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ECMWF’s new strategy places more emphasis on the verification of weather parameters such as 
precipitation and near-surface wind. This change in emphasis is a result of user requirements and scientific 
developments. It led to the establishment of an ECMWF Technical Advisory Committee Sub-group on 
Verification Measures. The Sub-group recommended that some new headline scores be adopted to 
supplement our established primary headline scores anomaly correlation of 500 hPa geopotential, and 
continuous ranked probability score of 850 hPa temperature, see e.g. Richardson et al., 2010). Among these 
supplementary scores is the newly developed ‘SEEPS’ score (Rodwell et al., 2010) used for the verification 
of deterministic precipitation forecasts.

Here we explain the SEEPS score, and present examples of how it is being used to monitor and compare 
deterministic forecast performance, guide development decisions, and assess the spread–error relationship 
within the Ensemble Prediction System. Finally, we discuss potential future developments.

The SEEPS score
The task of forecasting precipitation beyond a day-or-two in advance is very much a probabilistic one, which 
must take account of a range of uncertainties. The ECMWF Ensemble Prediction System (EPS) takes account 
of uncertainties in initial conditions and sub-grid scale processes. Appropriate scores to assess the overall 
performance of probabilistic forecasts are ‘proper’ scores for which there is no benefit in hedging. Examples  
of such scores are those derived from the Brier and Ignorance Scores (e.g. Gneiting & Raftery, 2007).

As well as making probability forecasts, there is also a need to make high-resolution deterministic 
precipitation forecasts. High resolution is beneficial, for example, within the data assimilation process 
in order to produce the best initial conditions for subsequent forecasts. At short ranges, high-resolution 
precipitation forecasts provide complementary information to that provided by the lower-resolution EPS 
(Rodwell, 2006). In addition, the diagnosis and improvement of high-resolution deterministic forecast error 
prepares the model for future use at a higher-resolution within the EPS (on next-generation computers).

A score is required that can be used to monitor the performance of deterministic precipitation forecasts. 
Although probabilistic scores can sometimes be applied to deterministic forecasts, they are generally 
not appropriate. For example, the Brier Score and Ranked Probability Score unduly reward deterministic 
forecasts for always predicting the category containing the median. Instead it is more appropriate, for 
deterministic forecasts, to use ‘equitable’ scores which heavily penalise constant and purely random 
forecasts (Gandin & Murphy, 1992).

A number of equitable scores have been used in the verification of deterministic precipitation forecasts. 
Amongst the most common is the True Skill Score (TSS), also known as the Peirce Skill Score (PSS).  
This is based on a 2-category contingency table (for the occurrence of a given event) of the form:
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Observed

Yes No

Forecast
Yes Hits False-alarms

No Misses Correct-nulls

1–PSS = Miss rate + False alarm rate
  Misses          False alarms

   Total events           Total non-events
= +

1–PSS can be written as:
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However, this score, along with others that are commonly used, does not appear to possess all the 
attributes desirable for routine monitoring of the performance of deterministic precipitation forecasts.  
A simple example is that it is impossible to assess the prediction of dry weather and precipitation-amount  
with only two categories. Because of this, a new equitable score (‘SEEPS’) has recently been developed  
by Rodwell et al. (2010).

SEEPS (Stable Equitable Error in Probability Space) uses three categories: ‘dry’, ‘light precipitation’ and 
‘heavy precipitation’. Here ‘dry’ is defined, with reference to WMO guidelines for observation reporting, to 
be any accumulation (rounded to the nearest 0.1 mm) that is less than or equal to 0.2 mm. To ensure that 
the score is applicable for any climatic region, the ‘light’ and ‘heavy’ categories are defined by the local 
climatology so that ‘light’ precipitation occurs twice as often as ‘heavy’ precipitation. Here a global 30-year 
climatology of SYNOP station observations is used, and the resulting threshold between the ‘light’ and 
‘heavy’ categories (TL/H in Figure 1) is generally between 3 and 15 mm for Europe, depending on location 
and month. This approach to defining categories was motivated by the ‘Linear Error in Probability Space’ 
methodology of Ward & Folland (1991).

SEEPS can be written as the mean of two 2-category scores that individually assess the dry/light and light/
heavy thresholds. Each of these 2-category scores is rather like the 1–PSS but written as:

where the word ‘expected’ implies a climatological-mean rather than a sample-mean. The result is that 
SEEPS permits the construction of daily error time series that can be augmented as new data become 
available. A summary of the main attributes of SEEPS is given in Box A. All these attributes are important  
for monitoring purposes.

Here, SEEPS is used to compare 24-hour accumulations derived from global SYNOP observations (exchanged 
over the Global Telecommunication System; GTS) with values at the nearest model grid-point. Sometimes 
1-SEEPS is preferred for presentational purposes as this provides a positively-oriented skill score.
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Figure 1 Schematic diagram showing how  
the probabilities and thresholds for the three 
SEEPS precipitation categories (‘dry’, ‘light 
precipitation’ and ‘heavy precipitation’) are 
determined from the climatological cumulative 
distribution (black curve).

The characteristics and benefits of SEEPS
Stable: SEEPS is designed to be as insensitive as possible to sampling uncertainty (for sufficiently  
skilful forecast systems). This allows more accurate trends to be extracted from noisy data.

Equitable Error: A perfect forecast has a SEEPS score of 0. The expected score increases  
linearly with the unskilled component of the forecast towards a maximum value of 1.

Probability Space: This is used to define precipitation categories; SEEPS adapts to the underlying climate 
to assess the pertinent aspects of local weather. It can be aggregated over heterogeneous climate regions.

A
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Case studies
The diagnosis of short-range forecast error is particularly useful for parametrization development. Figure 
2 shows how SEEPS highlights precipitation errors in a short-range forecast (the first 24 hours of the 
deterministic forecast initiated from 12 UTC on 22 April 2010). Although the large-scale synoptic flow was 
well forecast at this short-range, errors are evident in the precipitation field. For example, with the exception 
of a few places such as southern Sweden, most of northern Europe was dry at this time (Figure 2a) while the 
forecast developed up to 5 mm of precipitation within a northerly flow over Scandinavia and into Germany 
(Figure 2b). The forecast also developed too much precipitation within a warm front that extended from 
southern France to Bulgaria. Notice also that there is too much precipitation predicted along the Italian west 
coast associated with a second warm frontal system. Other features are well predicted such as the heavy 
precipitation along the Moroccan coast associated with on-shore winds.

Through use of the 30-year climatology (the climatological probability of an April day being dry is shown in 
Figure 2c), the precipitation fields are converted into the dry, light and heavy precipitation categories. The 
precipitation discrepancies highlighted above are clearly evident in the category fields (Figures 2d and 2e) 
and reflected in relatively large SEEPS errors (Figure 2f). Other case studies, which concentrate on medium-
range forecast errors, are discussed in Rodwell et al. (2010).

SEEPS has been defined so that scores can be averaged over different climatic regions. To ensure that all 
sub-regions are correctly represented in an area-mean, the local observation density is taken into account. 
For example, the areas of the (small) squares in Figure 2f are proportional to the weights given to each 
individual score within the overall European-mean. The monitoring of area-mean scores, in order to chart 
progress with performance and inform development decisions, is likely to be a key use of the SEEPS score.
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Figure 2 (a) Observed precipitation accumulated over the 24 hours to 12 UTC on 23 April 2010. (b) Forecast 
precipitation accumulated over lead-times 0 to 24 hours and valid for the same period as the observations.  
(c) Probability of a ‘dry’ day in April based on the 1980–2009 climatology. (d) Observed precipitation category.  
(e) Forecast precipitation category. (f) SEEPS. Units in (a) and (b) are mm. Squares in (f) are plotted at each 
observation point with areas proportional to the weight given to each station in the European area-mean score.
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Score decomposition
For practical applications and further model development, it is of interest to know which kind of error 
(‘dry’ when ‘light’ predicted, ‘light’ when ‘heavy’ predicted etc.) contributes most to the total SEEPS. 
The off-diagonal panels in Figure 3 show these contributions as a function of forecast day for Europe in 
winter 2009/10. Large contributions are due to missed heavy events. Observed ‘heavy’ events which were 
forecast as ‘light’ contribute even at day 1. Observed ‘heavy’ events which were forecast as ‘dry’ contribute 
almost as much at long lead times, but such errors are rarer at short lead times. An error which is nearly 
independent of lead time is the prediction of ‘light’ when ‘dry’ was observed. The over-prediction of light 
precipitation is a well-known problem which can also be seen in the comparison of observed and forecast 
frequencies (given in the panels on the diagonal in Figure 3). Improvements in the cloud scheme aimed  
at alleviating this problem are currently being tested.

Score trends
Figure 4 shows the evolution of 1-SEEPS (a positively-oriented skill score) since 1993 for the extra-tropics 
and the tropics (the boundary defined at 30° latitude). The increase in skill has been largely the same for 
days 2 and 6 of the forecast, both in the extra-tropics and the tropics. It amounts to a lead-time gain of 
about 2 days. The difference in forecast skill between the extra-tropics and the tropics is considerable.  
It is equivalent to about 4 forecast days and has slightly increased over the period shown.

Since a one-year running mean filter has been applied in Figure 4, sudden improvements in skill associated 
with new model cycles appear as gradual ascents extending over one year, centred on the date of change. 
For example, the introduction of the prognostic cloud scheme in April 1995 (cycle Cy13r4) is apparent in  
the extra-tropics. Also major changes to the assimilation, cloud scheme and convective parametrization  
in January 2003 (cycle Cy25r4) are reflected in the curves of both the extra-tropics and the tropics.
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Figure 3 Off-diagonal panels show the contributions to SEEPS from each kind of forecast error as a function  
of forecast day. Panels on the diagonal show observed and forecast frequency of events. Results are for Europe 
during the period 1 December 2009 to 28 February 2010 (12 UTC forecasts).
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Model inter-comparison
Model inter-comparisons provide important information for both users and developers, and are part of the 
operational verification at ECMWF. Since March 2010 comparisons have been made between the skill of 
precipitation forecasts from the global models of the Japan Meteorological Agency (JMA), National Centers 
for Environmental Prediction (NCEP), UK Met Office and ECMWF. Verification against observations offers 
a large number of possibilities with regard to the choice of score, interpolation method, spatio-temporal 
aggregation, verification period, verification domain, and observation quality control. As a consequence, 
results from different studies are rarely directly comparable (Ebert et al., 2003). Here we use the same 
methodology with regard to data preprocessing, interpolation, and score computation for all available 
models, ensuring maximum compatibility of results.

Figure 5 shows a time-series of 1-SEEPS of the four models (NCEP data is available from June 2010 only) 
for forecast day 4 for the extra-tropics. Day-to-day variations are smoothed by the weekly averaging but 
strong variations are present also on the weekly to seasonal timescales and shared by all the models. The 
reduction of skill during the northern hemisphere convective season (May to August) is noticeable in the 
global score because there are many fewer SYNOP stations in the southern hemisphere (the weighting 
methodology does not completely compensate for this lack of observations). Skill differences between 
models are comparable in size to the weekly and monthly variations. The ECMWF model shows a robust 
and statistically significant lead.

Analysis of results for individual continents and for other lead times confirms the general ranking seen  
in Figure 5, although the differences are not always as large. In the shortest range (forecast days 1 and 2),  
the UK Met Office and ECMWF models exhibit very similar SEEPS values.
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Figure 4 Long-term evolution of 1-SEEPS 
for the ECMWF model for forecast days 2 
and 6 in the extra-tropics and the tropics 
with a one-year running-mean filter applied.
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Figure 5 Precipitation forecast model  
inter-comparison for the extra-tropics  
for day 4 using 1-SEEPS. The verification 
period is 1 March 2010 to 5 April 2011  
(12 UTC forecasts), with NCEP data available 
from 1 June 2010 onwards. Shown are 
running weekly averages of 1-SEEPS for  
the global models of ECMWF, UK Met Office 
(UKMO), Japan Meteorological Agency (JMA) 
and National Centers for Environmental 
Prediction (NCEP). Numbers in parentheses 
are period averages.
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Evaluation of parallel suites
Before each change to the forecasting system, the proposed new model cycle is tested in parallel with 
the operational system. Cy36r4 (which became operational in November 2010) involved several changes 
that could have directly affected precipitation forecasts. It included a change to a five species prognostic 
microphysics scheme, with cloud rainwater content and cloud ice water content as new model variables. 
There was also a retuning and simplification of convective entrainment/detrainment and a land/sea 
dependent threshold for precipitation formation. Cy36r4 was tested over the period 1 July 2010 to 8 
November 2010 in parallel with the operational cycle at the time (Cy36r2). Figure 6 shows the positive 
impact on 1-SEEPS scores. The most pronounced and highly statistically significant increase in skill was 
found for the extra-tropics at short lead times. In the tropics the improvement was seen to persist to longer 
lead times, but not to reach the same level of statistical significance.

Spread–error relationship
The SEEPS score has also been tested with regard to its usefulness in the analysis of the spread–error 
relationship in the EPS. The approximate equivalence of long-term mean spread and error is usually 
established by tuning the specification of uncertainties in the initial conditions and sub-grid scale processes 
with regard to 500 hPa geopotential height and 850 hPa temperature. Consequently, it is of some interest to 
complement this by looking at the spread–error relationship for surface fields such as precipitation. SEEPS 
may be useful for this purpose because of the way it handles the difficult distribution of precipitation and 
its normalizing characteristics with regard to climatology; also, importantly, SEEPS places emphasis on the 
dry/wet boundary. Ensemble error is calculated here as the mean of the SEEPS of each ensemble member 
against the observations. Ensemble spread is calculated as the mean of the SEEPS of each ensemble 
member against each other ensemble member.
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Figure 6 1-SEEPS scores for Cy36r4  
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and the tropics as a function of lead time, 
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Figure 7 SEEPS error and spread of EPS 
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Figure 7 shows the SEEPS spread–error relationship for Cy36r1 and Cy36r2. The difference between the two 
cycles is that Cy36r2 uses the Ensemble of Data Assimilations (EDA) as well as singular vectors to create the 
initial perturbations for the EPS. It became operational in June 2010. In the extra-tropics, there is reasonable 
correspondence between spread and error at Cy36r1 (blue lines). Interestingly the apparent under-dispersion 
at short lead times and over-dispersion at longer lead times is not seen in the upper-air fields. Further work 
is required to understand if SEEPS is indicating a true mismatch in spread and error. The EDA improves 
the spread-error relationship in the extra-tropics mostly on forecast day 1 (red lines). In the tropics the 
correspondence between spread and error at Cy36r1 is poorer (black lines). Although the increase of spread 
with lead time parallels that of the error, it does so at too low a level. This under-dispersion is also seen in the 
upper-air fields. The EDA (green lines) again helps to improve the spread at short ranges. 

Future developments
To improve the coverage and robustness of global precipitation verification, it should be attempted to close 
remaining gaps in the areal distribution of precipitation observations obtained from the GTS. As model 
output frequency increases (currently 3-hourly for the ECMWF model), and with algorithm developments,  
it will be possible to verify against observations at times other than 0 and 12 UTC (such as from Finland, 
India, and Australia, for example).

The impact of observation uncertainty and representativeness on scores was quantified for 24-hour 
accumulations based on rain gauge data in Rodwell et al. (2010), but there are plans to extend this analysis. 
For example, high-resolution precipitation analyses combining rain gauge and radar data (Haiden et al., 
2011) will be used to better assess sub-grid scale variability and shorter accumulation periods. The hope 
being that the diurnal cycle can be partially resolved, and the spread–error relationship better assessed.

The SEEPS categories can also be used within a proper score (such as the Ranked Probability Score) for 
the probabilistic verification of the EPS. The combined approach provides a natural and ‘seamless’ way 
of applying the attributes of equitability and propriety to the entire Integrated Forecasting System. It also 
permits the assessment of the dry/wet boundary within the probabilistic system, and thus complements  
the frequently used Continuous Ranked Probability Score. Additional tests, sensitivity studies and 
theoretical work will be carried out to assess the utility of this approach.
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