
and strong diabatic forcing, which renders the isentropic coordinates less appealing (although still 
applicable) on these scales.  With this choice, the mass, as well as a number of other first order and 
quadratic quantities can be conserved in the discrete system in a straightforward way. 

The nonhydrostatic dynamics were formulated by relaxing the hydrostatic approximation in advanced 
hydrostatic NWP formulations.  In this way, the validity of the hydrostatic model was extended to 
nonhydrostatic motions, and at the same time the preferable features of the hydrostatic formulation 
were preserved in the hydrostatic limit.  More specifically, as shown in the preceding sections, the 
system of nonhydrostatic equations in the general mass based vertical coordinate is split into two 
parts: (a) the part that corresponds to the hydrostatic system, except for higher order corrections due to 
vertical acceleration, and (b) the system of equations that allows computation of the corrections due to 
the vertical acceleration.  The separation of the nonhydrostatic contributions shows in a transparent 
way where, how and to what extent the hydrostatic approximation affects the equations.  This 
approach does not require any linearization or additional approximation. 

The resulting system of nonhydrostatic equations has only one additional prognostic equation for 
nonhydrostatic pressure.  Given the hydrostatic pressure, nonhydrostatic pressure and temperature, the 
geopotential is uniquely defined, and vertical velocity and vertical acceleration are computed from 
geopotential.  Of course, as shown in the preceding sections, the prognostic equation for the vertical 
velocity reduces to a consistent discrete approximation, so that internal consistency of the discrete 
system is preserved. 

The nonhydrostatic dynamics extension is implemented through an add–on nonhydrostatic module.  
The nonhydrostatic module can be turned on and off depending on resolution in order to eliminate the 
computational overhead at coarse and transitional resolutions where the impact of nonhydrostatic 
effects is not detectable.  More importantly, this feature allows easy comparison of hydrostatic and 
nonhydrostatic solutions at various resolutions using identical hydrostatic core. 

The “isotropic” quadratic conservative finite-volume horizontal differencing employed in the model 
conserves a variety of basic and derived dynamical and quadratic quantities and preserves some 
important properties of differential operators.  Among these, the conservation of energy and enstrophy 
improves the accuracy of the nonlinear dynamics of the model on all scales (Arakawa, 1966; Janjic, 
1984).  The NMMB uses the regular latitude-longitude grid for the global domain, and a rotated 
latitude-longitude grid in regional applications.  With the Equator of the rotated system running 
through the middle of the regional integration domain, more uniform grid distances are obtained.  In 
the vertical, the hybrid pressure-sigma coordinate has been chosen as the primary option.  “Across the 
pole” polar boundary conditions are specified in the global limit and the polar filter acting on 
tendencies selectively slows down the wave components of the basic dynamical variables that would 
otherwise propagate faster in the zonal direction than the fastest wave propagating in the meridional 
direction. 

In very high resolution tests, a two-dimensional model based on the described principles successfully 
reproduced the classical two-dimensional nonhydrostatic solutions and thus demonstrated the validity 
of the concept (Janjic et al., 2001; Janjic, 2004).  The high resolution tests using the regional version 
of the model indicate that the impact of nonhydrostatic dynamics becomes detectable at about 8 km 
resolution provided almost all dissipative mechanisms in the model are turned off, and noticeable at 
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about 1 km resolution (Janjic et al., 2001; Janjic, 2003, 2004).  The extra computational cost of the 
nonhydrostatic dynamics is on the order of 10% in global applications, or nonexistent if the 
nonhydrostatic extension is switched off at coarser resolutions.  However, the relatively low cost of 
the nonhydrostatic dynamics allows its application even at transitional resolutions where the benefits 
due to the nonhydrostatic dynamics are uncertain. 

The model has been computationally robust, efficient and reliable in operational applications and pre-
operational tests.  As indicated by regular runs carried out at NCEP for over a year, the NMMB 
produces good medium range forecasts, and its computational efficiency compares favorably with 
other medium range forecasting models. 
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