
Use of cloud condensate in the background error formulation
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1 Introduction

The main cloud observations used by weather forecasting centres are indirect measurements; they are
in the form of top of atmosphere outgoing infrared and microwave radiances which are affected by a
whole column of the atmosphere and the surface. The main difficulty in using radiance observations in
a data assimilation system is that radiances are related to the model’s state variables through a complex
radiative transfer model. The radiative transfer model integrates a model column into a single number
for comparison with the observed radiance - this process is called an observation operator. Conversely,
when a radiance observation implies a change in the atmospheric state, a single number is distributed
into updates to all those variables in the model column whichaffect the radiance. How accurately each
model variable is updated depends on the accuracy of the observation operator, the background state and
the estimated observation and background errors. In particular, if the background errors are not correctly
estimated, then the signal can be attributed to the wrong variables. To give an example, specifying a hu-
midity background error that is too large could cause radiance information on temperature and humidity
to be excessively allocated to humidity. Accurate estimates of the background errors are thus essential
to correctly attribute radiance observational information, in particular in cloudy and precipitating areas
where the uncertainty is larger than in clear sky. At presentno cloud variables are accounted for in the
ECMWF analysis and this clearly increases the uncertainty in cloudy and precipitating areas. In this
paper we will look at ECMWF’s current background errors for water vapour and explore how it can be
extended to include cloud variables.

2 Cloud background errors in context

Currently the linearized version of the radiance observation operators used in data assimilation at ECMWF
takes prognostic temperature and humidity as input. It thendiagnoses the cloud variables and precipita-
tion fluxes needed in the calculation of model equivalents ofthe observed radiances. With this approach,
temperature and humidity are updated by the assimilation system, but the initial condition of cloud vari-
ables is left unchanged. This approach has two significant limitations. First, errors in cloud variables
may be wrongly interpreted as errors in humidity and temperature, because the linearized observation
operators do not have prognostic cloud variables as input. Second, the forecast model may have to adjust
the cloud variables to the changes in temperature and humidity through a spin-up process.

A more accurate approach to the assimilation of cloud sensitive observations is to also include prognostic
cloud variables as input to the linearized observation operator and update the cloud variables in the initial
conditions along with humidity and temperature. This requires developments in three areas:

1. Use of prognostic cloud variables in cloud sensitive observation operators, in particular cloudy
RTTOV.
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2. Developments to include cloud variables in the linear physics used by the data assimilation.

3. Development of background errors for cloud variables.

At ECMWF developments in all three areas are taking place in aconcerted effort to make better use of
cloud sensitive observations, in particular radiances. With this work we want to be able to answer two
related questions:

• Does inclusion of prognostic cloud variables as input to theobservation operator make a difference
to the forecast impact of the data?

• Does updating the initial conditions of cloud variables make a difference to the forecast of clouds
and precipitation?

3 Choice of variables for the cloud analysis

There are three different sets of variables in the analysis:nonlinear model variables, tangent linear
model variables and control variables (see Table1). The current (June 2010) nonlinear forecast model
at ECMWF has three variables that together describe the evolution of water in the atmosphere: water
vapourqv, cloud condensateqc and cloud fractionN. At the end of the physics in each timestep cloud
condensate is split into cloud liquid waterql and cloud iceqi , which are the advected and stored model
variables. The amount of liquid and ice is a function of temperature only,

ql = α(T)qc (1)

qi = (1−α(T))qc (2)

α(T) =







1 if T ≥ T00

((T −Ti)/(T00−Ti))
2 if T00 > T > Ti

0 if T ≤ Ti

(3)

whereT00 = 273.16K andTi = T00− 23K. In the current tangent linear model however, water vapour
is the only variable describing the evolution of water. Thisdifference is mainly due to the difficulty to
accurately describe the dependency of cloud sensitive observations on cloud processes. This difficulty
has made it more accurate to ignore changes to the initial conditions of all cloud and precipitation vari-
ables in the assimilation process and only update water vapour. With water vapour and temperature as
the only prognostic thermodynamically active variables inthe tangent linear model, diagnostic physics
parameterization are used to calculate cloud and precipitation variables for use in linear physics and ob-
servation operators. As a result, cloud and precipitation sensitive observations project their information
content onto temperature and water vapour. Water vapour is also the only water variable in the control
variable. The control variables are linear combinations ofthe tangent linear variables, which are chosen
so that the cross-correlation between the background errors in different variables is reduced as much as
possible within the constraints of the covariance model used. The background error covariance matrices
are then expressed in terms of the control variables, which are assumed uncorrelated.

Before adding new cloud tangent linear and control variables the main consideration is if these new
variables help to extract observational information. The model and observation operators accuracy,
sensitivity and linearity for these additional variables is a key point. We consider to start with the current
version of the ECMWF cloud scheme, where water vapour, cloudcondensate and cloud cover are the
prognostic variables. Cloud condensate is a more fundamental variable than cloud cover, because cloud
cover can be diagnosed quite accurately from the cloud condensate, e. g. by the Smith scheme (Smith,
1990) as has been verified by observations (Wood and Filed, 2000). There is also a fairly accurate way
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Variables Current Planned

Nonlinear T,qv,qc,N T,qv,ql ,qi ,N,qr ,qs

ql = α(T)qc

qi = (1−α(T))qc

Tangent linear δT,δqv δT,δqv,δqc

δql = α(Tb)δqc + δαqb
c

δqi = (1−α(Tb))δqc−δαqb
c

Control δTu,(
δqv

qb
sat

)u δTu,(
δqv

qb
sat

)u,(
δqc

f (Tb,qb
v,qb

c,Nb)
)u

Table 1:Current (June 2010) and planned thermodynamic variables inthe ECMWF IFS system. In
the current nonlinear and planned tangent linear model cloud condensate is diagnostically split after
the physics into cloud liquid and ice, the advected variables. The nonlinear extension of the cloud
variables takes place in November 2010, but the tangent linear and control variable extensions are
under development.

to split cloud condensate into cloud liquid and cloud ice as afunction of temperature. For these reasons
cloud condensate would be preferred over cloud liquid and ice or cloud cover. Another very practical
reason to prefer cloud condensate over cloud cover in the analysis is that the processes governing cloud
cover evolution are more nonlinear than those governing cloud condensate evolution. This makes it
easier to include prognostic cloud condensate informationaccurately in the linear physics which then
increases the accuracy of projecting cloud information from observations onto the model variables.
Apart from these practical considerations, there are scientific reasons for starting with cloud condensate.
Cloud condensate forms from humidity, and precipitation forms from cloud condensate, so one needs
to include accurate cloud condensate before considering precipitation. For a further discussion of the
different considerations that need to be made when choosinga cloud control variable see the review of
Lopez (2006).

Adding cloud condensate to the analysis will make a distinctchange to the treatment of water in the
linear inner loops of the four-dimensional variational data assimilation (4D-VAR). In the current linear
model, all water is lost from the system once it condenses, because there is no cloud condensate variable.
Water vapour is (mostly) limited by condensation toqv

qsat
< 1 (except when supersaturated with respect

to ice). Similarly, cloud condensate is (mostly) limited byautoconversion (to precipitation) toqc
Nqcrit

c
<

1+ ε < 2 (except in very strong convection). When cloud condensateis included in the linear system,
the new frontier now becomes precipitation, where water is again lost whenever there is precipitation
due to there not being any linear precipitation variable. Future developments will doubtless include
precipitation in the analysis as well.

4 The water vapour control variable link to clouds

Before going on to the cloud condensate control variable, wewill first look at how the current water
vapour control variable relates to clouds. An important part of the current analysis is to account for
the correlation between water vapour and temperature errors. The water vapour-temperature correlation
QqT(rhb) is a function of relative humidity (Hólm et al. 2002) and is close to 1 at saturation and reduces
to zero at about 80% relative humidity. It thus appears the correlation is mainly describing condensation
and evaporation inside clouds. In fact, a plot of the correlation coefficientQqT(rhb) looks very similar to
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Figure 1: Cross section Greenland-Iceland of (left) Water vapour-temperature correlationQqT(rhb)

in terms ofNe f f =
qb

v
qs(Tb)

QqT(rhb). (right) Model first guess cloud coverN. The fields are similar,

but the correlation also picks up additional processes, soNe f f > N.

a plot of cloud cover versus relative humidity for stratiform clouds, as e. g. in Tompkins and Janisková
(2004). In a very simplified framework, neglecting entrainment/detrainment and precipitation effects,
the in-cloud total waterqc

t is conserved,

δqc
t = δqc

v + δqc
l + δqc

i = 0 (4)

whereδqc
l andδqc

i are the in cloud liquid and ice increments. Considering a single gridbox with cloud
coverN, the total water change can be estimated (see e. g. Bechtold and Cuijpers 1995) from the gridbox
mean parameters and increments (δqv,Tb etc.) as

δqc
t = δqs(T

b)+
δql + δqi

N
= δqs(T

b)−
δqv

N
= 0 (5)

where we useδqv = δqc
v since no change in water vapour takes place outside the cloud. This gives the

gridpoint mean water vapour change in response to a temperature change as

δqv = Nδqs(T
b) = N

∂qs

∂T

∣

∣

∣

∣

Tb

δT (6)

The water vapour control variable definition contains a similar relationship, after multiplying with
qs(Tb) (Hólm et al. 2002),

δqv = (δqv)u +QqT(rhb)
qb

v

qs(Tb)

∂qs

∂T

∣

∣

∣

∣

Tb

δT (7)

The ‘balanced’ part of the water vapour control variable would correspond to the simple description of
cloud condensation effects if the correlation coefficient was related to cloud cover as

Ne f f =
qb

v

qs(Tb)
QqT(rhb) ≈ N (8)

Plotting the correlation coefficient shows there is indeed aclose connection with the background cloud
coverN, except close to the surface whereQqT(rhb) is much larger than implied by the cloud cover.
This indicates other effects than cloud condensation are contributing to the water vapour-temperature
correlation close to the surface. The water vapour-temperature correlation is thus a sum of the cloud
condensation part discussed above and other effects like convection and probably divergence close to
the surface.
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5 The cloud condensate control variable link to water vapourand tem-
perature
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Figure 2: Cross section Greenland-Iceland (model first guess cloud cover in green) (left) Balanced
δql increments implied byQqT(rhb). (right) Balancedδqi increments implied byQqT(rhb). The
implied increments are too large here because, becauseQqT(rhb) is just an approximation to the
cloud condensate correlations which will be improved upon in subsequent research.

From the simplified cloud scheme considered above, one can see that changes in cloud condensate go
along with changes in temperature and water vapour through total water conservation. This implies that
cloud condensate changes can be expressed either in terms ofhumidity or temperature increments,

δqc = −δqv == −N
∂qs

∂T

∣

∣

∣

∣

Tb

δT (9)

As for humidity above, it is likely that the balance relationships for cloud condensate errors will follow
a similar form and include both a water vapour and temperature term,

δqc = (δqc)u−QcT(rhb)
∂qs

∂T

∣

∣

∣

∣

Tb

δT −Qcq(rh
b)δqv (10)

Here QcT(rhb) and Qcq(rhb) are regression coefficients. However, because temperatureand water
vapour are already correlated, this overlap needs to be accounted for by the regression. As an illus-
tration of the cloud condensate balance, if all effects wereaccounted for by the temperature term, then
the balance would be of the same form as between water vapour and temperature, just with a reversed
sign. We apply this in Fig.2, assumingQcT(rhb) = −QqT(rhb). A straight application of this rela-
tionship gives large balanced cloud increments due to thatNe f f is larger thanN, especially close to the
surface as seen in Fig.2, where the negative liquid increment is larger than the total amount of liquid
available in the first guess (not shown). However, the cloud condensate correlation with the other vari-
ables will pick up different effects in addition to condensation, and this means that one needs to derive
QcT(rhb) andQcq(rhb) and then decide on the best form for the balance relationship.

When cloud condensate is used as control variable, one additional step between the balance operator and
the tangent linear model is to convert cloud condensate increments back to cloud liquid and ice water
increments, which are the variables advected by the tangentlinear model. This conversion follows the
same temperature dependent split as above for the nonlinearvariables, possibly with a reqularization of
α ,

δql = α(Tb)δqc + δαqb
c (11)

δqi = (1−α(Tb))δqc−δαqb
c (12)

ECMWF-JCSDA Workshop, 15–17 June 2010 115
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6 Cloud condensate control variable candidates and their Gaussianity

A final criterion for choosing the control variable is that the probability density function (pdf) of the
errors should be as close to Gaussian as possible. The reasonfor this is that the quadratic cost functions
employed in data assimilation would be an exact model of the errors if they were Gaussian. Any devia-
tion from Gaussianity in the background error pdf’s reducesthe accuracy of the background error model.
For water vapour, Gaussianity was achieved by a state dependent normalizationfq(rh) that depends on
the mean of the background state and the background with the increments added, e. g. usingrhb + 1

2δ rh
instead ofrhb in the normalization (Hólm et al. 2002). For cloud condensate we can also experiment
with different state dependent normalizations. The normalization can be a function of several of the
variables affecting clouds, and research is needed to find the most appropriate formf (Tb,qb

v,q
b
c,N

b). In
general, all regression parameters will be a function of model levelL (or sigma coordinate) as well.
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Figure 3: Normalized cloud condensateqc
Nqcrit

c
level 60 (≈ 400 hPa). The red areas are most likely precipitating.
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Figure 4: Normalized cloud condensateqc
Nqcrit

c
level 80 (≈ 900 hPa). The red areas are most likely precipitating.

As an initial investigation, we have studied samples of forecast differences between sets of 3-h forecasts
from independent analyses using perturbed observations. The pdf’s of the differences can be compared
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with a Gaussian reference distribution, and the closer the pdf is to Gaussian, the better the control
variable candidate is likely to perform in the analysis. Figures3– 4 show normalized cloud condensate
(qc/N)/qcrit

c at≈ 400 hPa and≈ 900 hPa model levels. Looking at these fields it is obvious that there
will be some problems in forming forecast difference statistics, as large areas have no cloud condensate.
For this reason, the forecast difference sample is limited to points whereN > 0.01. The normalized
cloud condensate also shows some large values (red). Whenever (qc/N)/qcrit

c > 2 there is most likely
heavy convective precipitation, and these points are also excluded from the sample. We look at four
candidates for the control variable:

1. δqc/σ(L)

2. δqc/σ(L, rh)

3. δqc
Nqcrit

c
/σ(L)

4. δqc
Nqcrit

c
/σ(L, qc

Nqcrit
c

)

Figure 5: Cloud condensateδqc: model level 60 (≈ 400 hPa, mostly ice). Left: normalized by
constantσ(L) non-Gaussian, inhomogeneity causes relatively smaller values to accumulate close to
zero. Right: normalized by flow dependentσ(L, rh) still bad.

As can be seen in Figs.5– 6 each successive change brings the pdf closer to a Gaussian atmodel level
60 (≈ 400 hPa, mostly ice), but there is still some way to go even forthe best candidate control variable.
Figure7 shows that model level 80 (≈ 900 hPa, mostly water) has more Gaussian statistics. Further
research will be performed along these lines to find a cloud condensate control variable with more
Gaussian distribution.

7 Conclusion

In this paper we have presented normalized cloud condensateas a candidate cloud control variable to
be used in the analysis. We also showed how the correlation ofcloud condensate with water vapour and
temperature could be included as a ‘balanced’ part of the control variable. The exact formulation of the
normalization and the balance is still under active investigation. The next steps following on from the
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Figure 6: Normalized cloud condensateδqc
Nqcrit

c
: level 60 (≈ 400 hPa, mostly ice). Left: normalized

by constantσ(L) Right: normalized by flow dependentσ(L, qc
Nqcrit

c
). Both similar and better than

δqc. Only include samples forN > 0.01 and qc
Nqcrit

c
< 2.

Figure 7: Normalized cloud condensateδqc
Nqcrit

c
: level 80 (≈ 900 hPa, mostly water). Left: normalized

by constantσ(L) Right: normalized by flow dependentσ(L, qc
Nqcrit

c
). More Gaussian than upper (ice)

levels.

current work will be to study how the background error formulation interacts with the updated linear
physics including prognostic cloud condensate and how the whole system including cloud sensitive
radiances performs.
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