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Abstract 

In this paper, a comprehensive assessment of the impact of rain-affected radiances observations in the 

operational ECMWF assimilation and forecast system is presented using advanced diagnostic tools. In 

particular, the observation influence in the assimilation process and the related contribution on the short-range 

forecast error of radiance observations from microwave sensors is evaluated with recently developed diagnostic 

tools based on the adjoint version of the model. The recent operational changes on the assimilation of these 

observations result in a more beneficial impact on the initial condition and the short-range forecast. The largest 

information content is obtained for observations that are located in clear sky regions as indicated by the model 

short-range forecast and the observations themselves. However, the largest decrease of the forecast error is 

provided by observations detected in cloudy regions. The usage of Special Sensor Microwave /Imager data help 

reducing model systematic errors in the central eastern equatorial Pacific where the ITCZ is located and the 

Arabian sea where the Monsoon season is taking place. 

 

1. Introduction 

Over the last decade, data assimilation schemes have evolved towards very sophisticated systems, 

such as the four-dimensional variational system (4D-Var) (Rabier et al. 2000) that operates at the 

European Centre for Medium-Range Weather Forecasts (ECMWF). The scheme handles a large 

variety of both space and surface-based meteorological observations. It combines the observations 

with prior (or background) information on the atmospheric state and uses a comprehensive 

(linearized) forecast model to ensure that the observations are given a dynamically realistic, as well as 

statistically likely response in the analysis. Effective performance monitoring of such a complex 

system, with an order of 10
8
 degrees of freedom and more than 10

7
 observations per 12-hour 

assimilation cycle, has become an absolute necessity.  

The assessment of each observation contribution to the analysis is among the most challenging 

diagnostics in data assimilation and numerical weather prediction. Methods have been derived to 

measure the observational influence in data assimilation schemes (Purser and Hung 1993, Cardinali et 

al. 2004, Fisher 2003, and Chapnick et al. 2004). These techniques show how the influence is 

assigned during the assimilation procedure, which partition is given to the observation and which is 

given to the background or pseudo-observation. They therefore provide indication of the robustness of 

the fit between model and observations and allow some tuning of the weights assigned in the 

assimilation system. Measures of the observational influence are useful for understanding the DA 

scheme itself: How large is the influence of the latest data on the analysis and how much influence is 

due to the background? How much would the analysis change if one single influential observation 

were removed?  How much information is extracted from the available data? 



CARDINALI AND PRATES: RAIN-AFFECTED RADIANCE DATA PERFORMANCE IN 4D-VAR 

154 ECMWF-JCSDA Workshop, 15 – 17 June 2010 

To answer these questions it was necessary to consider the diagnostic methods that have been 

developed for monitoring statistical multiple regression analyses and 4D-Var is a special case of the 

Generalized Least Square (GLS) problem (Talagrand, 1997) for weighted regression, thoroughly 

investigated in the statistical literature. 

Recently, adjoint-based observation sensitivity techniques have been used (Baker and Daley 2000, 

Langland and Baker 2004, Cardinali and Buizza, 2004, Morneau et al., 2006, Zhu and Gelaro 2008, 

Cardinali 2009) to measure the observation contribution to the forecast, where the observation impact 

is evaluated with respect to a scalar function representing the short-range forecast error. In general, 

the adjoint methodology can be used to estimate the sensitivity measure with respect to any parameter 

of importance of the assimilation system. Very recently, Daescu (2008) and Daescu and Todling 

(2010) derived a sensitivity equation of an unconstrained variational data assimilation system from the 

first order necessary condition with respect to the main input parameters:  observation, background 

and their error covariance matrices. The paper provides the theoretical framework for further 

diagnostic tool development not only to evaluate the observation impact on the forecast but also the 

impact of the other analysis parameters. Sensitivity to background covariance matrix can help in 

evaluating the correct specification of the background weight and their correlation. Limitations and 

weaknesses of the covariance matrices are well known, several assumptions and simplifications are 

made to derive them. Desroziers and Ivanov (2001) and Chapnik et al. (2006) discussed the 

importance of diagnosing and tuning the error variances in a data assimilation scheme. 

The adjoint-based observation sensitivity technique measures the impact of observations when the 

entire observation dataset is present in the assimilation system. It also measures the response of a 

single forecast metric to all perturbations of the observing system. It provides the impact of all 

observations assimilated at a single analysis time. 

The adjoint-based technique is limited by the tangent linear assumption, valid up to 3 days. 

Furthermore, a simplified adjoint model is usually used to carry the forecast error information 

backwards, which limits further the validity of the linear assumption, and therefore restricts the use of 

the diagnostic to a typical forecast range of 24-48 hours.  

In this paper, a comprehensive assessment of the impact of all-sky microwave imager radiances in the 

assimilation and forecast system is provided throughout the diagnostic tools introduced above. All-sky 

assimilation of microwave imager radiances became operational in March 2009 (Bauer et al., 2010; 

Geer et al., 2010). In the all-sky approach, radiance observations from Special Sensor Microwave 

/Imager (SSM/I, Hollinger et al., 1990) and Advanced Microwave Scanning Radiometer for the Earth 

Observing System (AMSR-E, Kawanishi et al., 2003) are assimilated in all conditions, whether clear, 

cloudy or rainy. At the frequencies used by microwave imagers, the atmosphere is semi-transparent 

except in heavy cloud and precipitation conditions. Observations are only assimilated over oceans 

where the observations are sensitive to ocean surface properties (e.g. surface temperature and wind-

speed), atmospheric water vapour, cloud and precipitation. 

Recently, a complete revision of observation error variance, quality control, thinning and resolution-

matching of the all-sky assimilation of microwave imagers was implemented in the operational 

ECMWF 4D-Var system.  
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Observation error variance definition and bias correction make use of information from both model 

forecast and observations. Because cloud and precipitation structures are often misplaced in the model 

forecast a variational bias correction that is only based on model information would often 

misrepresent cases where model and observations disagree on the sky representation. The model is 

also used to provide observation error variances that increase with the mean amount of clouds 

indicated by the model and the observations (Geer and Bauer 2010). The spatial scale of the 

observations has also been examined. Instead of taking the nearest single all-sky observation to a grid 

point, an average or ‘superob’ of all observations falling into a grid box is calculated prior to the 

assimilation. Also, the new approach screens out observations where the model shows ‘cold sector’ 

and ‘heavy snowfall’ biases. These biases are in fact too difficult to deal using a predictor-based bias 

correction scheme. 

The paper is organized as follows: section 2 and 3 describe the mathematical framework of the adjoint 

tools used in the investigation. Section 4 presents the results and conclusions are shown in section 5. 

2. Analysis and Forecast Observational influence for DA scheme 

2.1. Linear statistical estimation in Numerical Weather Prediction 

Data assimilation systems for NWP provide estimates of the atmospheric state x by combining 

meteorological observations y with prior (or background) information xb. A simple Bayesian Normal 

model provides the solution as the posterior expectation for x, given y and xb. The same solution can 

be achieved from a classical frequentist approach, based on a statistical linear analysis scheme 

providing the Best Linear Unbiased Estimate (Talagrand, 1997) of x, given y and xb. The optimal 

GLS solution to the analysis problem (see Lorenc, 1986) can be written 

 
a n bx = Ky +(I -KH)x  2.1 

The vector xa is the ‘analysis’. The gain matrix K (n p) takes into account the respective accuracies 

of the background vector xb and the observation vector y as defined by the n n covariance matrix B 

and the pp covariance matrix R, with 

 
1 1 1 1T T   

K = (B +H R H) H R  2.2 

Here, H is a p n matrix interpolating the background fields to the observation locations, and 

transforming the model variables to observed quantities (e.g. radiative transfer calculations 

transforming the models temperature, humidity and ozone into brightness temperatures as observed by 

several satellite instruments). In the 4D-Var context introduced below, H is defined to include also the 

propagation in time of the atmospheric state vector to the observation times using a forecast model. 

Substituting (3.2) into (3.1) and projecting the analysis estimate onto the observation space, the 

estimate becomes 

 ˆ
a p by = Hx HKy +(I - HK)Hx  2.3 
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It can be seen that the analysis state in observation space (Hxa) is defined as a sum of the background 

(in observation space, Hxb) and the observations y, weighted by the pp square matrices I - HK and 

HK , respectively.  

In this case, for each unknown component of Hx, there are two data values: a real and a ‘pseudo’ 

observation. The additional term in (2.3) includes these pseudo-observations, representing prior 

knowledge provided by the observation-space background Hxb. The analysis sensitivity with respect 

to the observations is obtained (Cardinali et al 2004): 

 
ˆ T T



y
S = = K H

y
 2.4 

We focus here on the (2.4) expression..The (projected) background influence is complementary to the 

observation influence. For example, if the self-sensitivity with respect to the ith observation is Sii, the 

sensitivity with respect the background projected at the same variable, location and time will be 

simply 1-Sii.  

In particular, the observation influence  Sii=[0,1] where Sii=0 means that the ith observation has had 

no influence at all in the analysis (only the background counted) and Sii=1 indicates that an entire 

degree of freedom has been devoted to fit that data point (the background has had no influence). The 

tr(S) can be interpreted as a measure of the amount of information extracted from the observation or 

‘degree of freedom for signal’ (DFS) whilst it follows that the complementary trace, tr(IS)=ptr(S), 

is the DF for background. That is the weight given to prior information, to be compared to the 

observational weight tr(S).  

3. Forecast sensitivity to the observations 

Baker and Daley (2000) derived the forecast sensitivity equation with respect to the observations in 

the context of variational data assimilation. Let us consider a scalar J-function of the forecast error. 

Then, the sensitivity of J with respect to the observations can be written using a simple derivative 

chain as: 

 a

a

J J  


  

x

y x y
 3.1 

aJ x  is the sensitivity of forecast error to initial condition xa (Rabier et al. 1996, Gelaro et al., 

1998) where the forecast error is expressed as dry energy norm . From (2.1) the sensitivity of the 

analysis system with respect to the observations and the background can be derived from: 

 Ta



x
= K

y
 3.2  

By using (3.2) and (2.2) the forecast sensitivity to the observations becomes: 

 
1 1 1 1( )T T

a a

J J J     
  

  
K R H B H R H

y x x
 3.3 
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A second order sensitivity gradient needs to be considered in 3.3 (Langland and Baker 2004; Errico 

2007) because only superior orders than first contain the information related to the forecast error. In 

fact, the first order one only contains information on the sub-optimality of the assimilation system 

(Cardinali 2009).  

The variation J of the forecast error expressed by J can be found by rearranging (3.1) and by using 

the adjoint property for the linear operator: 

, , ( ) , , ,T T

a b b

a a a a

J J J J J
J   

    
      

    
x K y Hx K y Hx K y y

x x x x y
3.5 

where 
a a b  x x x  are the analysis increments and 

b y y - Hx  is the innovation vector. The 

sensitivity gradient 
aJ x is valid at the starting time of the 4D-Var window (typically 09 and 21 

UTC for the 12h 4D-Var set-up used at ECMWF). As for K, its adjoint K
T
 incorporates the temporal 

dimension, and the y innovations are distributed over the 12-hour window. The variation of the 

forecast error due to a specific measurement can be summed up over time and space in different 

subsets to compute the average contribution of different component of the observing system to the 

forecast error. For example, the contribution of all AMSU-A satellite instruments, s, and channels, i, 

over time T will be:  

 
s

AMSU A it

s S i channel
t T

J J 

 


   

The forecast error contribution can be gathered over different subsets that can represent a specific 

observation type, a specific vertical or horizontal domain, or a particular meteorological variable. 

4. Results 

Analysis and forecast experiments using the ECMWF 4D-Var system (Rabier et al 2000; Janiskova et 

al. 2002; Lopez and Moreau, 2005) have been performed for June 2009 to assess, in particular, the 

impact of SSM/I and AMSR-E microwave imagers observations, sensitive to humidity, cloud, 

precipitation and ocean surface (Geer and Bauer 2010). The 24-hour forecast error contribution (FEC) 

of the all observing system components is computed and shown in Figure 1. The largest contribution 

in decreasing the forecast error is provided by AMU-A (~16%), IASI and AIRS (12%) followed by 

AIREP (aircraft data 10%), TEMP (radiosonde 7%), GPS-RO (6%) and SCAT data (5%). All the 

other observations contribute up to 4%. The Special Sensor Microwave Imager/Sounder, SSM/I, 

decrease the 24-hour forecast error by 4% and the Advanced Microwave Scanning Radiometer-Earth 

Observing System, AMSR-E, by 2% being SSM/I the largest contribution among radiance data 

sensitive to humidity. Table 1 summarizes the window channels from the two microwave sensors used 

in this study. SSM/I is a conical scanning passive microwave imager on board on the latest generation 

of the DMSP satellites since June 1987. Observations are acquired at four frequencies (19.3, 22.2, 

37.0 and 85.5 GHz), with a dual polarization (only horizontal at 22.2 GHz) and near constant zenith 

angle of 53
o
. The instrument makes measurements at the mean altitude of 830 km with a swath width 

of 1400 km and horizontal resolution from 12.5 km (at 85.5 GHz) to 25 km (at 19.3 GHz). In addition 

to SSM/I, AMSR-E data have been assimilated. AMSR-E instrument is operating aboard NASA's 
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Aqua satellite since4 May 2002. It is a twelve-channel, six-frequency, passive-microwave radiometer 

system with a near constant zenith angle of about 55o. It measures horizontally and vertically 

polarized brightness temperatures at 6.9, 10.7, 18.7, 23.8, 36.5, and 89.0 GHz. At an altitude of 705 

km, AMSRE measures the upwelling scene brightness temperatures with a swath width of 1445 km 

and a horizontal resolution. 

The observation influence of microwave imager data can also be computed and compared with the 

forecast error reduction for all the channels assimilated. Figure 2 shows the DFS (tr(S), (a)) and FEC 

(b) for the five SSM/I channels used and for the different flags applied to the observations. 

 

 

Figure 1: 24-hour forecast error contribution in percentage for June 2009 and all the observation 

types assimilated 

 

SSM/I 

Channel  Frequency Polarization 

1 19.35 V 

2 19.35 H 

3 22.235 V 

4 37.0 V 

5 37.0 H 

6 85.0 V 

AMSR-E 5 18.7 V 

6 18.7 H 

7 23.8 V 

8 23.8 H 

9 36.5 V 

Table1: Window channels from microwave sensors 
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The flags are given during the assimilation process accordingly to the model background (12 hour 

forecast) and observation cloudiness information: flag-Clear and flag-Cloudy means that model and 

observation are consistently indicating that the measurement is in clear-sky or in cloudy-sky area, 

respectively. Flag-OBS-Clear and OBS-Cloudy indicates that observation and first guest provide 

different information on cloudiness: whereas the observation denotes a clear-sky measurement, the 

first guess at the same location registered clouds and vice-versa (Geer and Bauer 2010). 

From fig 2a, the largest contribution in the analysis is provided by flag-Clear from a maximum of 

18% (channel 1) to 5% (channel 6). The first two SSM/I channels have strong sensitivity to surface 

wind while channels 3 and 6 are dominated by water vapour. All the other flags show very similar 

DFS that varies from 5% (channel 1) to 1% (channel 6). Flag-Clear (both observation and background 

in clear sky) also presents the largest observation influence (Sii or mean influence per measurement) 

for all channels (not shown) whilst all the other flags exhibit a different observation influence ranking 

with respect to the DFS. In particular, flag-Cloudy, with the second largest DFS has the least 

observation influence (0.15), indicating that the DFS was in this flag-case affected more by the 

number of observations (larger than for OBS-Clear or OBS-Cloudy flags) than by the single 

measurement influence. Measurements in cloudy areas are expected to be less influential since for 

example the observation error variance is assumed to increase proportional to the clouds amount. On 

the 24-hour forecast impact, the largest contribution to the decrease of forecast error is due to flag-

Cloudy observations (fig 2b) and in particular from a maximum of ~12% (channel 3) to a minimum of 

3% (channels 6 and 4). The smallest forecast contribution is provided by observations flagged OBS-

Clear that count also the smallest DFS.  

Similar impact in the analysis and the short-range forecast is noticed for AMSR-E radiances. In 

particular for AMSR-E, the per channel impact distribution is different, likely due to the fact that the 

instrument has also a horizontal polarized 24 GHz channel with strong sensitivity to water vapour 

which enhances the contribution of both channel 7 and 8. Figure 3 show DFS (a) and FEC (b) for all 

AMSR-E channels assimilated. The largest DFS is provided by flag-Clear observations (~17% 

channel 8) whilst the largest forecast error decrease is due to flags-Cloudy observations (~17% 

channel 8). The smallest DFS and FEC contribution is from observations flagged OBS-Cloudy and 

OBS-Clear, respectively. 

In general, the assimilation of humidity sensitive radiances from microwave instruments show the 

largest analysis influence when observations together with the first-guess indicate that the 

measurement is taken in clear sky areas but the largest contribution to the 24-hour forecast error 

comes instead from observations taken (accordingly to the measurement and first-guess indication) in 

cloudy-areas. Several reasons can explain this: cloudy areas are believed to be the regions where the 

forecast error is faster propagating, consequently, observations can stronger contribute to reduce the 

error than in other regions where the forecast error is much smaller. Both DFS and FEC depend on the 

transpose Kalman gain matrix K
T
, FEC also depends on the forecast error and in particular FEC is 

modulated by the percentage of forecast error that projects on K
T
. Errors in the verification analysis 

(the analysis used to compute the forecast error) would under or over estimate the forecast error and 

its projection on K
T
 and the total effect will be manifest on a decrease or increase (respectively) of 

impact with respect to the DFS. In numerical weather prediction, since the ‘truth’ is unknown, the 

analysis is used, being the best representation of the truth, to compute the forecast error. In the near 
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future satellite data, providing a homogeneous and dense data coverage, can be also used to provide a 

independent forecast error estimation. 

 

 

 

Figure 2: DFS (a) and FEC (b) in percentage per SSM/I assimilated channels 
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Figure 3: DFS (a) and FEC (b) in percentage per AMSR-E assimilated channels 

 

Observation influence and forecast impact with respect to a particular data type can be geographically 

mapped. Figure 4a shows the average observation influence for SSM/I radiances and for all the 

cloudiness flags considered. The largest contribution in the analysis is observed in the tropical and 

sub-tropical (for the northern hemisphere) band and follows the distribution of water vapour and 

precipitation: over the Pacific ocean along the mean position of the ITCZ (Sii=0.25), the Golf of 

Mexico (Sii=0.38) and Indian summer Monsoon region (OI=0.35-0.4). No significant differences on 

observation influence patterns are observed among the different data-flags i.e. in clear skies the larger 

observation sensitivities follow the water vapour patterns. FEC is illustrated in fig.4b where negative 

(blue shading contour) and positive (red shading colour) values means decrease and increase of 

forecast error, respectively.  A quite consistent reduction of 24 hour forecast error is observed almost 
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everywhere. Some forecast degradation (positive values) areas can be noticed over the western 

Pacific, the Indian ocean and on the Pacific ocean close to the South American continent. 

Interestingly, different flag-types correspond to different FEC patterns (not shown). In particular, the 

all-sky flags pattern (fig. 4b) is very similar to the OBS-Cloudy flag pattern for the tropical band. 

 

 

 

 

Figure 4: SSM/I All-sky radiances OI ((a), non-dimensional unit) and FEC ((b), Joule unit) 

averaged over June 2009 

 

Two areas of forecast impact will be analyzed in more detail: the central eastern equatorial Pacific 

where the ITCZ is located, and the Arabian Sea where the Monsoon season is taking place. From fig. 
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assess the SSM/I impact, an Observation System Experiment (OSE) has been performed with and 

without the assimilation of these data. Figure 5 shows the zonal average cross section between 150° to 

110° W of the mean analysis differences with and without SSMI/I for June 2009. SSM/I reduce the 

amount of humidity at low level (~850 hPa) by a maximum of 4% whilst near the surface the relative 
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circulation can be seen on fig.5b where the vertical velocity cross section mean differences (10
-2

 Pa/s) 

indicate in intensification of the rising motion, associated with the mean position of the ITCZ. In 

particular, the main convective cell around 8° N depicts an increased upward motion of 0.04 Pa/s that 

results on an intensification of the circulation convergence in the lower atmosphere (not shown). The 

total SSM/I effect is therefore to reinforce the dominant branch of the Hadley circulation in the 

Northern Hemisphere, which is known to be persistently weak in the ECMWF forecast model. 

In the Arabian Sea, June is dominated by the initiation of the Indian summer Monsoon circulation. 

From fig 4b, a general decrease of the 24 hour forecast error is noticed with larger impact close to the 

Arabic peninsula and the India continent. The OSE in that area shows an average reduction of the 

relative humidity up to 6% in the  troposphere, below 500 hPa,  between the equator and 18 N (fig 6a) 

when SSM/I microwave radiances are assimilated.  

The indirect effect on the wind field can be summarized from fig.6b (meridional wind not shown). 

The mean differences indicate stronger near surface southwesterly wind when SSM/I is included. In 

the low troposphere (~850hPa) the analysed winds tend to increase close to the equator whilst the 

westerly component of the wind is reduced in the region above 12°N.  

 

 

Figure 5: Zonal average cross section (150-110° W) of the mean analysis differences between 

with and without the assimilation of SSM/I for June 2009. (a) relative humidity (%); (b) vertical 

velocity (10
-2

 Pa/s) 

 

Figure 6: Zonal average cross section (50-71° E) of the mean analysis differences between with 

and without the assimilation of SSM/I for June 2009. (a) relative humidity (%); (b) zonal wind 
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5. Conclusions 

Over the last few years, the potential of using derived adjoint-based diagnostic tools has been 

increasingly exploited.  

The influence matrix is a well-known concept in multi-variate linear regression, where it is used to 

identify influential data and to predict the impact on the initial condition estimates of removing 

individual data from the regression. The self-sensitivity provides a quantitative measure of the 

observation influence in the analysis. In the context of 4D-Var there are many components that 

together determine the influence given to any one particular observation. First there is the specified 

observation error covariance R, which is usually well known and obtained simply from tabulated 

values. Second, there is the background error covariance B, and third, the dynamics and the physics of 

the forecast model which propagate the covariance in time, and modify it according to local error 

growth in the prediction.  The influence is further modulated by data density.  

Forecast sensitivity to observations can be used to diagnose the impact on the short-range forecast, 

namely 24 to 48 hours, given the use of a simplified adjoint of the data assimilation system and the 

implied linearity assumption. Forecast error contribution maps allow the geographical identification 

of beneficial or detrimental observation impact and a clear understanding of the causes can be drawn 

by the help of observing system experiment (OSE). 

The global impact of observations is found to be positive and the forecast errors decrease for all data 

types. The largest contribution is provided by microwave sounder radiances (AMSU-A) followed by 

the infrared sounder radiances (IASI and AIRS) from the instruments that mainly provide information 

on temperature. For satellite humidity information, SSM/I (microwave imager), AMSU-B (microwave 

sounder), AMSR-E (microwave imager) and MHS (microwave sounder) instruments are the largest 

contributors to forecast error decrease. In particular, the recent changes applied to the assimilation of 

all-sky microwave imager radiances increased by a factor of three their mean influence in the analysis 

(see Geer et al 2009; Geer and Bauer  2010) and consequently their impact on the short-range 

forecast. Since the observation influence decreases with the increase of mean amount of clouds as 

indicated by model and observations, the most penalized information in the analysis is in a very 

cloudy regions whilst double DFS is measured on clear-sky ones. Interestingly, in cloudy areas, 

microwave imager information, is able to decrease the forecast error twice more than in clear sky 

conditions. It is believed that the largest impact in these areas is mainly due to the larger error present 

in the forecast in high baroclinic cloudy regions. A similar effect is obtained when the verifying 

analysis used to compute the forecast error is as the model forecast bias affected. The underestimation 

of forecast error would therefore directly affect the forecast error reduction computed with the adjoint 

tool.  

Observation System Experiments, used to understand the direct and indirect effect of the assimilation 

of SSM/I data in specific beneficial areas as indicated by the forecast error contribution maps, 

highlight that in the Arabian sea during the Monsoon circulation an average reduction of the relative 

humidity up to 6% on the lower troposphere took place with a consequent reduction of the too strong 

Monsoon circulation. Instead, over the central Pacific ITCZ, SSM/I have reduced the humidity 

amount in the upper boundary layer (4%) and increased near surface (2%) causing an intensification 

of the Hadley circulation that is well known to be too weak in the ECMWF forecast. 
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