
Long Window 4D-Var

Mike Fisher1

ECMWF

September 7, 2011

1Thanks: Harri Auvinen, Lappeenranta University of Technology, Finland
Mike Fisher (ECMWF) Long Window 4D-Var September 7, 2011 1 / 51

Outline

Part I: Long Window 4D-Var.

Part II: Parallel Algorithms for Weak-Constraint 4D-Var.

Mike Fisher (ECMWF) Long Window 4D-Var September 7, 2011 2 / 51

Part I: Long Window 4D-Var.

Mike Fisher (ECMWF) Long Window 4D-Var September 7, 2011 3 / 51

Persistence of Past Information

All analysis systems combine:
I Information from the past.
I Current information.

Typically, the past information takes the form of a forecast from an
earlier analysis.

I It may also include covariance information, as in the Kalman Filter.

For how long does past information remain useful?

One way to evaluate this is a data-reinstatement experiment:
I Run the two analysis system experiments for a few weeks: one with

satellite data, one without.
I The system without satellite data will have larger analysis errors than

the system that includes the data.
I Reinstate the satellite data in the “no-satellite” experiment, and see

how quickly it converges back towards the control.

Mike Fisher (ECMWF) Long Window 4D-Var September 7, 2011 4 / 51

Persistence of Past Information

All analysis systems combine:
I Information from the past.
I Current information.

Typically, the past information takes the form of a forecast from an
earlier analysis.

I It may also include covariance information, as in the Kalman Filter.

For how long does past information remain useful?

One way to evaluate this is a data-reinstatement experiment:
I Run the two analysis system experiments for a few weeks: one with

satellite data, one without.
I The system without satellite data will have larger analysis errors than

the system that includes the data.
I Reinstate the satellite data in the “no-satellite” experiment, and see

how quickly it converges back towards the control.

Mike Fisher (ECMWF) Long Window 4D-Var September 7, 2011 4 / 51

Persistence of Past Information

All analysis systems combine:
I Information from the past.
I Current information.

Typically, the past information takes the form of a forecast from an
earlier analysis.

I It may also include covariance information, as in the Kalman Filter.

For how long does past information remain useful?

One way to evaluate this is a data-reinstatement experiment:
I Run the two analysis system experiments for a few weeks: one with

satellite data, one without.
I The system without satellite data will have larger analysis errors than

the system that includes the data.
I Reinstate the satellite data in the “no-satellite” experiment, and see

how quickly it converges back towards the control.

Mike Fisher (ECMWF) Long Window 4D-Var September 7, 2011 4 / 51

Persistence of Past Information

T+24
S.hem Lat -90.0 to -20.0 Lon -180.0 to 180.0

Root mean square error forecast
500hPa Geopotential

Time series curves

15
AUGUST 2005

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
5

10

15

20

25

30

35

40

45

50

all obs

all obs

Mike Fisher (ECMWF) Long Window 4D-Var September 7, 2011 5 / 51

Persistence of Past Information

What about covariance information?

In a Kalman filter, how much influence does the covariance matrix
from a few days ago have on the current covariance matrix?

Variance and correlation matrices for an EKF for the Lorenz 1996 model:

1 40
0.000

0.015

0.030

0.045

0.060

0.075

0.090

0.105

0.120

0.135

0.150

−1

−0.5

0

0.5

1

Spun up for 5 days from a static
covariance matrix.

1 40
0.000

0.015

0.030

0.045

0.060

0.075

0.090

0.105

0.120

0.135

0.150

−1

−0.5

0

0.5

1

Spun up for 230 days from a
static covariance matrix.

From: Fisher, Leutbecher and Kelly 2005, QJRMS.

Mike Fisher (ECMWF) Long Window 4D-Var September 7, 2011 6 / 51

Persistence of Past Information

What about covariance information?

In a Kalman filter, how much influence does the covariance matrix
from a few days ago have on the current covariance matrix?

Variance and correlation matrices for an EKF for the Lorenz 1996 model:

1 40
0.000

0.015

0.030

0.045

0.060

0.075

0.090

0.105

0.120

0.135

0.150

−1

−0.5

0

0.5

1

Spun up for 5 days from a static
covariance matrix.

1 40
0.000

0.015

0.030

0.045

0.060

0.075

0.090

0.105

0.120

0.135

0.150

−1

−0.5

0

0.5

1

Spun up for 230 days from a
static covariance matrix.

From: Fisher, Leutbecher and Kelly 2005, QJRMS.

Mike Fisher (ECMWF) Long Window 4D-Var September 7, 2011 6 / 51

Equivalence of 4D-Var and KF

For a linear system, 4D-Var is algebraically equivalent to the Kalman
smoother:

Weak Constraint 4D-Var

J =
1

2
(x0 − xb)T B−1 (x0 − xb)

+
1

2

NX
k=0

(yk − Hk xk)T R−1
k (yk − Hk xk)

+
1

2

NX
k=1

qT
k Q−1

k qk

where qk = xk − Mk xk−1.

algebra←→

Kalman Smoother

x̃a
k = x̃ f

k + Kk

“
yk − Hk x̃ f

k

”
P̃a

k =

»“
P̃ f

k

”−1
+ HT

k R−1
k Hk

–−1

x̃ f
k+1 = Mk+1 x̃a

k

P̃ f
k+1 = Mk+1P̃a

k MT
k+1 + Qk+1

xa
N = x̃a

N

Pa
N = P̃a

N

xk = x̃a
k + Ak

“
xa
k+1 − x f

k+1

”
Pa

k = P̃a
k + Ak

“
Pa

k+1 − P f
k+1

”
AT

k

where Kk = P̃a
k HT

k R−1
k

Ak = P̃a
k Mk+1

“
P̃ f

k+1

”−1

x̃ f
0 = xb P̃ f

0 = B

Mike Fisher (ECMWF) Long Window 4D-Var September 7, 2011 7 / 51

Equivalence of 4D-Var and KF

4D-Var and the Kalman Smoother produce exactly the same sequence
of states x0, . . . , xN , given the same initial state xb and covariance
matrix B.

At the end of the analysis window (xN), both are equivalent to the
Kalman Filter.

If xb is far enough in the past, then xN will be insensitive to old
information: i.e. to xb and B.

In this case, 4D-Var will give the same analysis xN as a Kalman Filter
that has been running indefinitely.

Long-Window 4D-Var is an algorithm for solving the Kalman Filter
equations.

Strictly, this equivalence holds only for a linear system. This is not
fundamental to the argument. We have to decide how to linearise.

I The quadratic inner loop of 4D-Var has an equivalent Kalman
Smoother formulation. (c.f. Iterated EKF — Wishner et al., 1969;
Bell, 1994.)

Mike Fisher (ECMWF) Long Window 4D-Var September 7, 2011 8 / 51

Equivalence of 4D-Var and KF

4D-Var and the Kalman Smoother produce exactly the same sequence
of states x0, . . . , xN , given the same initial state xb and covariance
matrix B.

At the end of the analysis window (xN), both are equivalent to the
Kalman Filter.

If xb is far enough in the past, then xN will be insensitive to old
information: i.e. to xb and B.

In this case, 4D-Var will give the same analysis xN as a Kalman Filter
that has been running indefinitely.

Long-Window 4D-Var is an algorithm for solving the Kalman Filter
equations.

Strictly, this equivalence holds only for a linear system. This is not
fundamental to the argument. We have to decide how to linearise.

I The quadratic inner loop of 4D-Var has an equivalent Kalman
Smoother formulation. (c.f. Iterated EKF — Wishner et al., 1969;
Bell, 1994.)

Mike Fisher (ECMWF) Long Window 4D-Var September 7, 2011 8 / 51

Equivalence of 4D-Var and KF

4D-Var and the Kalman Smoother produce exactly the same sequence
of states x0, . . . , xN , given the same initial state xb and covariance
matrix B.

At the end of the analysis window (xN), both are equivalent to the
Kalman Filter.

If xb is far enough in the past, then xN will be insensitive to old
information: i.e. to xb and B.

In this case, 4D-Var will give the same analysis xN as a Kalman Filter
that has been running indefinitely.

Long-Window 4D-Var is an algorithm for solving the Kalman Filter
equations.

Strictly, this equivalence holds only for a linear system. This is not
fundamental to the argument. We have to decide how to linearise.

I The quadratic inner loop of 4D-Var has an equivalent Kalman
Smoother formulation. (c.f. Iterated EKF — Wishner et al., 1969;
Bell, 1994.)

Mike Fisher (ECMWF) Long Window 4D-Var September 7, 2011 8 / 51

Equivalence of 4D-Var and KF

4D-Var and the Kalman Smoother produce exactly the same sequence
of states x0, . . . , xN , given the same initial state xb and covariance
matrix B.

At the end of the analysis window (xN), both are equivalent to the
Kalman Filter.

If xb is far enough in the past, then xN will be insensitive to old
information: i.e. to xb and B.

In this case, 4D-Var will give the same analysis xN as a Kalman Filter
that has been running indefinitely.

Long-Window 4D-Var is an algorithm for solving the Kalman Filter
equations.

Strictly, this equivalence holds only for a linear system. This is not
fundamental to the argument. We have to decide how to linearise.

I The quadratic inner loop of 4D-Var has an equivalent Kalman
Smoother formulation. (c.f. Iterated EKF — Wishner et al., 1969;
Bell, 1994.)

Mike Fisher (ECMWF) Long Window 4D-Var September 7, 2011 8 / 51

Equivalence of 4D-Var and KF

4D-Var and the Kalman Smoother produce exactly the same sequence
of states x0, . . . , xN , given the same initial state xb and covariance
matrix B.

At the end of the analysis window (xN), both are equivalent to the
Kalman Filter.

If xb is far enough in the past, then xN will be insensitive to old
information: i.e. to xb and B.

In this case, 4D-Var will give the same analysis xN as a Kalman Filter
that has been running indefinitely.

Long-Window 4D-Var is an algorithm for solving the Kalman Filter
equations.

Strictly, this equivalence holds only for a linear system. This is not
fundamental to the argument. We have to decide how to linearise.

I The quadratic inner loop of 4D-Var has an equivalent Kalman
Smoother formulation. (c.f. Iterated EKF — Wishner et al., 1969;
Bell, 1994.)

Mike Fisher (ECMWF) Long Window 4D-Var September 7, 2011 8 / 51

Equivalence of 4D-Var and KF

Fisher, Leutbecher and Kelly (2005) demonstrated the equivalence of
4D-Var and the Kalman Filter for a Lorenz-1996 system:

0 2 4 6 8 10
Length of Analysis Window (days)

0

0.1

0.2

0.3

0.4

R
M

S
A

na
ly

si
s

E
rr

or

Mean analysis error at the end of the 4D-Var window. (Mean OI and EKF
analysis error are shown by dotted and dashed lines, respectively.)

Mike Fisher (ECMWF) Long Window 4D-Var September 7, 2011 9 / 51

Equivalence of 4D-Var and KF

Fisher, Leutbecher and Kelly’s results were for a somewhat unrealistic
system:

The Lorenz-1996 system has some shortcomings as an analogue for
an NWP model.

The model was perfect.

The analysis system did not have a B matrix.

The system was rather well observed (60% of gridpoints observed).

Mike Fisher (ECMWF) Long Window 4D-Var September 7, 2011 10 / 51

Equivalence of 4D-Var and KF

Recent work carried out by Harri Auvinen (Univ Lappeenranta, Finland)
during a visit to ECMWF has addressed the shortcomings of the earlier
work:

A more realistic model: two-level quasi-geostrophic channel.

The model has realistic error-growth and nonlinearity.
I Error doubling time ≈ 30 hours.
I Nonlinearity index (Gilmour et al.,2001) reaches 0.7 after ≈ 60 hours.

Realistic model error, produced by perturbing model parameters (layer
depths). The resulting error is:

I flow-dependent
I time-correlated
I strongly anisotropic and inhomogeneous
I contains a significant systematic component
I poorly described by the analysis system’s Q matrix

The analysis system incudes a B matrix.

Only 1.25% of gridpoints observed every 6 hours.

Mike Fisher (ECMWF) Long Window 4D-Var September 7, 2011 11 / 51

Equivalence of 4D-Var and KF
The cycling scheme is key to the success of long-window 4D-Var:

The overlap between analyses ensures that each analysis starts from a very
good first-guess. Only very small adjustments to the first guess are
required. The linear approximation is accurate.

Mike Fisher (ECMWF) Long Window 4D-Var September 7, 2011 12 / 51

Equivalence of 4D-Var and KF

0 12 24 36 48 60 72 84 96 108 120 132 144 156 168 180
0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8
Mean analysis and !rst−guess error for di#erent window lengths

Length of the assimilation window (hours)

R
M

S
 e

rr
o

r
fo

r
n

o
n

−
d

im
e

n
si

o
n

a
l s

tr
e

a
m

fu
n

ct
io

n Initial guess

Analysis

Mike Fisher (ECMWF) Long Window 4D-Var September 7, 2011 13 / 51

Conclusions to Part I

Analyses are insensitive to information more than a few days old.
I Data-reinstatement experiments show that observations and

backgrounds retain their usefulness for ≈ 3 days.
I Experiments with an EKF in a simple model suggest covariance

information remains useful for a similar period.

Weak constraint 4D-Var is algebraically equivalent to the Kalman
smoother.

For sufficiently long windows, weak constraint 4D-Var analyses are
identical to those of the (un-approximated) Kalman smoother.

Long window 4D-Var can be seen as an algorithm for solving the
Kalman filter equations.

Extending the analysis window can improve the analysis even if the
model error is imperfectly described.

Time-to-nonlinearity is not a barrier on window length.

Mike Fisher (ECMWF) Long Window 4D-Var September 7, 2011 14 / 51

Part II: Parallel Algorithms for Weak-Constraint 4D-Var.

Mike Fisher (ECMWF) Long Window 4D-Var September 7, 2011 15 / 51

Can we afford (Long Window) 4D-Var?

4D-Var is a highly sequential algorithm:
I Iterations of the minimisation algorithm are sequential.
I TL and Adjoint integrations run one after the other.
I Model timesteps follow each other.

Computers are becoming ever more parallel, but processors are not
getting faster.

Unless we do something to make 4D-Var more parallel, we will soon
find that 4D-Var becomes un-affordable (even with a 12-hour
window).

We cannot make the model more parallel.
I The inner loops of 4D-Var run with a few 10’s of grid columns per

processor.
I This is barely enough to mask inter-processor communication costs.

We have to use more parallel algorithms.

Mike Fisher (ECMWF) Long Window 4D-Var September 7, 2011 16 / 51

Can we afford (Long Window) 4D-Var?

4D-Var is a highly sequential algorithm:
I Iterations of the minimisation algorithm are sequential.
I TL and Adjoint integrations run one after the other.
I Model timesteps follow each other.

Computers are becoming ever more parallel, but processors are not
getting faster.

Unless we do something to make 4D-Var more parallel, we will soon
find that 4D-Var becomes un-affordable (even with a 12-hour
window).

We cannot make the model more parallel.
I The inner loops of 4D-Var run with a few 10’s of grid columns per

processor.
I This is barely enough to mask inter-processor communication costs.

We have to use more parallel algorithms.

Mike Fisher (ECMWF) Long Window 4D-Var September 7, 2011 16 / 51

Can we afford (Long Window) 4D-Var?

4D-Var is a highly sequential algorithm:
I Iterations of the minimisation algorithm are sequential.
I TL and Adjoint integrations run one after the other.
I Model timesteps follow each other.

Computers are becoming ever more parallel, but processors are not
getting faster.

Unless we do something to make 4D-Var more parallel, we will soon
find that 4D-Var becomes un-affordable (even with a 12-hour
window).

We cannot make the model more parallel.
I The inner loops of 4D-Var run with a few 10’s of grid columns per

processor.
I This is barely enough to mask inter-processor communication costs.

We have to use more parallel algorithms.

Mike Fisher (ECMWF) Long Window 4D-Var September 7, 2011 16 / 51

Can we afford (Long Window) 4D-Var?

4D-Var is a highly sequential algorithm:
I Iterations of the minimisation algorithm are sequential.
I TL and Adjoint integrations run one after the other.
I Model timesteps follow each other.

Computers are becoming ever more parallel, but processors are not
getting faster.

Unless we do something to make 4D-Var more parallel, we will soon
find that 4D-Var becomes un-affordable (even with a 12-hour
window).

We cannot make the model more parallel.
I The inner loops of 4D-Var run with a few 10’s of grid columns per

processor.
I This is barely enough to mask inter-processor communication costs.

We have to use more parallel algorithms.

Mike Fisher (ECMWF) Long Window 4D-Var September 7, 2011 16 / 51

Incremental Weak Constraint 4D-Var

Weak Constraint 4D-Var splits the analysis window into a set of
sub-windows.

The cost function is a function of the states x0, x1, . . . , xN defined at
the start of each sub-window:

J(x0, x1, . . . , xN) =
1

2
(x0 − xb)T B−1 (x0 − xb)

+
1

2

N∑
k=0

(yk −Hk(xk))T R−1
k (yk −Hk(xk))

+
1

2

N∑
k=1

(qk − q̄)T Q−1
k (qk − q̄)

where qk = xk −Mk(xk−1).

Mike Fisher (ECMWF) Long Window 4D-Var September 7, 2011 17 / 51

Incremental Weak Constraint 4D-Var

We use an incremental algorithm to reduce the computational cost.

In weak-constraint 4D-Var, the inner loop produces a
four-dimensional increment, δx0, . . . , δxN , which is used to update the
four-dimensional state x0, x1, . . . , xN at the outer loop:

x
(n)
k = x

(n−1)
k + δx

(n−1)
k

where (n) is the outer loop index.

Outer-loop model integrations are required to calculate

d
(n)
k = yk −H(x

(n)
k)

c
(n)
k = q̄ − xk +Mk(xk−1)

These integrations can be performed in parallel for each sub-window.

Parallelising the outer loop is (in principle) easy.

Mike Fisher (ECMWF) Long Window 4D-Var September 7, 2011 18 / 51

Incremental Weak Constraint 4D-Var

We use an incremental algorithm to reduce the computational cost.

In weak-constraint 4D-Var, the inner loop produces a
four-dimensional increment, δx0, . . . , δxN , which is used to update the
four-dimensional state x0, x1, . . . , xN at the outer loop:

x
(n)
k = x

(n−1)
k + δx

(n−1)
k

where (n) is the outer loop index.

Outer-loop model integrations are required to calculate

d
(n)
k = yk −H(x

(n)
k)

c
(n)
k = q̄ − xk +Mk(xk−1)

These integrations can be performed in parallel for each sub-window.

Parallelising the outer loop is (in principle) easy.

Mike Fisher (ECMWF) Long Window 4D-Var September 7, 2011 18 / 51

Incremental Weak Constraint 4D-Var

We use an incremental algorithm to reduce the computational cost.

In weak-constraint 4D-Var, the inner loop produces a
four-dimensional increment, δx0, . . . , δxN , which is used to update the
four-dimensional state x0, x1, . . . , xN at the outer loop:

x
(n)
k = x

(n−1)
k + δx

(n−1)
k

where (n) is the outer loop index.

Outer-loop model integrations are required to calculate

d
(n)
k = yk −H(x

(n)
k)

c
(n)
k = q̄ − xk +Mk(xk−1)

These integrations can be performed in parallel for each sub-window.

Parallelising the outer loop is (in principle) easy.

Mike Fisher (ECMWF) Long Window 4D-Var September 7, 2011 18 / 51

Incremental Weak Constraint 4D-Var

We use an incremental algorithm to reduce the computational cost.

In weak-constraint 4D-Var, the inner loop produces a
four-dimensional increment, δx0, . . . , δxN , which is used to update the
four-dimensional state x0, x1, . . . , xN at the outer loop:

x
(n)
k = x

(n−1)
k + δx

(n−1)
k

where (n) is the outer loop index.

Outer-loop model integrations are required to calculate

d
(n)
k = yk −H(x

(n)
k)

c
(n)
k = q̄ − xk +Mk(xk−1)

These integrations can be performed in parallel for each sub-window.

Parallelising the outer loop is (in principle) easy.

Mike Fisher (ECMWF) Long Window 4D-Var September 7, 2011 18 / 51

Incremental Weak Constraint 4D-Var
The inner loop minimises:

Ĵ(δx
(n)
0 , . . . , δx

(n)
N) =

1

2

(
δx0 − b(n)

)T
B−1

(
δx0 − b(n)

)
+

1

2

N∑
k=0

(
H

(n)
k δxk − d

(n)
k

)T
R−1

k

(
H

(n)
k δxk − d

(n)
k

)
+

1

2

N∑
k=1

(
δqk − c

(n)
k

)T
Q−1

k

(
δqk − c

(n)
k

)
δqk = δxk −M

(n)
k δxk−1,

and where b(n), c
(n)
k and d

(n)
k come from the outer loop:

b(n) = xb − x
(n)
0

c
(n)
k = q̄ − q

(n)
k

d
(n)
k = yk −Hk(x

(n)
k)

Mike Fisher (ECMWF) Long Window 4D-Var September 7, 2011 19 / 51

Weak Constraint 4D-Var: Inner Loop

Parallelising the inner loop is not trivial!

We have two options:
I Parallelise the minimiser (compute multiple cost-function gradients at

each iteration, in the hope that this will reduce the number of
iterations required).

I Parallelise the computations within a gradient calculation.

In my view, it is unlikely that parallel minimisation will help us much.

We have to parallelise the computations within each iteration.

Mike Fisher (ECMWF) Long Window 4D-Var September 7, 2011 20 / 51

Parallelising within an Iteration

The model is already parallel in both horizontal directions.

The modellers tell us that it will be hard to parallelise in the vertical
(and we already have too little work per processor).

We are left with parallelising in the time direction.

Weak-constraint 4D-Var offers some interesting possibilities for
parallelisation in the time direction.

I We managed to parallelise over sub-windows at the outer loop of
incremental 4D-Var.

Can we do the same for the inner loop?

Mike Fisher (ECMWF) Long Window 4D-Var September 7, 2011 21 / 51

Weak Constraint 4D-Var: Inner Loop
Dropping the outer loop index (n), the inner loop of weak-constraints
4D-Var minimises:

Ĵ(δx0, . . . , δxN) =
1

2
(δx0 − b)T B−1 (δx0 − b)

+
1

2

N∑
k=0

(Hkδxk − dk)T R−1
k (Hkδxk − dk)

+
1

2

N∑
k=1

(δqk − ck)T Q−1
k (δqk − ck)

where δqk = δxk −Mkδxk−1,
and where b, ck and dk come from the outer loop:

b = xb − x0

ck = q̄ − qk

dk = yk −Hk(xk)

Mike Fisher (ECMWF) Long Window 4D-Var September 7, 2011 22 / 51

Weak Constraint 4D-Var: Inner Loop
We can simplify this further by defining some 4D vectors and matrices:

δx =


δx0

δx1
...
δxN

 δp =


δx0

δq1
...
δqN


These vectors are related through δqk = δxk −Mkδxk−1.
We can write this relationship in matrix form as:

δp = Lδx

where:

L =


I
−M1 I

−M2 I
. . .

. . .

−MN I


Mike Fisher (ECMWF) Long Window 4D-Var September 7, 2011 23 / 51

Weak Constraint 4D-Var: Inner Loop

L =


I
−M1 I

−M2 I
. . .

. . .

−MN I


δp = Lδx can be done in parallel: δqk = δxk −Mkδxk−1.
We know all the δxk−1

′s. We can apply all the Mk
′s simultaneously.

δx = L−1δp is sequential: δxk = Mkδxk−1 + δqk .
We have to generate each δxk−1 in turn before we can apply the next Mk .

Mike Fisher (ECMWF) Long Window 4D-Var September 7, 2011 24 / 51

Weak Constraint 4D-Var: Inner Loop

We will also define:

R =


R0

R1

. . .

RN

 , D =


B

Q1

. . .

QN

 ,

H =


H0

H1

. . .

HN

 , b =


b
c1
...
cN

 d =


d0

d1
...
dN

 .

Mike Fisher (ECMWF) Long Window 4D-Var September 7, 2011 25 / 51

Weak Constraint 4D-Var: Inner Loop

With these definitions, we can write the inner-loop cost function either as
a function of δx:

J(δx) = (Lδx− b)TD−1(Lδx− b) + (Hδx− d)TR−1(Hδx− d)

Or as a function of δp:

J(δp) = (δp− b)TD−1(δp− b) + (HL−1δp− d)TR−1(HL−1δp− d)

Mike Fisher (ECMWF) Long Window 4D-Var September 7, 2011 26 / 51

Forcing Formulation

J(δp) = (δp− b)TD−1(δp− b) + (HL−1δp− d)TR−1(HL−1δp− d)

This version of the cost function is sequential.
I It contains L−1.

It closely resembles 3D-Var and strong-constraint 4D-Var.

In particular, we can precondition it using D1/2:

J(χ) = χTχ+ (HL−1δp− d)TR−1(HL−1δp− d)

where δp = D1/2χ+ b.

We understand how to minimise this.

Mike Fisher (ECMWF) Long Window 4D-Var September 7, 2011 27 / 51

4D State Formulation

J(δx) = (Lδx− b)TD−1(Lδx− b) + (Hδx− d)TR−1(Hδx− d)

This version of the cost function is parallel.
I It does not contain L−1.

We could precondition it using δx = L−1(D1/2χ+ b).

This would give exactly the same J(χ) as before.

But, we have introduced a sequential model integration (i.e. L−1)
into the preconditioner.

Mike Fisher (ECMWF) Long Window 4D-Var September 7, 2011 28 / 51

Plan A: State Formulation, Approximate Preconditioner

In the forcing (δp) formulation (and in 4D-PSAS) L−1 appears in the
cost function.

I These formulations are inherently sequential.
I We cannot modify the cost function without changing the problem.

In the 4D-state (δx) formulation, L−1 appears in the preconditioner.
I We are free to modify the preconditioner as we wish.

This suggests we replace L−1 by a cheap approximation:

δx = L̃−1(D1/2χ+ b)

If we do this, we can no longer write Jb + Jq = χTχ.

We have to calculate δx, and explicity evaluate

Jb + Jq = (Lδx− b)TD−1(Lδx− b)

This is where we run into problems. . .

Mike Fisher (ECMWF) Long Window 4D-Var September 7, 2011 29 / 51

Plan A: State Formulation, Approximate Preconditioner

When we approximate L−1 in the preconditioner, the Hessian of
Jb + Jq (with respect to χ) is no longer the identity matrix, but:

(Jb + Jq)′′ = DT/2L̃−TLTD−1LL̃−1D1/2

Unfortunately, the matrix D−1, has some enormous eigenvalues.
I Large spatial scales have near-zero variances.

This makes the preconditioning extremely sensitive to the accuracy
with which L̃ approximates L.

I have tried a number of different approximations L. They all gave
condition numbers for the minimisation of O(109), and the
minimisation failed to converge.

It seems we need to avoid algorithms that rely on a cancellation
between D and D−1.

We need a Plan B!

Mike Fisher (ECMWF) Long Window 4D-Var September 7, 2011 30 / 51

Plan A: State Formulation, Approximate Preconditioner

When we approximate L−1 in the preconditioner, the Hessian of
Jb + Jq (with respect to χ) is no longer the identity matrix, but:

(Jb + Jq)′′ = DT/2L̃−TLTD−1LL̃−1D1/2

Unfortunately, the matrix D−1, has some enormous eigenvalues.
I Large spatial scales have near-zero variances.

This makes the preconditioning extremely sensitive to the accuracy
with which L̃ approximates L.

I have tried a number of different approximations L. They all gave
condition numbers for the minimisation of O(109), and the
minimisation failed to converge.

It seems we need to avoid algorithms that rely on a cancellation
between D and D−1.

We need a Plan B!

Mike Fisher (ECMWF) Long Window 4D-Var September 7, 2011 30 / 51

Plan B: Saddle Point Formulation

J(δx) = (Lδx− b)TD−1(Lδx− b) + (Hδx− d)TR−1(Hδx− d)

At the minimum:

∇J = LTD−1(Lδx− b) + HTR−1(Hδx− d) = 0

Define:
λ = D−1(b− Lδx), µ = R−1(d−Hδx)

Then:

Dλ+ Lδx = b
Rµ+ Hδx = d

LTλ+ HTµ = 0

 =⇒

 D 0 L
0 R H
LT HT 0

 λ
µ
δx

 =

 b
d
0



Mike Fisher (ECMWF) Long Window 4D-Var September 7, 2011 31 / 51

Plan B: Saddle Point Formulation

J(δx) = (Lδx− b)TD−1(Lδx− b) + (Hδx− d)TR−1(Hδx− d)

At the minimum:

∇J = LTD−1(Lδx− b) + HTR−1(Hδx− d) = 0

Define:
λ = D−1(b− Lδx), µ = R−1(d−Hδx)

Then:

Dλ+ Lδx = b
Rµ+ Hδx = d

LTλ+ HTµ = 0

 =⇒

 D 0 L
0 R H
LT HT 0

 λ
µ
δx

 =

 b
d
0



Mike Fisher (ECMWF) Long Window 4D-Var September 7, 2011 31 / 51

Plan B: Saddle Point Formulation

J(δx) = (Lδx− b)TD−1(Lδx− b) + (Hδx− d)TR−1(Hδx− d)

At the minimum:

∇J = LTD−1(Lδx− b) + HTR−1(Hδx− d) = 0

Define:
λ = D−1(b− Lδx), µ = R−1(d−Hδx)

Then:

Dλ+ Lδx = b
Rµ+ Hδx = d

LTλ+ HTµ = 0

 =⇒

 D 0 L
0 R H
LT HT 0

 λ
µ
δx

 =

 b
d
0



Mike Fisher (ECMWF) Long Window 4D-Var September 7, 2011 31 / 51

Saddle Point Formulation

 D 0 L
0 R H
LT HT 0

 λ
µ
δx

 =

 b
d
0



This is called the saddle point formulation of 4D-Var.

The matrix is a saddle point matrix.

The matrix is real, symmetric, indefinite.

Note that the matrix contains no inverse matrices.

We can apply the matrix without requiring a sequential model
integration (i.e. we can parallelise over sub-windows).

We can hope that the problem is well conditioned (since we don’t
multiply by D−1).

Mike Fisher (ECMWF) Long Window 4D-Var September 7, 2011 32 / 51

Saddle Point Formulation
Alternative derivation:

min
δp,δw

J(δp, δw) = (δp− b)TD−1(δp− b) + (δw − d)TR−1(δw − d)

subject to δp = Lδx and δw = Hδx.

L(δx, δp, δw, λ, µ) = (δp− b)TD−1(δp− b) + (δw − d)TR−1(δw − d)

+λT(δp− Lδx) + µT(δw −Hδx)

∂L
∂λ = 0⇒ δp = Lδx
∂L
∂µ = 0⇒ δw = Hδx

∂L
∂δp = 0⇒ D−1(δp− b) + λ = 0

∂L
∂δw = 0⇒ R−1(δw − d) + µ = 0
∂L
∂δx = 0⇒ LTλ+ HTµ = 0

Mike Fisher (ECMWF) Long Window 4D-Var September 7, 2011 33 / 51

Saddle Point Formulation
Alternative derivation:

min
δp,δw

J(δp, δw) = (δp− b)TD−1(δp− b) + (δw − d)TR−1(δw − d)

subject to δp = Lδx and δw = Hδx.

L(δx, δp, δw, λ, µ) = (δp− b)TD−1(δp− b) + (δw − d)TR−1(δw − d)

+λT(δp− Lδx) + µT(δw −Hδx)

∂L
∂λ = 0⇒ δp = Lδx
∂L
∂µ = 0⇒ δw = Hδx

∂L
∂δp = 0⇒ D−1(δp− b) + λ = 0

∂L
∂δw = 0⇒ R−1(δw − d) + µ = 0
∂L
∂δx = 0⇒ LTλ+ HTµ = 0

Mike Fisher (ECMWF) Long Window 4D-Var September 7, 2011 33 / 51

Saddle Point Formulation
Alternative derivation:

min
δp,δw

J(δp, δw) = (δp− b)TD−1(δp− b) + (δw − d)TR−1(δw − d)

subject to δp = Lδx and δw = Hδx.

L(δx, δp, δw, λ, µ) = (δp− b)TD−1(δp− b) + (δw − d)TR−1(δw − d)

+λT(δp− Lδx) + µT(δw −Hδx)

∂L
∂λ = 0⇒ δp = Lδx
∂L
∂µ = 0⇒ δw = Hδx

∂L
∂δp = 0⇒ D−1(δp− b) + λ = 0

∂L
∂δw = 0⇒ R−1(δw − d) + µ = 0
∂L
∂δx = 0⇒ LTλ+ HTµ = 0

Mike Fisher (ECMWF) Long Window 4D-Var September 7, 2011 33 / 51

Saddle Point Formulation

Lagrangian: L(δx, δp, δw, λ, µ)

4D-Var solves the primal problem: minimise along AXB.

4D-PSAS solves the Lagrangian dual problem: maximise along CXD.

The saddle point formulation finds the saddle point of L.

The saddle point formulation is neither 4D-Var nor 4D-PSAS.

Mike Fisher (ECMWF) Long Window 4D-Var September 7, 2011 34 / 51

Saddle Point Formulation

To solve the saddle point system, we have to precondition it.

Preconditioning saddle point systems is the subject of much current
research. It is something of a black art!

I See e.g. Benzi and Wathen (2008), Benzi, Golub and Liesen (2005).

One possibility is (c.f. Bergamaschi, et al., 2011):

P̃ =

 D 0 L̃
0 R 0

L̃T 0 0



⇒ P̃−1 =

 0 0 L̃−T

0 R−1 0

L̃−1 0 −L̃−1DL̃−T


Note that P̃−1 does not contain D−1.

Mike Fisher (ECMWF) Long Window 4D-Var September 7, 2011 35 / 51

Saddle Point Formulation

We still need an approximate inverse of L.

One approach is to use the following identity (exercise for the reader!):

L−1 = I + (I− L) + (I− L)2 + . . .+ (I− L)N−1

Since this is a power series expansion, it suggests truncating the series
at some order < N − 1.

Mike Fisher (ECMWF) Long Window 4D-Var September 7, 2011 36 / 51

Saddle Point Formulation
OOPS, QG model, 24-hour window with 8 sub-windows.

100 20 30 40 50 60 70 80 90 100

F

7

3

2

1

0

Iteration

100

R
e

d
u

ct
io

n
 in

 r
e

si
d

u
a

l n
o

rm

10-1

10-2

10-3

10-4

10-5

10-6

10-7

10-8

10-9

Convergence as a function of iteration for different truncations of the
series expansion for L. (“F” = Forcing formulation.)

Mike Fisher (ECMWF) Long Window 4D-Var September 7, 2011 37 / 51

Saddle Point Formulation
OOPS, QG model, 24-hour window with 8 sub-windows.

F

7

3210

100
R

e
d

u
ct

io
n

 in
 r

e
si

d
u

a
l n

o
rm

10-1

10-2

10-3

10-4

10-5

10-6

10-7

10-8

10-9

Sequential Cost (TL+AD Sub-window Integrations)
1000 200 300 400 500 600 700 800

Convergence as a function of sequential sub-window integrations for
different truncations of the series expansion for L.

Mike Fisher (ECMWF) Long Window 4D-Var September 7, 2011 38 / 51

Conclusions to Part II

4D-Var is not dead yet.
I Beware (parallel) doom-mongers.
I c.f. the long-predicted death of spectral models.

In principle, the 4D-state and saddle point formulations allow
parallelisation over sub-windows.

4D-PSAS and the forcing formulation are inherently sequential.

Ill-conditioning of D−1 is a problem for the 4D-state formulation.

The saddle point formulation is already fast enough to be useful.
I Better preconditioners may make it even faster.

Experiments with the QG model were conducted using the
Object-Oriented Prediction System (OOPS).

I OOPS lived up to its billing as an easy to use, flexible framework for
work on data assimilation algorithms.

Mike Fisher (ECMWF) Long Window 4D-Var September 7, 2011 39 / 51

The ECMWF Assimilation
System in 2020?

Hybrid Ensemble 4D Particle Ensemble Weak-Constraint

Saddle-Point Long-Window KF Var

What We Really Want

?

Mike Fisher (ECMWF) Long Window 4D-Var September 7, 2011 40 / 51

The ECMWF Assimilation
System in 2020?

Hybrid Ensemble 4D Particle Ensemble Weak-Constraint

Saddle-Point Long-Window KF Var

What We Really Want

?

Mike Fisher (ECMWF) Long Window 4D-Var September 7, 2011 40 / 51

Backup Slides

Backup Slides

Mike Fisher (ECMWF) Long Window 4D-Var September 7, 2011 41 / 51

Persistence of Past Information

T+120
S.hem Lat -90.0 to -20.0 Lon -180.0 to 180.0

Root mean square error forecast
500hPa Geopotential

Time series curves

15
AUGUST 2005

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
30

40

50

60

70

80

90

100

110

120

all obs

all obs

Mike Fisher (ECMWF) Long Window 4D-Var September 7, 2011 42 / 51

Parallel Minimisation

The minimisation algorithms used in the inner loop of 4D-Var are
based on Krylov methods: conjugate gradients, quasi-Newton.

A Krylov method solves a linear equation Ax = b in the sub-space
generated by b:

{b,Ab,A2b, . . . ,AKb}

The reason for this is that the inverse of A can be expressed as a
polynomial in A (Cayley-Hamilton theorem):

A−1 = α0I + α1A + α2A
2 + . . . αKAK

⇒ x = A−1b = α0b + α1Ab + α2A
2b + . . . αKAKb

The right-hand side, b, is very important to the success of the
method. A sub-space generated by a different vector c will not
contain a good approximation to the solution of Ax = b.

Mike Fisher (ECMWF) Long Window 4D-Var September 7, 2011 43 / 51

Parallel Minimisation

The minimisation algorithms used in the inner loop of 4D-Var are
based on Krylov methods: conjugate gradients, quasi-Newton.

A Krylov method solves a linear equation Ax = b in the sub-space
generated by b:

{b,Ab,A2b, . . . ,AKb}

The reason for this is that the inverse of A can be expressed as a
polynomial in A (Cayley-Hamilton theorem):

A−1 = α0I + α1A + α2A
2 + . . . αKAK

⇒ x = A−1b = α0b + α1Ab + α2A
2b + . . . αKAKb

The right-hand side, b, is very important to the success of the
method. A sub-space generated by a different vector c will not
contain a good approximation to the solution of Ax = b.

Mike Fisher (ECMWF) Long Window 4D-Var September 7, 2011 43 / 51

Parallel Minimisation

The minimisation algorithms used in the inner loop of 4D-Var are
based on Krylov methods: conjugate gradients, quasi-Newton.

A Krylov method solves a linear equation Ax = b in the sub-space
generated by b:

{b,Ab,A2b, . . . ,AKb}

The reason for this is that the inverse of A can be expressed as a
polynomial in A (Cayley-Hamilton theorem):

A−1 = α0I + α1A + α2A
2 + . . . αKAK

⇒ x = A−1b = α0b + α1Ab + α2A
2b + . . . αKAKb

The right-hand side, b, is very important to the success of the
method. A sub-space generated by a different vector c will not
contain a good approximation to the solution of Ax = b.

Mike Fisher (ECMWF) Long Window 4D-Var September 7, 2011 43 / 51

Parallel Minimisation

The minimisation algorithms used in the inner loop of 4D-Var are
based on Krylov methods: conjugate gradients, quasi-Newton.

A Krylov method solves a linear equation Ax = b in the sub-space
generated by b:

{b,Ab,A2b, . . . ,AKb}

The reason for this is that the inverse of A can be expressed as a
polynomial in A (Cayley-Hamilton theorem):

A−1 = α0I + α1A + α2A
2 + . . . αKAK

⇒ x = A−1b = α0b + α1Ab + α2A
2b + . . . αKAKb

The right-hand side, b, is very important to the success of the
method. A sub-space generated by a different vector c will not
contain a good approximation to the solution of Ax = b.

Mike Fisher (ECMWF) Long Window 4D-Var September 7, 2011 43 / 51

Parallel Minimisation

The minimisation algorithms used in the inner loop of 4D-Var are
based on Krylov methods: conjugate gradients, quasi-Newton.

A Krylov method solves a linear equation Ax = b in the sub-space
generated by b:

{b,Ab,A2b, . . . ,AKb}

The reason for this is that the inverse of A can be expressed as a
polynomial in A (Cayley-Hamilton theorem):

A−1 = α0I + α1A + α2A
2 + . . . αKAK

⇒ x = A−1b = α0b + α1Ab + α2A
2b + . . . αKAKb

The right-hand side, b, is very important to the success of the
method. A sub-space generated by a different vector c will not
contain a good approximation to the solution of Ax = b.

Mike Fisher (ECMWF) Long Window 4D-Var September 7, 2011 43 / 51

Parallel Minimisation

In our case, the minimisation solves the equation ∇J = 0 using
Newton’s method:

J ′′δx = −∇J|δx=0

That is: A −→ J ′′ and b −→ −∇J|δx=0

To minimise the cost function, we generate the Krylov space from the
initial gradient ∇J|δx=0 by repeated sequential applications of J ′′.

Generating gradients in parallel, from other starting vectors, produces
Krylov spaces that are not relevant to the problem we are trying to
solve.

Computing gradients in parallel does not significantly reduce the
number of iterations required to minimise the cost function.

Mike Fisher (ECMWF) Long Window 4D-Var September 7, 2011 44 / 51

Parallel Minimisation

In our case, the minimisation solves the equation ∇J = 0 using
Newton’s method:

J ′′δx = −∇J|δx=0

That is: A −→ J ′′ and b −→ −∇J|δx=0

To minimise the cost function, we generate the Krylov space from the
initial gradient ∇J|δx=0 by repeated sequential applications of J ′′.

Generating gradients in parallel, from other starting vectors, produces
Krylov spaces that are not relevant to the problem we are trying to
solve.

Computing gradients in parallel does not significantly reduce the
number of iterations required to minimise the cost function.

Mike Fisher (ECMWF) Long Window 4D-Var September 7, 2011 44 / 51

4D-PSAS

With our notation, 4D-PSAS is:

δx = L−1DL−THTδw

where δw = arg min
δw

F (δw)

and where F (δw) =
1

2
δwT(R + HL−1DL−THT)δw + δwTd

F (δw) contains L−1, so 4D-PSAS is a sequential algorithm.

Mike Fisher (ECMWF) Long Window 4D-Var September 7, 2011 45 / 51

Saddle Point Formulation

There is a large and growing literature on the numerical solution of
saddle point systems.

A good review paper:

Benzi M, Golub G H, and Liesen J, 2005: Numerical Solution
of Saddle Point Systems, Acta Numerica, 1–137

This paper has 29 pages of references.

See also:
Benzi M and Wathen A J, 2008: Some Preconditioning Tech-
niques for Saddle Point Problems, in W. Schilders, H. A. van
der Vorst and J. Rommes, eds., Model Order Reduction: The-
ory, Research Aspects and Applications, Springer-Verlag (Se-
ries: Mathematics in Industry), 195–211.

Both papers are easy to find online — or ask me for a copy.

Mike Fisher (ECMWF) Long Window 4D-Var September 7, 2011 46 / 51

Saddle Point Formulation

A very wide range of problems can be cast in saddle point form.
Benzi Golub and Liesen (2005) give the following list:

computational fluid dynamics (Glowinski 1984, Quarteroni and Valli 1994, Temam 1984, Turek 1999, Wesseling 2001)

constrained and weighted least squares estimation (Bjorck 1996, Golub and Van Loan 1996)

constrained optimisation (Gill, Murray and Wright 1981, Wright 1992, Wright 1997)

economics (Arrow, Hurwicz and Uzawa 1958, Duchin and Szyld 1979, Leontief, Duchin and Szyld 1985, Szyld 1981)

electrical circuits and networks (Bergen 1986, Chua, Desoer and Kuh 1987, Strang 1986, Tropper 1962)

electromagnetism (Bossavit 1998, Perugia 1997, Perugia, Simoncini and Arioli 1999)

finance (Markowitz 1959, Markowitz and Perold 1981)

image reconstruction (Hall 1979)

image registration (Haber and Modersitzki 2004, Modersitzki 2003)

interpolation of scattered data (Lyche, Nilssen and Winther 2002, Sibson and Stone 1991)

linear elasticity (Braess 2001, Ciarlet 1988)

mesh generation for computer graphics (Liesen, de Sturler, Sheffer, Aydin and Siefert 2001)

mixed finite element approximations of elliptic PDEs (Brezzi 1974, Brezzi and Fortin 1991, Quarteroni and Valli 1994)

model order reduction for dynamical systems (Freund 2003, Heres and Schilders 2005, Stykel 2005)

optimal control (Battermann and Heinkenschloss 1998, Battermann and Sachs 2001, Betts 2001, Biros and Ghattas
2000, Nguyen 2004)

parameter identification problems (Burger and Muhlhuber 2002, Haber and Ascher 2001, Haber, Ascher and Oldenburg
2000).

Mike Fisher (ECMWF) Long Window 4D-Var September 7, 2011 47 / 51

Saddle Point Formulation

With this preconditioner, we can prove some nice results for the case
L̃ = L

1 The eigenvalues τ of P̃−1A lie on the line <(τ) = 1 in the complex
plane.

2 Their distance above/below the real axis is:

±

√
µT

i HL−1DL−THTµi

µT
i Rµi

where µi is the µ component of the ith eigenvector.

The fraction under the square root is the ratio of background+model
error variance to observation error variance associated with the
pattern µi .

This is the analogue of the eigenvalue estimate in strong constraint
4D-Var.

Mike Fisher (ECMWF) Long Window 4D-Var September 7, 2011 48 / 51

Saddle Point Formulation
OOPS QG model. 24-hour window with 8 sub-windows.

−80 −60 −40 −20 0 20 40 60 80
−1.0

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

Ritz Values of A.

Converged Ritz values after 500 Arnoldi iterations are shown in blue. Unconverged values in red.

Mike Fisher (ECMWF) Long Window 4D-Var September 7, 2011 49 / 51

Saddle Point Formulation
OOPS QG model. 24-hour window with 8 sub-windows.

−0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
−40

−30

−20

−10

0

10

20

30

40

Ritz Values of P̃−1A for L̃ = L.

Converged Ritz values after 500 Arnoldi iterations are shown in blue. Unconverged values in red.

Mike Fisher (ECMWF) Long Window 4D-Var September 7, 2011 50 / 51

Saddle Point Formulation

It is much harder to prove results for the case L̃ 6= L.

Experimentally, it seems that many eigenvalues continue to lie on
<(τ) = 1, with the remainder forming a cloud around τ = 1.

−0.5 0.0 0.5 1.0 1.5 2.0 2.5
−3

−2

−1

0

1

2

3

Ritz Values of P̃−1A for L̃ = I.

Converged Ritz values after 500 Arnoldi iterations are shown in blue. Unconverged values in red.

Mike Fisher (ECMWF) Long Window 4D-Var September 7, 2011 51 / 51

	Outline
	Persistence of Past Information
	Equivalence of 4D-Var and the Kalman Smoother
	Can we afford Long Window 4D-Var?
	Plan A: State Formulation, Approximate Preconditioner
	Plan B: Saddle Point Formulation
	Preconditioning the Saddle Point Formulation
	It Works!
	Conclusions

