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Preliminaries

Notation

> follow Ide et al. (1997) generally, except:
... dim(x) = N, dim(y) = N,
... subscript j:k indicates times ¢;,t;11,..., 1k,
... superscripts index ensemble members, or iterations

> ~ means “distributed as,” e.g. x ~ N(0,1)
> state evolution: x; = M (Xx_1) + N

> observations: y, = H(xg) + €x



Basic Facts

1. Conditional pdf p(xg|y;.;.) is the answer
> summarizes everything that can be known about state
> calculate sequentially, via Bayes rule,

P(Xk|y1.k) = P(YI¥K)P(Xk|Y1.—1) /P(Y1.1)

> algorithms that do not produce p(xx|y;.;) cannot be fully optimal



Basic Facts (cont.)

2. Linear, Gaussian systems are relatively easy

> p(Xg|yi.r) is Gaussian and thus determined by its mean and covariance

>

posterior (analysis) mean is linear in prior (background) mean and
observations

no need to choose between posterior mean (min variance) and
posterior mode (max likelihood) as “best” estimate; they are equal.

4D-Var and Kalman filter (KF) agree; so does ensemble KF (EnKF)
up to sampling error.



Basic Facts (cont.)

3. High-dimensional pdfs are hard

> p(Xg|yq.x) is a continuous fn of N, variables. Direct approaches not
feasible; discretization with n points per variable requires n™¥= d.o.f.

> they are extraordinarily diffuse



Basic Facts (cont.)

3. High-dimensional pdfs are hard

> p(Xg|yi.x) is @ continuous fn of IV, variables. Direct approaches not
feasible; discretization with n points per variable requires n™¥= d.o.f.

> they are extraordinarily diffuse

Consider x ~ N(0,1).
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Basic Facts (cont.)

3. High-dimensional pdfs are hard

> p(Xg|yi.x) is @ continuous fn of IV, variables. Direct approaches not
feasible; discretization with n points per variable requires n™¥= d.o.f.

> they are extraordinarily diffuse

Consider x ~ N(0,1).

1 dimension: points with p(x) less than 0.01 of max account for less
than 1% of mass of pdf.

10 dimensions: they account for about 1/2.



Outline

Nonlinearity and the ensemble Kalman filter (EnKF)
> Relation to the BLUE

> lterative schemes

Particle filters
> Required N, grows exponentially w/ “problem size”

> Importance sampling and the optimal proposal density
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Nonlinearity and the ensemble Kalman filter (EnKF)
> Relation to the BLUE

> lterative schemes

Particle filters
> Required N, grows exponentially w/ “problem size”

> Importance sampling and the optimal proposal density

Not a comprehensive review!



The Best Linear Unbiased Estimator (BLUE)

Desire an estimate of x given observation y = H(x) + €

> Consider linear estimators, x = Ay + b
> Which A and b minimize E(|x — x|?)?



The BLUE (cont.)

The BLUE is the answer
> Letx= FE(x) and y = FE(y) = FE(H(x))
> Then BLUE is given by (e.g. Anderson and Moore 1979)

x=x+K(y—y), K=cov(x,y)cov(y)™

> Only need 1st and 2nd moments; no requirement that x, € are
Gaussian or H is linear

Useful benchmark for nonlinear, non-Gaussian systems

> ... though F(x|y) has smaller expected squared error



Relation of EnKF to the BLUE

Start with x/ drawn from p(x)

EnKF update specifies a random, linear fn of x/ and y

> EnKF:
xa:xf—l—K(y—H(xf)—e)

K = cov (xy, H(xz)) [cov(H (x;)) + R] "
> x% has mean and covariance matrix given by BLUE formulas

> X% need not be Gaussian

> in linear, Gaussian case, x* has same distribution as xx|y;..



Relation of EnKF to the BLUE

Start with x/ drawn from p(x)

EnKF update specifies a random, linear fn of x/ and y

> EnKF:
xa:xf—l—K(y—H(xf)—e)

K = cov (xy, H(xz)) [cov(H (x;)) + R] "
> x% has mean and covariance matrix given by BLUE formulas

> X% need not be Gaussian

> in linear, Gaussian case, x® has same distribution as x|y

The EnKF is a Monte-Carlo implementation of the BLUE
and, as N, — 00, shares its properties.




Relation of EnKF to the BLUE

Start with x/ drawn from p(x)

EnKF update specifies a random, linear fn of x/ and y

> EnKF:
xa:xf—l—K(y—H(xf)—e)

K = cov (xy, H(xz)) [cov(H (x;)) + R] "
> x% has mean and covariance matrix given by BLUE formulas

> X% need not be Gaussian

> in linear, Gaussian case, x® has same distribution as x|y

The EnKF is a linear method. It is optimal for linear,
Gaussian systems but does not assume Gaussianity.




BLUE/EnKF Illustrated

> p(x) and ensemble
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BLUE/EnKF lllustrated

> p(x|y) for y = x1 + noise = 1.1 and EnKF analysis ensemble (dots)

2

> sample retains non-Gaussian curvature but does not capture
bimodality



EnKF and Non-Gaussianity

Different EnKF schemes respond differently
> All variants of EnKF produce same sample mean and 2nd moment

> Other (non-Gaussian) aspects of updated ensemble depend on specific
scheme

> Deterministic/ “square root” filters are more sensitive to non-
Gaussianity (Lawson and Hansen 2004, Lei et al. 2010)

Nonlinear update in observation space

> EnKFs that process obs one at a time can be written as update of
observed quantity followed by regression onto state variables.

> Observation update is scalar and can use fully nonlinear techniques
(Anderson 2010)



lterative, Ensemble-Based Schemes

Motivation for iterations
> EnKF is a linear scheme

> Mean and mode of x;|y;.;. are nonlinear fns of y,.,.; iteration is natural
for weak nonlinearity (e.g. 4DVar)

Can EnKF be improved through iteration?

How to formulate iterations?



Iterative, Ensemble-Based Schemes (cont.)

Several ideas

> Minimize non-quadratic J(x) with x restricted to ensemble subspace
(Zupanski 2005)

> Perform series of N assimilations, each using same y;., but with
obs-error covariance N ~!R; first analysis provides prior for second,

etc. (Annan et al. 2005)

> Repeated application of EnKF update, mimicking the outer loop of
4DVar (Kalnay and Yang 2010)



Iterative, Ensemble-Based Schemes (cont.)

Several ideas

> Minimize non-quadratic J(x) with x restricted to ensemble subspace
(Zupanski 2005)

> Perform series of N assimilations, each using same y;., but with
obs-error covariance N !R; first analysis is provides prior for second,
etc. (Annan et al. 2005)

> Repeated application of EnKF update, mimicking the outer
loop of 4DVar (Kalnay and Yang 2010)



4DVar and an lterated Ensemble Smoother

Incremental 4DVar = sequence of Kalman smoothers

> Linearization of M and H about x™ makes inner-loop j((Sa:) quadratic;
thus minimization of J is equivalent to Kalman smoother

> nth Kalman-smoother update is
Xg“ - xfO + Koj1:v, [Y1:Nt — (H(X?:Nt) + H(xflth - x?th))]
> see also Jazwinski (1970, section 9.7)



4DVar and an lterated Ensemble Smoother

Incremental 4DVar = sequence of Kalman smoothers

> mnth Kalman-smoother update is
Xg+1 — xfo + K0|13Nt [yI:Nt o (H(x?f:Nt) T H(xfliNt o x?th))]

Approximate iterated KS using ensemble ideas
> Make usual replacements:
H5x£ ~ HA(xfk) — H(xy),
Koj1:.n, = Koji:n, = cov(xo, H (x1:n,))[cov(H (x1.n,)) + R15Nt]_1
> Ensemble ICs drawn from N(xg’,Pg) to approximate linearization
about x™ in H and M.
> Ensemble mean at iteration n + 1 given by
xgH = x/o + KO|1:Nt(Y1:Nt — H(x1:n,))

> Same as usual update, but gain changes at each iteration




Kalnay-Yang lteration for Ensemble KS

“Running in place” from Kalnay and Yang (2010)

> Ensemble mean at iteration n + 1 given by

XgH — Xg T KO|1:Nt(y1:Nt - H(Xlth) )

> Innovation is recalculated using most recent guess and gain changes
at each iteration

> Intended to speed spin up of EnKS when initial estimate of P(J; IS
poor

Converges to observations when H and M are linear

> LetL" =1-— HTIA(gH:Nt. Easy to show
Hx! ! = (H Lm> Hx/ o + <I - 11 Lm> y
m=1 m=1

> Properties in nonlinear case are unclear



Simple Example: Hénon Map

Hénon map
> state is 2d, x = (z1, x2)
> iterate map twice in results here

> Note: subscripts denote components of x!

An example
> Gaussian ICs at o (“initial time")
> observe y = x1 + € at t; (“final time”)

> update state at tg, t;



Simple Example (cont.

> prior at t;

©




Simple Example (cont.)

> prior at tg, with value of x1(¢1) shown by colors
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Simple Example (cont.)

> RMS estimation error, averaged over realizations as fn of y

3.5 1 1 1 1 1 1
PF
3 Prior N
> EnKE
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RMSE for x2(t1)




Particle Filters (PFs)

Sequential Monte-Carlo method to approximate p(xx|y;..)
> particles = ensemble members

> like EnKF, generates samples from desired pdf, rather than pdf itself



Particle Filters (cont.)

The simplest PF

>

>

>

given {x: _,,i=1,..., N} drawn from p(xg_1|y;.x_1)
xt = M (X% _ )+ eg; this gives a sample from p(xx|y;.4_1).

approximate this prior as sum of point masses,

P(Xk|Y1.5-1) _125’(_’%

Bayes =
Ne . c . .
p(klY1g) o p(yglxe) Y 0(x—xi) = > ply,[x})6(x — xj,)
i=1 =1

thus, posterior pdf approximated by weighted sum of point masses

p(Yk‘x;;)

Ne i
Zj:l p(Yx|X})

P(Xk|yi.p) ~ g w;0 ), with w; =



Particle Filters (cont.)

Asymptotically convergent to Bayes rule

> PF yields an exact implementation of Bayes' rule as N, — oo; no
approximations other than finite ensemble size

Can be exceedingly simple

> main calculations are for w;, e.g. p(y|x.) fori=1,..., N,.

Widely applied, and effective, in low-dim’l systems

> Interest for geophysical systems too: van Leeuwen (2003, 2010),
Zhou et al. (2006), Papadakis et al. (2010), hydrology



PF lllustrated

> p(x), as before, and prior ensemble

2




PF lllustrated

> p(x|]y) and "weighted” ensemble (size x weight)
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> weighted ensemble captures bimodality

> particles don't move; assimilation is just re-weighting



“Collapse” of Weights

A generic problem for PF
> maxw' — 1 as N, N, increase with N, fixed

> when cycling over multiple observation times, tendency for collapse
increases with ¢



Simple Example

> prior: x ~ N(0,1)
> identity observations: N, = N, H =

> observation error: € ~ N(0,1)



Behavior of max w*

> N, =103 N, = 10, 30, 100; 103 realizations
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Required ensemble size

> N, s.t. PF mean has expected error less than obs
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Required ensemble size (cont.)

Collapse occurs because wj, varies (a lot) with i

> variance of weights (over particles, given y) is controlled by

72 = var (— log(p(y,|xx)))

> involves only obs-space quantities—no direct dependence on N,

Conditions for collapse
> if N, — oo and 72/log(N,) — oo,

v2log N,

_
> see Bengtsson et al. (2008), Snyder et al. (2008) for details

E(1/maxw") ~ 1+

> thus, weights collapse (maxw® — 1) unless N, scales as exp(72/2)



Refinements of PF

Resampling

> “refresh” ensemble by resampling from approximate posterior pdf;
members with small weights are dropped, while additional members
are added near members with large weights (e.g. Xiong et al. 2006,
Nakano et al. 2007)

> Does not overcome difficulties with PF update but reduces tendency
for collapse over time

Sequential importance sampling

> generate x} using information beyond system dynamics and x%_,



Importance Sampling

Basic idea
> Suppose 7(x) is hard to sample from, but ¢(x) is not.

> draw {x’} from ¢(x) and approximate

Ne
T(x) ~ Zwié(x —x'), where w' = m(x")/q(x")

> call ¢(x) the proposal density



Importance Sampling (cont.)

> p(x), as before, and prior ensemble

2

> Want to sample from p(x|y)
> IS says we should weight sample from p(x) by p(x|y)/p(x) = p(y|x)



Importance Sampling (cont.)

> p(x|]y) and "weighted” ensemble (size x weight)
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Sequential Importance Sampling

Perform |S sequentially in time
> Given {x}} from ¢(xg), wish to sample from p(x1, xg|y;)
> Note factorization:
P(X1,Xo0ly1) o< p(¥1|X1,%X0)p(X1,%0) = p(¥1|x1)p(X1[X0)P(X0)
> choose proposal of the form
q(x1,%0ly1) = q(x1|x0,¥1)q(x0)
> update weights using
| X!, X x)p(xt|xy) .
W ocp( i17 ;_)‘h) :p()’l‘ 711)12( 1 O)w(")
q(x1,%xply1) q(x1[x4, Y1)




Sequential Importance Sampling (cont.)

Choice of proposal is known to be crucial

Simplest: transition density as proposal

> take q(Xg|Xp_1,¥r) = P(Xg|Xk_1); i.e. evolve particles from t;_;
under system dynamics

> weights updated by w? oc wi_p(y,|x%)



Sequential Importance Sampling (cont.)

An “optimal” proposal (e.g. Doucet et al. 2000)
q(Xk|Xk—1,Yr) = p(Xk|Xk—_1,Ys); use obs at tx in proposal at ¢
Papadakis et al. (2010) use this; van Leeuwen (2010) is similar

weights updated by w?, oc w! _p(y,|x% ;)

v Vv VvV V

for linear, Gaussian systems, easy to show that w? behaves like case
with prior as proposal, but var (log (p(yk|x};_1))) IS quantitatively
smaller, by amount depending on Q.

N, still grows exponentially, but w/ reduced exponent

> For fixed problem, benefits can be substantial, e.g.,

var(log(p(yx/xj,—1))) = avar(log(p(y,[x}))) = o
ensemble size for p(y,|xj,_;) ~ [ensemble size for p(y,|x},)]



Mixture (or Gaussian-Sum) Filters

Approximate pdfs as sums of Gaussians
> Start with {xi P’}. Approximate prior pdf as

Zw (x; X" PZ

> To compute p(x|y) must update w® (via PF-like eqns) and x?, P* (via
KF-like eqns); see Alspach and Sorenson (1972)

> Geophysical interest: Anderson and Anderson (1999), Bengtsson et
al. (2003), Smith (2007), Hoteit et al. (2011)

Limitations

> Update of weights subject to collapse, as in PF; closely related to
optimal proposal if we choose P' = Q

> Must update {x*, P’} in addition to weights



Summary

EnKF as approximation to BLUE
> EnKF # assume everything is Gaussian

> Non-Gaussian aspects depend on specific EnKF scheme

lterated ensemble smoother

> Mimics incremental 4DVar but not equivalent
(except in linear, Gaussian case!)

> Innovation fixed, gain changes at each iteration

Particle filters
> For naive particle filter, N, increases exponentially with problem size
> Potential for PF using more clever proposal distributions

> Evidence that these lead to N, that still increases exponentially, but
with smaller exponent



Comments

How important is non-Gaussianity for our applications?

A key idea missing from PFs (so far) is localization
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4DVar and an lterated Kalman Smoother

Recall 4DVar

> Consider perfect model/strong constraint for simplicity here. xq
determines x1.y, through x; = M (xx_1).

> Full cost function from log(p(xo|y;.1)):
J(xo) = (xo —x70)"(P{) " (xo _Txf01)
+ (Yin, — Hx:n))" Ry, (Y1, — H(xew)),



4DVar and an lterated Kalman Smoother

Recall incremental 4DVar
> Linearize about latest guess, xg. ,; €.g., H(xx) =~ H(x}) + Hox; and
Ox = My_10x5_1
> Yields quadratic cost function for increments:
J(6x0) = (60 — 0x) T (P]) =1 (%0 — 6x})
T (5Y1:Nt - H(leiNt)TR;}Vt<5y1:Nt — Hox1.n,),

> Iteration: Compute dx3 as minimizer of J; set xp™' = x + §x&;

compute x’fﬁj‘\i and linearize again



Incremental 4DVar = lterated KS

Equivalent linear, Gaussian system
> Consider:

dxo ~ N(0x}, P})
0x = My_10x;_1
0y, = Hoxyp + €, €r ~ N(O, Rk)

> Cost fn from this system is j(éxo) from incremental 4DVar

Iterated Kalman smoother
> 0X§ = arg min.J can also be computed with Kalman smoother:
5X(C)L — 5X(J)c + KO|1:Nt(5y1:Nt - H5X{:Nt)

> Thus, sequence of KS updates, with My, H and Koj1:n, from re-
linearization about XY, 5, at each step, reproduces incremental 4DVar

> Note that initial cov of dxg is Pg; does not change during iteration

> see also Jazwinski (1970, section 9.7)



lterated Ensemble KS

Approximate iterated KS using ensemble ideas
> Returning to full fields, KS update becomes
xp T = x7o + Koji:n, (Y1:n, — (H(XT.,) + H(Sx:{:Nt))
> Now make usual replacements

Hox] ~ H(x'}) — H(x),
K0|1:Nt ~ K0|1:Nt = cov(xo, H (x1:n,))|cov(H (x1.n,)) + Rl:Nt]_l



lterated Ensemble KS

Approximate iterated KS using ensemble ideas
> Returning to full fields, KS update becomes
xgTh=x"g+ Koji:n, (Y1:n, — (H(XT.,) + H(Sx{:Nt))
> Now make usual replacements
Hox] ~ H(x'}) — H(x),

A

Koji:nv, = Koji:n, = cov(xo, H(x1:n,))[cov(H (x1.n,)) + Rl:Nt]_l

lteration for ensemble smoother

> Ensemble ICs drawn from N(xg,Pg) to approximate linearization
about x™ in H and M.

> Ensemble mean at iteration n + 1 given by

n ~ N
XOJr1 = XfO + KO|1:Nt(y1:Nt — H(x1:n,) )

> Same as usual update, but gain changes at each iteration




Kalnay-Yang lteration for Ensemble KS

“Running in place” from Kalnay and Yang (2010)

> Ensemble mean at iteration n + 1 given by

XgH — Xg T KO|1:Nt(y1:Nt - H(Xlth) )

> Innovation is recalculated using most recent guess and gain changes
at each iteration

> Intended to speed spin up of EnKS when initial estimate of P(J; IS
poor

Converges to observations when H and M are linear

> LetL" =1-— HTIA(gH:Nt. Easy to show
Hx! ! = (H Lm> Hx/ o + <I - 11 Lm> y
m=1 m=1

> Properties in nonlinear case are unclear



