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ABSTRACT

Model error is now recognize as an important source of uairgytin Numerical Weather Prediction. Several
approaches have been proposed to represent model ungeitalensemble Prediction Systems. The multi-
parametrization technique is based on the use of severalgahyparametrization schemes in the same forecast
model to account for model errors. After a short descriptibthe multiparametrization approach basis, its im-
plementation and effects on the Météo-France Ensembltid®ion System are addressed.

1 Introduction

Probabilistic prediction, in the form of ensemble prediaotihas now become an important component
of Numerical Weather Prediction. Ensemble prediction miaof performing in parallel a number of
numerical forecasts, the dispersion of the forecasts aken as an estimate of the uncertainty on the
future state of the atmosphere. The two main sources ofdstamcertainty are initial condition error
and model error. Model error can arise from parameter arehpetrization deficiencies or misrepresen-
tation of subgrid scale processes. Since a few years sat@aipts have been made to represent model
uncertainty in ensemble forecasting systems (EFS). Upwothere is no unique approach the scientific
community has agreed upon. Some have promoted stochastitnilyal approaches to represent model
uncertainty due to unrepresented sub-grid processes éPabil). Others have suggested to stochasti-
cally perturb the physics tendencies (Buizza et al. 199@) e of parameter variations in the physical
packages (Stainforth and coauthors 2005) or multiple pBysthemes (thereafter multiparametrization
approach, (Murphy et al. 2004, Houtekamer et al. 1996)) ¢towat for parametrization uncertainty. It
has also been shown that the multimodel approach could bificierg alternative to account for model
uncertainty (Hagededorn et al. 2005).

The present paper presents a short overview of the multipetrezation method and its impact on an op-
erationnal global Ensemble Prediction system (EPS) . Thiebaf the approach are remind in section 2.
Section 3 briefly presents the EPS of Météo-France andripkementation of the multiparametrization
technique in this operational system. Using classical gidistic scores, section 4 shows the impact of
the approach on EPS skill. A summary and a brief discussiewgigen in section 5.

2 Themultiparametrization approach

The multiphysics approach assumes that the major part etést error is linked with the underlying
assumptions required to parametrize the subgrid scalegses. Therefore, it promotes the use of a va-
riety of physical parametrization schemes in the same &stanodel to account for model uncertainties.
For a particular physical phenomenon, for example shallomvection, a wide variety of parametriza-
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tion schemes have been developped and proposed in the pastededy the scientific community to
properly represent it in a numerical model. The schemesrdiifi how convection and its effect on the
flow are represented. None of them is perfect but the varietiygoschemes could be view as a sample
of the uncertainty in the representation of the physicahphgenon.

An important underlying assumption of the multiparametticn approach is that the different schemes
should produce different evolutions of the atmosphere htit somparable global skill. On a day to
day basis the differences between forecasts based onediffparametrization schemes should reflect
the uncertainty of the flow evolution while over a long peradime the different forecasts should have
the same statistical skill.

This point has been for example verified in a 1997 paper of Wamd) Seaman. Using the MM5
Mesoscale model (Dhudia 1993), the authors compare fouukusparametrization schemes for six
different precipitation events over the United States ofedica. They show that on a case to case basis
the different schemes produce different evolutions of thievective activity. Concerning the general
skill of the schemes they conclude that 'None of the scheroasistently out performs the others by a
wide margin or in all measures of skill’.

2.1 Effectiveness of the multiparametrization approach

The effectiveness of the multiphysics approach has beefirimmd in several studies. For global En-
semble Prediction System (EPS), Houtekamer et al. (1996 Cdnarron et al. (2010) show that it has a
positive impact on the Canadian EPS skill. Houtekamer etredw that the use of multiphysics increases
by about 20% of the ensemble spread. Charron et al. (2018)that it has a positive impact on the
reliability component of the Brier Skill Score (BSS) for 2ddinfall and mid-tropospheric temperature.
Focusing on strong convective events, Stensrud et al. j2oidJones et al. (2007) show that the use
of multiple parametrization schemes in a Mesoscale LocabAodel-EPS has a positive impact on
forecast skill, especially when large-scale forcing is kvea

In a recent paper, Berner et al. (2011) used two 10 memberm$-Bhoge EFS with a Mesoscale model
over the United States of America. One ensemble uses muliipgrization approach, the other uses
Spectral Kinetic Energy Backscatter technique (SKEB). athors conclude that SKEB outperforms
multiparametrization technique for upper air variables:. frear-surface variable, multiphysics approach
outperforms SKEB. The best performing ensemble systemtéraa by combining the two approaches
(this last point has also been pointed out by Charron et @QlGRand Hacker et al. (2011)).

3 ThePEARP system

PEARP (Prevision d’ensemble ARPege) is the operationn&@ &PMétéo-France. PEARP uses the
ARPEGE model (courtier et al. 1991) with an horizontal sgdtuncation of T538 and a stretching
factor of 2.4 (variable horizontal resolution with a maximwf 15km over France). There are 65
levels on the vertical with a top level at 50km. The ensemlde s 35 members including a control
‘'unperturbed’ member, which is a 'coarser resolution’ i@rf the deterministic operational ARPEGE
forecast, and 34 perturbed members centered around th®lconé. PEARP is running twice a day at
06UTC (72h forecast range) and at 18UTC (108h forecast jange

3.1 Initial perturbations

The initial perturbations of PEARP are built by combiningraa8l ensemble data assimilation sys-
tem (AEARP) with TI95 singular vectors (SVs). The SVs are pated over 7 different areas (EU-
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RAT (30N/80W/65N/40E), the complement of EURAT over Northbemisphere, Southern hemisphere
(30S/90S) and four tropical areas where cyclonic actiwitielikely to occur), with different optimiza-
tion times (18h for Europe and Tropical areas, 24h for alegtland norms (Kinetic Energy norm for
Tropical SVs, dry Total Energy norm for all other).

3.2 Modd error

In PEARP, the multiphysics approach is used with a set of filrdints physical parametrizations sets,
including the ARPEGE operational physical package (sele tHb We consider two different vertical
diffusion schemes : the Louis scheme (Louis 1979 therehit8), and a prognostic Turbulent Kinetic
Energy scheme (TKE, cuxart et al. 2000, Bazile et al. 2008;t@oup et al. 2009). For shallow
convection we use the 'modified Richardson number’ fornitaproposed by Geleyn (1987 thereafter
G87) or a mass flux scheme (thereafter KFB approach) writyeBdzhtold et al. (2001) based on a
CAPE closure with an updraft derived from Kain and FritscB93). For deep convection we use the
Bougeault mass flux scheme with the orginal closure on thetoma convergence (1985, thereafter B85)
or the CAPE formulation. For computing oceanic fluxes we mmrsthe classical Charnock formula-
tion (Charnock 1955, thereafter C55) and the ECUME (Exchabgefficients from Multi-campaigns
Estimates) scheme (Belamari 2005).

Slightly modified version of some schemes are also used. IREzfq and B85%,04 deep convection is
allowed only if cloud top is above 3000m. In Tkq the parametrization is used without horizontal
advection. In ECUME,qq, ECUME is used with a modified tuning for the exchange coedficfor the
humidity to reduce the evaporation over the sea.

An objective deterministic evaluation of each of the comakion has been done. Over two one-month
periods (March 2008 and December 2010) and for differenialibes (500hPa geopotential height,
850hPa temperature, 850hPa wind speed, mean sea levalrgrez4h precipitation) it has been ver-
ified that, as assumed in the multiparametrization approtmh different combinations have similar
global skills.

number| diffusion schemg shallow convection deep convectior] oceanic fluxes
ref TKE KFB B85 ECUME
001 L79 G87 B85 C55
002 L79 KFB CAPEnoqg ECUME
003 TKE KFB B85 ECUMEnmoqg
004 L79 KFB B85mod C55
005 L79 G87 CAPE C55
006 L79 G87 CAPE ECUME
007 L79 KFB CAPEmod C55
008 TKEmod KFB B85 ECUME
009 TKE KFBmod B85 ECUMEmoqg

Table 1: Physical parametrizations used in PEARP, see@e&tifor details.

4 Impact of the multiparametrization approach on PEARP

Using classical probabilistic scores, impact of the maltgmetrization approach on PEARP skill has
been evaluated. Two PEARP configurations have been runrarrgference system (REF) which does
not include any technique for taking into account modelresira another one (MUP) which include the
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Figure 1: Evolution of the score, as a function of lead time, for 850hPa temperaturgyo expermients: REF
(solid line) and MUP (dash line).

multiparametrization approach.

Scores have been computed over two one-month periods (N2@@8, December 2010) for synoptic
scale variables (850hPa temperature, 500hPa geopothatigit, 850hPa wind speed, mean sea level
pressure) and local weather variables (24h precipitatidhmeter wind speed). For synoptic scale
variables scores have been computed against ARPEGE anaR@i local weather variables SYNOP
observations have been used as the reference.

Figure 1 shows the time evolution of thé score for 850hPa temperature over Norhtern Hemisphere
(20N/90N) comPuted over March 2008. Tlescore is a measure of the effective flatness of the rank
histogram (Candille and Talagrand 2005). The rank histogsaa measure of the reliability of an EPS:
the flatter the histogram (the lower tBescore ), the better the reliability.

It can be seen that the MUP experiment has a significantlgistbre than the REF experiment. For the
REF experiment, the increase of thecore between 24h and 72h is caused by a systematic negatf bi
of the forecasts ('J shape’ rank histograms, not shown)hénMUP experiment, the use of different
physical packages which have different biases (positiveegative) allows to obtain flatter histograms
and a natural decrease d@fcore with forecast lead time.

Using the multiparametrization approach greatly improwesreliability of PEARP for 850hPa tem-
perature. The same results (not shown) have been foundHer wariables and for other measure of
reliability such as the reduced centered random variakdad@e et al. 2007).

Figure 2 shows the time evolution of the Brier Skill Score (BSS) forrh6ter wind speed over an
Europe-Atlantic area (20N/60W/72N/40E) computed overddeloer 2010. The event used to compute
BSS has, over the verification period, a climatological iecy of 0.5. The BSS is a positively ori-
ented score: the higher the BSS, the better the resolutitreaystem. It can be observed that the MUP
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Figure 2: Evolution of the Brier Skill Score, as a functionedd time, for 10m wind speed, for two expermients:
REF (solid line) and MUP (dash line).
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Figure 3: Same as Fig2 but for 24h precipitation.
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experiment obtains better score than the REF one.

Computed over the same verification period and the same Ewtigntic area, figur& shows the time
evolution of the Brier Skill Score (BSS) for 24h precipitati The event used to compute BSS has, over
the verification period, a climatological frequency of Q.2& for figure?2 it can be seen that the use of
multiparametrization significantly improve the resolutiof PEARP.

For a wide range of variables and the two periods of verificatised in this study, the MUP system
shows better scores than the REF system (not shown). Theaj@oaclusion is that the use of the
multiparametrization approach has a positive impact orsHilé of the PEARP system. The positive
impact is more pronounced on the reliability of Mid-Tropbepc temperature and precipitation.

5 Summary and discussion

Since a few years model error has been recognized as an anpsdurce of forecast uncertainty. Dif-
fering on the views of the nature of model error, severalnapkes have been proposed to represent it
in EPS. The multiparametrization approach is based on #weetitht most of forecast error is due to the
assumptions used to develop the parametrization schenttes Mumerical Weather Prediction models.
Therefore, it suggests the use of a wide range of physicahpetrization schemes in the same Numer-
ical Weather prediction System to sample model uncerésintit implicitly assumes that the different
schemes could produce different evolutions of the atmaspiviile having the same global skill. The
effectiveness of the multiparametrization approach has bemonstrated in a wide range of studies.

Most of papers show that using multiparametrization teginmifor LAM as for global EPS improves
the skill of the systems. This has been confirmed in this p&gethe global EPS of Météo-France.
Implementing multiparametrization has greatly improv&ARP reliability and resolution.

As stressed in Charron et al. (2010) a pratical drawback dfipavametrization approach is that the

maintenance of several state-of-the-art subgrid par&agtns packages within the same NWP model
is very challenging. The recent development of calibraterhniques and its need for reforecast data
sets (Hagedorn et al. 2008, Hamill et al. 2008) potentiadigas another practical problem. Using a
single reforecast data set may not be sufficient to propetdiprate an EPS that uses multiple sets of
parametrization schemes. One may need a reforecast déta sath of the physical package to prop-

erly represent the global behavior of the system. This cgubatly increase the numerical cost of the

calibration procedure.

The use of stochastic techniques could be a costless diterna multiparametrization approach. Re-
cent studies (Hacker at al. 2011, Palmer et al. 2009, Betnalr €011) have proven their ability to
produce, for synoptic-scale variables, similar or bettebpbilistic skill than multiparametrization ap-
proach. An interesting outcome of these works is that comgistochastic-dynamic techniques with
multiparametrization approach yield to the most skillfiadfPS. The authors (Berner et al. 2011) argue
that different model-error approaches could represerttdmentally different forms of model error.

References

Bazile, E., Y. Bouteloup, F. Bouyssel, and P. Marquet, (3068 m the gabls’s result to the arpege nwp
system: an easy ride ? 18th Symposium on Boundary Layer arifénce Stockholm-Sweden, AMS.

180 ECMWF Workshop on Model Uncertainty, 20 - 24 June 2011



DESCAMPS ET AL: REPRESENTING MODEL UNCERTAINTY USING...

Bechtold, P., E. Bazile, F. Guichard, P. Mascart, and E. &ith(2001). A mass flux convection scheme
for regional and global mo dels. Quart. J. Roy. Meteor. SKiz7, 869-886.

Belamari, S., (2005). Report on uncertainty estimates af@imal bulk formulation for surface tur-
bulent fluxes. Tech. rep., Marine Environment and Secudtytlie European Area-Integrated Project.
Deliverable D4.1.2.

Berner, J., S.-Y. Ha, J. Hacker, A. Fournier, and C. Sny&&11). Mo del uncertainty in a mesoscale
ensemble prediction system: sto chastic versus multiphy®ipresentation. Mon. Wea. Rev., 139,
1972-1995.

Bougeault, P., (1985). A simple parameterization of thgdescale effects of cumulus convection. Mon.
Wea. Rev., 113, 2105-2121.

Bouteloup, Y., E. Bazile, F. Bouyssel, and P. Marquet, (20@yvolution of the physical parametresi-
tions of arpege and aladin-mf models. ALADIN Newsletteetéb-France, 35, 48-58.

Buizza, R., M. Miller, and T. N. Palmer, (1999). Stochaséipresentation of mo del uncertainties in the
ECMWF Ensemble Prediction System. Quart. J. Roy. Metear.,3@5, 2887-2908.

Candille, G., C. Coté, P. Houtekamer, and G. PellerinQ720 Verification of an ensemble prediction
system against observations. Mon. Wea. Rev., 135, 2688:269

Candille, G. and O. Talagrand, (2005). Evaluation of prdkstic prediction system for a scalar vari-
able. Quart. J. Roy. Meteor. Soc., 131, 2131-2150.

Charnock, H., (1955). Wind stress on a water surface. QdiaRoy. Meteor. Soc., 81, 639.

Charron, M., G. Pellerin, L. Spacek, P. Houtekamer, N. Gaghb Mitchell, and L. Michelin, (2010).
Toward random sampling of mo del error in the canadian enkeprbdiction system. Mon. Wea. Rev.,
138, 1877-1901.

Courtier, Ph., C. Freydier, J.F. Geleyn, F. Rabier, and McHRse, (1991). The ARPEGE project at
Météo-France. ECMWF Seminar Proceedings, pp 193-234diRg.

Cuxart, J., P. Bougeault, and J.-L. Redelsperger, (200GurBulence scheme allowing for mesoscale
and large-eddy simulations. Quart. J. Roy. Meteor. So&, 130.

Dhudia, J., (1993). A non-hydrostatic version of the perateshcar mesoscale mo del validation, test
and simulation of atlantic cyclone and cold front. Mon. WRav., 121, 1493-1531.

Geleyn, J., (1987). Use of a mo dified Richardson number faarpatering the effect of shallow con-
vection. NWP Symposium J. Meteor. Soc. Japan, Tokyo.

ECMWF Workshop on Model Uncertainty, 20 - 24 June 2011 181



DESCAMPS ET AL: REPRESENTING MODEL UNCERTAINTY USING...

Hacker, J. and Coauthors, (2011). The U.S. Air Force weatency’s mesoscale ensemble: scientific
description and performance results, Tellus, 63A, 625-641

Hagedorn, R., F. Doblas-Reyes, and T. Palmer, (2005). Tlumeade behind the success of multi-model
ensembles in seasonal forecastingl. basic concept. TBlfds 219-233.

Hagedorn, R., T.M. Hamill, and J.S. Whitaker, (2008). Pholstic forecast calibration using ECMWF
and GFS ensemble reforecasts. Part . Two-meter tempesatMion. Wea. Rev. 136, 2608-2619.

Hamill, T.M., R. Hagedorn and J.S. Whitaker, (2008). Prdlistlz forecast calibration using ECMWF
and GFS ensemble reforecasts. Part Il. Precipitation. Méa. Rev. 136, 2620-2632.

Houtekamer, P. L., L. Lefaivre, J. Derome, H. Ritchie, andvttchell, (1996). A system simulation
approach to ensemble prediction. Mon. Wea. Rev., 124, 1222-

Jones, M., B. Colle, and J. Tongue, (2007). Evaluation of aaseale short-range ensemble forecast
system over the northeast united states. Weather and Btreg&22, 36-55.

Kain, J. S. and J. M. Fritsch, (1993). Convective paramation for mesoscale mo dels: The kain-
fritsch scheme. The representation of cumulus convectidviuimerical Models, Meteor. Monogr., 46,
165-170.

Louis, J., (1979). A parametric model of vertical eddy fluxethe atmosphere. Boundary-layer mete-
orology. 17, 187-202.

Murphy, J., D. Sexton, D. Barnett, G. Jones, M. Webb, M. @sl|liand D. Stainforth, (2004). Quan-
tification of mo delling uncertainties in a large ensemblelohate change simulations. Nature, 430,
768-772.

Palmer, T., (2001). A nonlinear dynamical perspective ondaberror: A proposal for non-local
stochastic-dynamic parametrization in weather and cénpaediction. Quart. J. Roy. Meteor. Soc.,
127, 279-304.

Palmer, T., R. Buizza, F. Doblas-Reyes, T. Jung, M. LeutbecB. Shutts, M. Steinheimer, and A.
Weisheimer, (2009). Stochastic parametrization and maartainty. Tech. Rep. 598, ECMWF Tech.
Memo. 42pp.

Stainforth, D. and coauthors, (2005). Uncertainty on patéutis of the climate response to rising levels
of greenhouse gases. Nature, 433, 403-406.

Stensrud, D., J. Bao, and T. Warner, (2000). Using initiaiditton and mo del physics perturbations in
short-range ensemble simulations of mesoscale conveststems. Mon. Wea. Rev., 128, 2077-2107.

182 ECMWF Workshop on Model Uncertainty, 20 - 24 June 2011



	1 Introduction
	2 The multiparametrization approach
	2.1 Effectiveness of the multiparametrization approach

	3 The PEARP system
	3.1 Initial perturbations
	3.2 Model error

	4 Impact of the multiparametrization approach on PEARP
	5 Summary and discussion

