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1 Introduction

The main cloud observations used by weather forecastingeseare indirect measurements; they are
in the form of top of atmosphere outgoing infrared and mi@esvradiances which are affected by a
whole column of the atmosphere and the surface. The maiautffiin using radiance observations in
a data assimilation system is that radiances are relatdée: tmodel’s state variables through a complex
radiative transfer model. The radiative transfer modedgriites a model column into a single number
for comparison with the observed radiance - this procesalisctcan observation operator. Conversely,
when a radiance observation implies a change in the atmospgiate, a single number is distributed
into updates to all those variables in the model column whiééct the radiance. How accurately each
model variable is updated depends on the accuracy of thewalbis® operator, the background state and
the estimated observation and background errors. In péatjdf the background errors are not correctly
estimated, then the signal can be attributed to the wrorighlas. To give an example, specifying a hu-
midity background error that is too large could cause ramianformation on temperature and humidity
to be excessively allocated to humidity. Accurate estismafethe background errors are thus essential
to correctly attribute radiance observational inform@atim particular in cloudy and precipitating areas
where the uncertainty is larger than in clear sky. At presentloud variables are accounted for in the
ECMWF analysis and this clearly increases the uncertamtgldudy and precipitating areas. In this
paper we will look at ECMWF's current background errors fater vapour and explore how it can be
extended to include cloud variables.

2 Cloud background errors in context

Currently the linearized version of the radiance obsewmvabperators used in data assimilation at ECMWF
takes prognostic temperature and humidity as input. It thagnoses the cloud variables and precipita-
tion fluxes needed in the calculation of model equivalenti®bbserved radiances. With this approach,
temperature and humidity are updated by the assimilatistesy, but the initial condition of cloud vari-
ables is left unchanged. This approach has two significanitations. First, errors in cloud variables
may be wrongly interpreted as errors in humidity and tentpeea because the linearized observation
operators do not have prognostic cloud variables as in@aor&l, the forecast model may have to adjust
the cloud variables to the changes in temperature and hiyntlidough a spin-up process.

A more accurate approach to the assimilation of cloud seaesibservations is to also include prognostic
cloud variables as input to the linearized observationatpeand update the cloud variables in the initial
conditions along with humidity and temperature. This reggidevelopments in three areas:

1. Use of prognostic cloud variables in cloud sensitive plagsn operators, in particular cloudy
RTTOV.
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2. Developments to include cloud variables in the linearspds/used by the data assimilation.

3. Development of background errors for cloud variables.

At ECMWF developments in all three areas are taking placedoreerted effort to make better use of
cloud sensitive observations, in particular radiancegh\ttiis work we want to be able to answer two
related questions:

e Does inclusion of prognostic cloud variables as input taotheervation operator make a difference
to the forecast impact of the data?

e Does updating the initial conditions of cloud variables maldifference to the forecast of clouds
and precipitation?

3 Choice of variables for the cloud analysis

There are three different sets of variables in the analys@ilinear model variables, tangent linear
model variables and control variables (see TdbleThe current (June 2010) nonlinear forecast model
at ECMWF has three variables that together describe theitawmolof water in the atmosphere: water
vapourgy, cloud condensatg; and cloud fractiorN. At the end of the physics in each timestep cloud
condensate is split into cloud liquid watgrand cloud icegj, which are the advected and stored model
variables. The amount of liquid and ice is a function of terapge only,

g =0a(T)q (1)
g=1-0a(T))q 2)
1 it T>Too
a(M) =< (T-T)/(Too—T))? if Too>T>T (3)
0 if T<T;

whereTgp = 27316K andT; = Too — 23K. In the current tangent linear model however, water vapour
is the only variable describing the evolution of water. Ttiierence is mainly due to the difficulty to
accurately describe the dependency of cloud sensitiveradigans on cloud processes. This difficulty
has made it more accurate to ignore changes to the initialitons of all cloud and precipitation vari-
ables in the assimilation process and only update waterwapith water vapour and temperature as
the only prognostic thermodynamically active variableshia tangent linear model, diagnostic physics
parameterization are used to calculate cloud and pretipitgariables for use in linear physics and ob-
servation operators. As a result, cloud and precipitat@sisive observations project their information
content onto temperature and water vapour. Water vapousdstze only water variable in the control
variable. The control variables are linear combinationtheftangent linear variables, which are chosen
so that the cross-correlation between the backgroundsematifferent variables is reduced as much as
possible within the constraints of the covariance modeailusée background error covariance matrices
are then expressed in terms of the control variables, whiglassumed uncorrelated.

Before adding new cloud tangent linear and control varglie main consideration is if these new
variables help to extract observational information. Thedel and observation operators accuracy,
sensitivity and linearity for these additional variablesikey point. We consider to start with the current
version of the ECMWF cloud scheme, where water vapour, ctmrdiensate and cloud cover are the
prognostic variables. Cloud condensate is a more fundaiesiable than cloud cover, because cloud
cover can be diagnosed quite accurately from the cloud cwade, e. g. by the Smith scheme (Smith,
1990) as has been verified by observations (Wood and Filé))20 here is also a fairly accurate way
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Variables Current Planned
Nonlinear T7qV7qC7N Tqu7q|7qi7N7ql’7qS
a =a(T)qe

g=(1-a(T))qc

Tangent linear 8T, dqy oT,dqy, 0Qc
3q = a(TP)dqe + daq?
5qi = (1-a(T"))dqc — daqe

3ay oy oq
Control OTu, (o 0Ty, (g (F7mg ey Ju

Table 1: Current (June 2010) and planned thermodynamic variablggiE CMWF IFS system. In
the current nonlinear and planned tangent linear modetiabondensate is diagnostically split after
the physics into cloud liquid and ice, the advected vargblkhe nonlinear extension of the cloud
variables takes place in November 2010, but the tangerarliaed control variable extensions are
under development.

to split cloud condensate into cloud liquid and cloud ice asation of temperature. For these reasons
cloud condensate would be preferred over cloud liquid aadiccloud cover. Another very practical
reason to prefer cloud condensate over cloud cover in tHgsiais that the processes governing cloud
cover evolution are more nonlinear than those governingdclmondensate evolution. This makes it
easier to include prognostic cloud condensate informadourately in the linear physics which then
increases the accuracy of projecting cloud informationmfrobservations onto the model variables.
Apart from these practical considerations, there are sfiereasons for starting with cloud condensate.
Cloud condensate forms from humidity, and precipitatiomf® from cloud condensate, so one needs
to include accurate cloud condensate before consideriegjpitation. For a further discussion of the
different considerations that need to be made when choasabgud control variable see the review of
Lopez (2006).

Adding cloud condensate to the analysis will make a distignge to the treatment of water in the
linear inner loops of the four-dimensional variationaladassimilation (4D-VAR). In the current linear
model, all water is lost from the system once it condensasuse there is no cloud condensate variable.
Water vapour is (mostly) limited by condensationa‘gg < 1 (except when supersaturated with respect
to ice). Similarly, cloud condensate is (mostly) limited dytoconversion (to precipitation) oEm <

1+ € < 2 (except in very strong convection). When cloud condenisatecluded in the linear system,
the new frontier now becomes precipitation, where wateg@ralost whenever there is precipitation
due to there not being any linear precipitation variabletuFaidevelopments will doubtless include
precipitation in the analysis as well.

4 The water vapour control variable link to clouds

Before going on to the cloud condensate control variablewllefirst look at how the current water
vapour control variable relates to clouds. An important pérthe current analysis is to account for
the correlation between water vapour and temperatureseffbie water vapour-temperature correlation
Qqr(rh®) is a function of relative humidity (HoIm et al. 2002) and Iese to 1 at saturation and reduces
to zero at about 80% relative humidity. It thus appears theetation is mainly describing condensation
and evaporation inside clouds. In fact, a plot of the coti@tecoefficientQqr(rh®) looks very similar to
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Figure 1: Cross section Greenland-Iceland of (left) Water vapomperature correlatiquT(rhb)

in terms ofNess = %Qcﬂ(rhb). (right) Model first guess cloud covét. The fields are similar,

but the correlation also picks up additional processebl$p> N.

a plot of cloud cover versus relative humidity for stratifoclouds, as e. g. in Tompkins and Janiskova
(2004). In a very simplified framework, neglecting entragmtidetrainment and precipitation effects,
the in-cloud total wategf is conserved,

o = dq5+0g°+dq° =0 (4)

wheredqf and g’ are the in cloud liquid and ice increments. Considering glsigridbox with cloud
coverN, the total water change can be estimated (see e. g. Bechml@wjpers 1995) from the gridbox
mean parameters and incremeniegy( TP etc.) as

dq + d¢;
N

5,

o = 5QS(Tb) + N

= 605(TP) — —* =0 (5)

where we us&q, = ¢S since no change in water vapour takes place outside the.clkhid gives the
gridpoint mean water vapour change in response to a tenuperetiange as

90s

_ by _ pn YYs
0qy = Nogs(T°) =N T oT (6)

Tb

The water vapour control variable definition contains a kimielationship, after multiplying with
as(TP) (HoIm et al. 2002),

b
— by & 9%
5qy = (8av), + Qqr(rh )qs(Tb) T Tb5T (7)

The ‘balanced’ part of the water vapour control variable ldaorrespond to the simple description of
cloud condensation effects if the correlation coefficieaswelated to cloud cover as

P by

Neft = WQqT(rh )~N (8)
Plotting the correlation coefficient shows there is indeetbae connection with the background cloud
coverN, except close to the surface th@@T(rhb) is much larger than implied by the cloud cover.
This indicates other effects than cloud condensation anéribating to the water vapour-temperature
correlation close to the surface. The water vapour-tentperaorrelation is thus a sum of the cloud
condensation part discussed above and other effects likgction and probably divergence close to
the surface.
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5 The cloud condensate control variable link to water vapourand tem-
perature
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Figure 2: Cross section Greenland-Iceland (model first guess clouerdo green) (left) Balanced
dq increments implied bquT(rhb). (right) Balancedq; increments implied bquT(rhb). The
implied increments are too large here because, bec@}ts(ehb) is just an approximation to the
cloud condensate correlations which will be improved uposubsequent research.

From the simplified cloud scheme considered above, one @thaechanges in cloud condensate go
along with changes in temperature and water vapour throatghwater conservation. This implies that
cloud condensate changes can be expressed either in tehmamafity or temperature increments,

J0s

0Qc = —0Qy == —N —=

T oT 9)

Tb

As for humidity above, it is likely that the balance relabips for cloud condensate errors will follow
a similar form and include both a water vapour and tempegatm,

0
00 = (80c)u— QcT(rhb) 9%

3T 5T — Qeq(rhP) 3y (10)

Tb

Here Qcr(rhP) and Qeq(rhP) are regression coefficients. However, because temperahdevater
vapour are already correlated, this overlap needs to beuatab for by the regression. As an illus-
tration of the cloud condensate balance, if all effects vee@unted for by the temperature term, then
the balance would be of the same form as between water vapduemperature, just with a reversed
sign. We apply this in Fig2, assumingQct(rhP) = —QqT(rhb). A straight application of this rela-
tionship gives large balanced cloud increments due toNbatis larger tharN, especially close to the
surface as seen in Fig, where the negative liquid increment is larger than thd tmtaount of liquid
available in the first guess (not shown). However, the clautensate correlation with the other vari-
ables will pick up different effects in addition to condetiga, and this means that one needs to derive
Qct(rhP) andQgq(rh®) and then decide on the best form for the balance relationship

When cloud condensate is used as control variable, oné@distep between the balance operator and
the tangent linear model is to convert cloud condensateinents back to cloud liquid and ice water
increments, which are the variables advected by the tatigeatr model. This conversion follows the
same temperature dependent split as above for the noniiragables, possibly with a reqularization of
a,

3q = a(T)dg.+ dag? (11)

50 = (1—a(T))5q. — daqg (12)
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6 Cloud condensate control variable candidates and their Gassianity

A final criterion for choosing the control variable is thaetprobability density function (pdf) of the
errors should be as close to Gaussian as possible. The Heasbis is that the quadratic cost functions
employed in data assimilation would be an exact model of tte®if they were Gaussian. Any devia-
tion from Gaussianity in the background error pdf’s redubesaccuracy of the background error model.
For water vapour, Gaussianity was achieved by a state dependrmalizationfy(rh) that depends on
the mean of the background state and the background with¢hements added, e. g. using + %5rh
instead ofrh® in the normalization (HoIm et al. 2002). For cloud condéasae can also experiment
with different state dependent normalizations. The nozatbn can be a function of several of the
variables affecting clouds, and research is needed to fenchtist appropriate form(T°, g2, g2,N®). In
general, all regression parameters will be a function of ehtaVelL (or sigma coordinate) as well.
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Figure 4: Normalized cloud condensaﬁé‘gﬁT level 80 & 900 hPa). The red areas are most likely precipitating.

As an initial investigation, we have studied samples ofdast differences between sets of 3-h forecasts
from independent analyses using perturbed observatidmes pdf's of the differences can be compared
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with a Gaussian reference distribution, and the closer tifeigpto Gaussian, the better the control
variable candidate is likely to perform in the analysis. f&s3— 4 show normalized cloud condensate
(gc/N) /S at ~ 400 hPa and- 900 hPa model levels. Looking at these fields it is obvious ttiere

will be some problems in forming forecast difference statss as large areas have no cloud condensate.
For this reason, the forecast difference sample is limiteddints whereN > 0.01. The normalized
cloud condensate also shows some large values (red). Wre(ggyN) /oS™ > 2 there is most likely
heavy convective precipitation, and these points are alstuged from the sample. We look at four
candidates for the control variable:

1. dqc/o(L)
2. 0qc/o(L,rh)
. Nacg(r:lt/o-( )
dGc
. Ncgrn /G 9 Ncﬁ”‘ )

PDF dqg_c, all sample bins PDF dqg_c, all sample bins
normalized by sigma(l) model level 60 normalized by sigma(l,rh) model level 60

0.24

~0.03 -0.031
5 10 15 20 25 5 10 15 20 25
Sample bin Sample bin

Figure 5: Cloud condensatéqc.: model level 60 & 400 hPa, mostly ice). Left: normalized by
constanto (L) non-Gaussian, inhomogeneity causes relatively smallaesdo accumulate close to
zero. Right: normalized by flow depender(, rh) still bad.

As can be seen in Fig§- 6 each successive change brings the pdf closer to a Gaussizodat level

60 (=~ 400 hPa, mostly ice), but there is still some way to go evethi®best candidate control variable.
Figure 7 shows that model level 804900 hPa, mostly water) has more Gaussian statistics. Furthe
research will be performed along these lines to find a cloutdensate control variable with more
Gaussian distribution.

7 Conclusion

In this paper we have presented normalized cloud condeasatecandidate cloud control variable to
be used in the analysis. We also showed how the correlatioloodl condensate with water vapour and
temperature could be included as a ‘balanced’ part of the@ovariable. The exact formulation of the

normalization and the balance is still under active ingadion. The next steps following on from the
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PDF dg_c/N, all sample bins PDF dq_c/N, all sample bins

normalized by sigma(l) model level 60 normalized by sigma(l,q_c/N) model level 80
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Figure 6: Normalized cloud condensa@@ level 60 & 400 hPa, mostly ice). Left: normalized

by constanb( ) Right: normalized by flow dependem(L, ngr't) Both similar and better than
5qc cﬁrlt < 2.
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Figure 7: Normalized cloud condensaﬁ%—n level 80 & 900 hPa, mostly water). Left: normalized

by constantr(L) Right: normalized by flow dependeatL More Gaussian than upper (ice)
levels.

) NCﬁm )

current work will be to study how the background error foratidn interacts with the updated linear
physics including prognostic cloud condensate and how thelevsystem including cloud sensitive
radiances performs.
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