
Ensemble Filtering in the Presence of

Nonlinearity and Non-Gaussianity
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Preliminaries

Notation

⊲ follow Ide et al. (1997) generally, except:
. . . dim(x) = Nx, dim(y) = Ny

. . . subscript j:k indicates times tj, tj+1, . . . , tk,

. . . superscripts index ensemble members, or iterations

⊲ ∼ means “distributed as,” e.g. x ∼ N(0, 1)

⊲ state evolution: xk = M(xk−1) + ηk

⊲ observations: yk = H(xk) + ǫk



Basic Facts

1. Conditional pdf p(xk|y1:k) is the answer

⊲ summarizes everything that can be known about state

⊲ calculate sequentially, via Bayes rule,

p(xk|y1:k) = p(yk|xk)p(xk|y1:k−1)/p(y1:k)

⊲ algorithms that do not produce p(xk|y1:k) cannot be fully optimal



Basic Facts (cont.)

2. Linear, Gaussian systems are relatively easy

⊲ p(xk|y1:k) is Gaussian and thus determined by its mean and covariance

⊲ posterior (analysis) mean is linear in prior (background) mean and
observations

⊲ no need to choose between posterior mean (min variance) and
posterior mode (max likelihood) as “best” estimate; they are equal.

⊲ 4D-Var and Kalman filter (KF) agree; so does ensemble KF (EnKF)
up to sampling error.



Basic Facts (cont.)

3. High-dimensional pdfs are hard

⊲ p(xk|y1:k) is a continuous fn of Nx variables. Direct approaches not
feasible; discretization with n points per variable requires nNx d.o.f.

⊲ they are extraordinarily diffuse



Basic Facts (cont.)

3. High-dimensional pdfs are hard

⊲ p(xk|y1:k) is a continuous fn of Nx variables. Direct approaches not
feasible; discretization with n points per variable requires nNx d.o.f.

⊲ they are extraordinarily diffuse

Consider x ∼ N(0, I).
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Basic Facts (cont.)

3. High-dimensional pdfs are hard

⊲ p(xk|y1:k) is a continuous fn of Nx variables. Direct approaches not
feasible; discretization with n points per variable requires nNx d.o.f.

⊲ they are extraordinarily diffuse

Consider x ∼ N(0, I).
1 dimension: points with p(x) less than 0.01 of max account for less
than 1% of mass of pdf.
10 dimensions: they account for about 1/2.



Outline

Nonlinearity and the ensemble Kalman filter (EnKF)

⊲ Relation to the BLUE

⊲ Iterative schemes

Particle filters

⊲ Required Ne grows exponentially w/ “problem size”

⊲ Importance sampling and the optimal proposal density



Outline

Nonlinearity and the ensemble Kalman filter (EnKF)

⊲ Relation to the BLUE

⊲ Iterative schemes

Particle filters

⊲ Required Ne grows exponentially w/ “problem size”

⊲ Importance sampling and the optimal proposal density

Not a comprehensive review!



The Best Linear Unbiased Estimator (BLUE)

Desire an estimate of x given observation y = H(x) + ǫ

⊲ Consider linear estimators, x̂ = Ay + b

⊲ Which A and b minimize E(|x − x̂|2)?



The BLUE (cont.)

The BLUE is the answer

⊲ Let x̄ = E(x) and ȳ = E(y) = E(H(x))

⊲ Then BLUE is given by (e.g. Anderson and Moore 1979)

x̂ = x̄ + K (y − ȳ) , K = cov (x, y) cov(y)−1

⊲ Only need 1st and 2nd moments; no requirement that x, ǫ are
Gaussian or H is linear

Useful benchmark for nonlinear, non-Gaussian systems

⊲ . . . though E(x|y) has smaller expected squared error



Relation of EnKF to the BLUE

Start with xf drawn from p(x)

EnKF update specifies a random, linear fn of xf and y

⊲ EnKF:
xa = xf + K

(

y − H(xf) − ǫ
)

K = cov (xk,H(xk)) [cov(H(xk)) + R]−1

⊲ xa has mean and covariance matrix given by BLUE formulas

⊲ xa need not be Gaussian

⊲ in linear, Gaussian case, xa has same distribution as xk|y1:k



Relation of EnKF to the BLUE

Start with xf drawn from p(x)

EnKF update specifies a random, linear fn of xf and y

⊲ EnKF:
xa = xf + K

(

y − H(xf) − ǫ
)

K = cov (xk,H(xk)) [cov(H(xk)) + R]−1

⊲ xa has mean and covariance matrix given by BLUE formulas

⊲ xa need not be Gaussian

⊲ in linear, Gaussian case, xa has same distribution as x|y

The EnKF is a Monte-Carlo implementation of the BLUE

and, as Ne → ∞, shares its properties.



Relation of EnKF to the BLUE

Start with xf drawn from p(x)

EnKF update specifies a random, linear fn of xf and y

⊲ EnKF:
xa = xf + K

(

y − H(xf) − ǫ
)

K = cov (xk,H(xk)) [cov(H(xk)) + R]−1

⊲ xa has mean and covariance matrix given by BLUE formulas

⊲ xa need not be Gaussian

⊲ in linear, Gaussian case, xa has same distribution as x|y

The EnKF is a linear method. It is optimal for linear,

Gaussian systems but does not assume Gaussianity.



BLUE/EnKF Illustrated

⊲ p(x) and ensemble
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BLUE/EnKF Illustrated

⊲ p(x|y) for y = x1 + noise = 1.1 and EnKF analysis ensemble (dots)
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⊲ sample retains non-Gaussian curvature but does not capture
bimodality



EnKF and Non-Gaussianity

Different EnKF schemes respond differently

⊲ All variants of EnKF produce same sample mean and 2nd moment

⊲ Other (non-Gaussian) aspects of updated ensemble depend on specific
scheme

⊲ Deterministic/“square root” filters are more sensitive to non-
Gaussianity (Lawson and Hansen 2004, Lei et al. 2010)

Nonlinear update in observation space

⊲ EnKFs that process obs one at a time can be written as update of
observed quantity followed by regression onto state variables.

⊲ Observation update is scalar and can use fully nonlinear techniques
(Anderson 2010)



Iterative, Ensemble-Based Schemes

Motivation for iterations

⊲ EnKF is a linear scheme

⊲ Mean and mode of xk|y1:k are nonlinear fns of y1:k; iteration is natural
for weak nonlinearity (e.g. 4DVar)

Can EnKF be improved through iteration?

How to formulate iterations?



Iterative, Ensemble-Based Schemes (cont.)

Several ideas

⊲ Minimize non-quadratic J(x) with x restricted to ensemble subspace
(Zupanski 2005)

⊲ Perform series of N assimilations, each using same y1:k but with
obs-error covariance N−1R; first analysis provides prior for second,
etc. (Annan et al. 2005)

⊲ Repeated application of EnKF update, mimicking the outer loop of
4DVar (Kalnay and Yang 2010)



Iterative, Ensemble-Based Schemes (cont.)

Several ideas

⊲ Minimize non-quadratic J(x) with x restricted to ensemble subspace
(Zupanski 2005)

⊲ Perform series of N assimilations, each using same y1:k but with
obs-error covariance N−1R; first analysis is provides prior for second,
etc. (Annan et al. 2005)

⊲ Repeated application of EnKF update, mimicking the outer
loop of 4DVar (Kalnay and Yang 2010)



4DVar and an Iterated Ensemble Smoother

Incremental 4DVar ≡ sequence of Kalman smoothers

⊲ Linearization of M and H about xn makes inner-loop Ĵ(δx) quadratic;
thus minimization of Ĵ is equivalent to Kalman smoother

⊲ nth Kalman-smoother update is

xn+1

0 = xf
0 + K0|1:Nt

[

y1:Nt
−
(

H(xn
1:Nt

) + H(xf
1:Nt

− xn
1:Nt

)
)]

⊲ see also Jazwinski (1970, section 9.7)



4DVar and an Iterated Ensemble Smoother

Incremental 4DVar ≡ sequence of Kalman smoothers

⊲ nth Kalman-smoother update is

xn+1

0 = xf
0 + K0|1:Nt

[

y1:Nt
−
(

H(xn
1:Nt

) + H(xf
1:Nt

− xn
1:Nt

)
)]

Approximate iterated KS using ensemble ideas

⊲ Make usual replacements:

Hδxf
k ≈ H(xf

k) − H(xn
k),

K0|1:Nt
≈ K̂0|1:Nt

= cov(x0, H(x1:Nt
))[cov(H(x1:Nt

))+R1:Nt
]−1

⊲ Ensemble ICs drawn from N(xn
0 ,Pf

0) to approximate linearization
about xn in H and M .

⊲ Ensemble mean at iteration n + 1 given by

xn+1

0 = xf
0 + K̂

n

0|1:Nt
(y1:Nt

− H(x1:Nt
) )

⊲ Same as usual update, but gain changes at each iteration



Kalnay-Yang Iteration for Ensemble KS

“Running in place” from Kalnay and Yang (2010)

⊲ Ensemble mean at iteration n + 1 given by

xn+1

0 = xn
0 + K̂

n

0|1:Nt
(y1:Nt

− H(x1:Nt
) )

⊲ Innovation is recalculated using most recent guess and gain changes
at each iteration

⊲ Intended to speed spin up of EnKS when initial estimate of Pf
0 is

poor

Converges to observations when H and M are linear

⊲ Let Ln = I − HT K̂
n

0|1:Nt
. Easy to show

Hxn+1

0 =

(

n
∏

m=1

Lm

)

Hxf
0 +

(

I −
n
∏

m=1

Lm

)

y

⊲ Properties in nonlinear case are unclear



Simple Example: Hénon Map

Hénon map

⊲ state is 2d, x = (x1, x2)

⊲ iterate map twice in results here

⊲ Note: subscripts denote components of x!

An example

⊲ Gaussian ICs at t0 (“initial time”)

⊲ observe y = x1 + ǫ at t1 (“final time”)

⊲ update state at t0, t1



Simple Example (cont.)

⊲ prior at t1
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Simple Example (cont.)

⊲ prior at t0, with value of x1(t1) shown by colors
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Simple Example (cont.)

⊲ RMS estimation error, averaged over realizations as fn of y
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Particle Filters (PFs)

Sequential Monte-Carlo method to approximate p(xk|y1:k)

⊲ particles ≡ ensemble members

⊲ like EnKF, generates samples from desired pdf, rather than pdf itself



Particle Filters (cont.)

The simplest PF

⊲ given {xi
k−1

, i = 1, . . . , Ne} drawn from p(xk−1|y1:k−1)

⊲ xi
k = M(xi

k−1
) + ǫk; this gives a sample from p(xk|y1:k−1).

⊲ approximate this prior as sum of point masses,

p(xk|y1:k−1) ≈ Ne
−1

Ne
∑

i=1

δ(x− xi
k)

⊲ Bayes ⇒

p(xk|y1:k) ∝ p(yk|xk)

Ne
∑

i=1

δ(x− xi
k) =

Ne
∑

i=1

p(yk|xi
k)δ(x− xi

k)

⊲ thus, posterior pdf approximated by weighted sum of point masses

p(xk|y1:k) ≈
Ne
∑

i=1

wiδ(x − xi
k), with wi =

p(yk|xi
k)

∑Ne

j=1
p(yk|xi

k)



Particle Filters (cont.)

Asymptotically convergent to Bayes rule

⊲ PF yields an exact implementation of Bayes’ rule as Ne → ∞; no
approximations other than finite ensemble size

Can be exceedingly simple

⊲ main calculations are for wi, e.g. p(y|xi
k) for i = 1, . . . , Ne.

Widely applied, and effective, in low-dim’l systems

⊲ Interest for geophysical systems too: van Leeuwen (2003, 2010),
Zhou et al. (2006), Papadakis et al. (2010), hydrology



PF Illustrated

⊲ p(x), as before, and prior ensemble
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PF Illustrated

⊲ p(x|y) and ”weighted” ensemble (size ∝ weight)

x
1

 x
2 

0 0.5 1 1.5 2
0

0.5

1

1.5

2

⊲ weighted ensemble captures bimodality

⊲ particles don’t move; assimilation is just re-weighting



“Collapse” of Weights

A generic problem for PF

⊲ max wi → 1 as Nx, Ny increase with Ne fixed

⊲ when cycling over multiple observation times, tendency for collapse
increases with t



Simple Example

⊲ prior: x ∼ N(0, I)

⊲ identity observations: Ny = Nx, H = I

⊲ observation error: ǫ ∼ N(0, I)



Behavior of maxwi

⊲ Ne = 103; Nx = 10, 30, 100; 103 realizations
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Required ensemble size

⊲ Ne s.t. PF mean has expected error less than obs
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Required ensemble size (cont.)

Collapse occurs because wi
k varies (a lot) with i

⊲ variance of weights (over particles, given y) is controlled by

τ2 = var (− log(p(yk|xk)))

⊲ involves only obs-space quantities—no direct dependence on Nx

Conditions for collapse

⊲ if Ne → ∞ and τ2/ log(Ne) → ∞,

E(1/ max wi) ∼ 1 +

√
2 log Ne

τ
⊲ see Bengtsson et al. (2008), Snyder et al. (2008) for details

⊲ thus, weights collapse (max wi → 1) unless Ne scales as exp(τ2/2)



Refinements of PF

Resampling

⊲ “refresh” ensemble by resampling from approximate posterior pdf;
members with small weights are dropped, while additional members
are added near members with large weights (e.g. Xiong et al. 2006,
Nakano et al. 2007)

⊲ Does not overcome difficulties with PF update but reduces tendency
for collapse over time

Sequential importance sampling

⊲ generate xi
k using information beyond system dynamics and xi

k−1



Importance Sampling

Basic idea

⊲ Suppose π(x) is hard to sample from, but q(x) is not.

⊲ draw {xi} from q(x) and approximate

π(x) ≈
Ne
∑

i=1

wiδ(x− xi), where wi = π(xi)/q(xi)

⊲ call q(x) the proposal density



Importance Sampling (cont.)

⊲ p(x), as before, and prior ensemble
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⊲ Want to sample from p(x|y)
⊲ IS says we should weight sample from p(x) by p(x|y)/p(x) = p(y|x)



Importance Sampling (cont.)

⊲ p(x|y) and ”weighted” ensemble (size ∝ weight)
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Sequential Importance Sampling

Perform IS sequentially in time

⊲ Given {xi
0} from q(x0), wish to sample from p(x1, x0|y1)

⊲ Note factorization:
p(x1, x0|y1) ∝ p(y1|x1, x0)p(x1, x0) = p(y1|x1)p(x1|x0)p(x0)

⊲ choose proposal of the form

q(x1, x0|y1) = q(x1|x0, y1)q(x0)

⊲ update weights using

wi
1 ∝ p(xi

1, x
i
0|y1)

q(xi
1, x

i
0|y1)

=
p(y1|xi

1)p(xi
1|xi

0)

q(xi
1|xi

0, y1)
wi

0



Sequential Importance Sampling (cont.)

Choice of proposal is known to be crucial

Simplest: transition density as proposal

⊲ take q(xk|xk−1, yk) = p(xk|xk−1); i.e. evolve particles from tk−1

under system dynamics

⊲ weights updated by wi
k ∝ wi

k−1
p(yk|xi

k)



Sequential Importance Sampling (cont.)

An “optimal” proposal (e.g. Doucet et al. 2000)

⊲ q(xk|xk−1, yk) = p(xk|xk−1, yk); use obs at tk in proposal at tk

⊲ Papadakis et al. (2010) use this; van Leeuwen (2010) is similar

⊲ weights updated by wi
k ∝ wi

k−1
p(yk|xi

k−1
)

⊲ for linear, Gaussian systems, easy to show that wi
k behaves like case

with prior as proposal, but var
(

log
(

p(yk|xi
k−1

)
))

is quantitatively
smaller, by amount depending on Q.

Ne still grows exponentially, but w/ reduced exponent

⊲ For fixed problem, benefits can be substantial, e.g.,

var(log(p(yk|xi
k−1))) = αvar(log(p(yk|xi

k))) ⇒
ensemble size for p(yk|xi

k−1) ∼
[

ensemble size for p(yk|xi
k)
]α



Mixture (or Gaussian-Sum) Filters

Approximate pdfs as sums of Gaussians

⊲ Start with {xi,Pi}. Approximate prior pdf as

p(x) =

Ne
∑

i=1

wiN(x; xi,Pi)

⊲ To compute p(x|y) must update wi (via PF-like eqns) and xi, Pi (via
KF-like eqns); see Alspach and Sorenson (1972)

⊲ Geophysical interest: Anderson and Anderson (1999), Bengtsson et
al. (2003), Smith (2007), Hoteit et al. (2011)

Limitations

⊲ Update of weights subject to collapse, as in PF; closely related to
optimal proposal if we choose Pi = Q

⊲ Must update {xi,Pi} in addition to weights



Summary

EnKF as approximation to BLUE

⊲ EnKF 6= assume everything is Gaussian

⊲ Non-Gaussian aspects depend on specific EnKF scheme

Iterated ensemble smoother

⊲ Mimics incremental 4DVar but not equivalent
(except in linear, Gaussian case!)

⊲ Innovation fixed, gain changes at each iteration

Particle filters

⊲ For naive particle filter, Ne increases exponentially with problem size

⊲ Potential for PF using more clever proposal distributions

⊲ Evidence that these lead to Ne that still increases exponentially, but
with smaller exponent



Comments

How important is non-Gaussianity for our applications?

A key idea missing from PFs (so far) is localization
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4DVar and an Iterated Kalman Smoother

Recall 4DVar

⊲ Consider perfect model/strong constraint for simplicity here. x0

determines x1:Nt
through xk = M(xk−1).

⊲ Full cost function from log(p(x0|y1:k)):

J(x0) = (x0 − xf
0)

T (Pf
0)−1(x0 − xf

0)
+ (y1:Nt

− H(x1:Nt
))TR−1

1:Nt
(y1:Nt

− H(x1:Nt
)),



4DVar and an Iterated Kalman Smoother

Recall incremental 4DVar

⊲ Linearize about latest guess, xn
0:Nt

; e.g., H(xk) ≈ H(xn
k) + Hδxk and

δxk = Mk−1δxk−1

⊲ Yields quadratic cost function for increments:

Ĵ(δx0) = (δx0 − δxf
0)T (Pf

0)−1(δx0 − δxf
0)

+ (δy1:Nt
− Hδx1:Nt

)TR−1

1:Nt
(δy1:Nt

− Hδx1:Nt
),

⊲ Iteration: Compute δxa
0 as minimizer of Ĵ ; set xn+1

0 = xn
0 + δxa

0;
compute xn+1

1:Nt
and linearize again



Incremental 4DVar = Iterated KS

Equivalent linear, Gaussian system

⊲ Consider:

δx0 ∼ N(δxf
0 ,Pf

0)
δxk = Mk−1δxk−1

δyk = Hδxk + ǫk, ǫk ∼ N(0,Rk)

⊲ Cost fn from this system is Ĵ(δx0) from incremental 4DVar

Iterated Kalman smoother

⊲ δxa
0 = arg min Ĵ can also be computed with Kalman smoother:

δxa
0 = δxf

0 + K0|1:Nt
(δy1:Nt

− Hδxf
1:Nt

)

⊲ Thus, sequence of KS updates, with Mk, H and K0|1:Nt
from re-

linearization about xn
1:Nt

at each step, reproduces incremental 4DVar

⊲ Note that initial cov of δx0 is Pf
0 ; does not change during iteration

⊲ see also Jazwinski (1970, section 9.7)



Iterated Ensemble KS

Approximate iterated KS using ensemble ideas

⊲ Returning to full fields, KS update becomes

xn+1

0 = xf
0 + K0|1:Nt

(y1:Nt
− (H(xn

1:Nt
) + Hδxf

1:Nt
))

⊲ Now make usual replacements

Hδxf
k ≈ H(xf

k) − H(xn
k),

K0|1:Nt
≈ K̂0|1:Nt

= cov(x0, H(x1:Nt
))[cov(H(x1:Nt

))+R1:Nt
]−1



Iterated Ensemble KS

Approximate iterated KS using ensemble ideas

⊲ Returning to full fields, KS update becomes

xn+1

0 = xf
0 + K0|1:Nt

(y1:Nt
− (H(xn

1:Nt
) + Hδxf

1:Nt
))

⊲ Now make usual replacements

Hδxf
k ≈ H(xf

k) − H(xn
k),

K0|1:Nt
≈ K̂0|1:Nt

= cov(x0, H(x1:Nt
))[cov(H(x1:Nt

))+R1:Nt
]−1

Iteration for ensemble smoother

⊲ Ensemble ICs drawn from N(xn
0 ,Pf

0) to approximate linearization
about xn in H and M .

⊲ Ensemble mean at iteration n + 1 given by

xn+1

0 = xf
0 + K̂

n

0|1:Nt
(y1:Nt

− H(x1:Nt
) )

⊲ Same as usual update, but gain changes at each iteration



Kalnay-Yang Iteration for Ensemble KS

“Running in place” from Kalnay and Yang (2010)

⊲ Ensemble mean at iteration n + 1 given by

xn+1

0 = xn
0 + K̂

n

0|1:Nt
(y1:Nt

− H(x1:Nt
) )

⊲ Innovation is recalculated using most recent guess and gain changes
at each iteration

⊲ Intended to speed spin up of EnKS when initial estimate of Pf
0 is

poor

Converges to observations when H and M are linear

⊲ Let Ln = I − HT K̂
n

0|1:Nt
. Easy to show

Hxn+1

0 =

(

n
∏

m=1

Lm

)

Hxf
0 +

(

I −
n
∏

m=1

Lm

)

y

⊲ Properties in nonlinear case are unclear


