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Made up of 5000-7000 stations around the world. Most 
based data sets only carry a Tmean which is the average of 

the original maximum (Tmax) and minimum (Tmin)
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Models only capture 
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range change
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This asymmetry in warming is one of the most significant 
signals in the observed climate record 

The reasons for this asymmetrical rise have been subject to considerable 
debate

1. Increased cloudiness (Dai et al.1999)

2. Urbanization (Balling and Idso, 2002, Gallo et al. 1999) 

3. Surface moisture/irrigation (Durre and Wallace, 2001, Christy et al. 2005)

4. Aerosols (Charlson et al. 1992, Dai et al.  1997)

5. Contrails (Travis et al. 2004)

6. Stable boundary layer dynamics Walters et al. 2007 GRL



In order to examine the dynamics of the stable boundary 
layer and its sensitivity to external forcing such as 
downward radiation from greenhouse gases we employ a 
one-dimensional model (column model).

Coupled with a simple slab energy budget for the 
surface



Rather than solve the column equations numerically in the 
past we truncated the system to two layers





Use of Nonlinear Analysis to Explore 
Climate Sensitivity

Rather than integrating the ODEs numerically we employ tools in nonlinear 
analysis to explore the behavior of the system of equations. The primary tools 
are numerical continuation  that can trace out the equilibrium bifurcation 
diagram, determine special bifurcation points and compute the eigenvalues of 
the system as a function of the bifurcation parameters.
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Increases in downward radiation act to make the stable boundary less stable

This decreased stability in certain parameter spaces causes the surface to be more 
connected with the air aloft leading to enhanced warming

Thus, this acts as a positive climate feedback in that slight changes in downward 
radiation  can lead to large changes in temperature.

However, it is not a net energetic increase but only a redistribution of heat !

heat transferred 
downLittle 

vertical 
mixing 

Temperature Profile

Surface temperature collapses to 
a cold state

Surface temperature warms

Greenhouse 
gases



However, the field of non-linear dynamics is 
littered with exotic behavior that is found in 
simpler models but not carried into more 
complete models.

For example Lorenz 1995 in a discussion on 
atmospheric predictability noted that “prediction 
errors in chaotic systems tend to amplify less 
rapidly on average as the system gets larger”. The 
additional degrees of freedom tend to smooth or 
damp the rate at which individual perturbed states 
depart over time.

So here we will examine the response of the stable 
boundary layer to added downward long-wave 
energy using a more complete column model.



Multi-layers – grid 
spacing ~ 2m 
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Fu and Liou, 1993 multi-
band band radiation code
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Figure 2A: Stability functions used in the present paper. Ri is the gradient Richardson 
Number. See England and McNider 1995, Duynkerke 1991, Beljaars and Holtslag 1991 
and Louis 1979.  Duynkerke, Beljaars and Holtslag and Louis represent  curve fits to the 
original parameterization. See also Van de Weil et al. 2002a

APPENDIX Goal-Minimize numerical 
diffusion
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Figure 2: A posteriori comparison of the present model (UAH) against the GABLS1 single column 
model inter-comparison (see Cuxart et al 2005.) LES came from the LES ensemble, WAG is the 
Wageningen model (see Steeneveld 2006). The B-H and Louis curves are runs with the UAH model 
using the Beljaars-Holtslag stability function and the Louis stability function.  
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Figure 4: Vertical profiles of temperature for different imposed geostrophic velocities for the 
UAH model with no clear air radiative forcing. 



Added Downward Long-wave Sensitivity Experiments

Added downward long-wave (DLW) energy can come from increased 
greenhouse gases, water vapor, aerosols, cloudiness, jet contrails. 

To make the experiments we added 4.8 Watts of longwave down in the 
model (after long-wave was calculated from radiation scheme).

The 4.8 Watts came from Steeneveld et al. 2010 in an increased CO2
study. 

Total downward long-wave in the column model comes either from a 
simple downward radiation model used in the dynamical studies model

or  from a complete modern Fu and Liou, 1993 multi-band band 
radiation code.
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For a given IR forcing warming will depend inversely (but perhaps 
not linearly) on boundary layer depth. Thus, temperature response 
will be greater at night than day (Eastman et al. 2001, Esau 2008)

Boundary 
Layer 
Height

Boundary 
Layer 
Height

To first order temperature response to IR forcing should 
depend on boundary layer height

Added Energy

Added Energy



Steeneveld et al 2010 showed that for the stable boundary layer 
that the heating was independent of boundary layer height (which 
increases with wind speed) because of the competing effect of 
sensible heat flux.

IR 
IR 

Boundary 
Layer 
Height

Boundary 
Layer 
Height

However, for added IR to heat the atmosphere it must first heat 
the surface and this heat be transferred to the atmosphere 
through turbulent sensible heat flux.
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Figure 13: Differential heating - added GHG energy – base case 
versus wind speed for the Steeneveld soils case with clear air 
radiational forcing. 

CASES99 Soils, z0 =.03m
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Energy Budgets
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Figure 6: Model budget showing disposition of the added longwave energy (4.8Wm-2 ) after 12 hours of 
simulation for the UAH model for the case of no clear air radiative forcing.  
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=  Boundary Layer Height

=  Heat Increment 

=  Temperature change 

But only 14100J go into heating  atmosphere then ∆T=0.11 K – how 
can the 1st level model temperature increase by 1.5 K ?  

For  boundary layer depth of 100 m  and ∆H = 200,000J then  ∆T=1.6 K
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Answer lies in the redistribution of heat conjectured by 
Walters et al. 2007 from the dynamical system model.
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Figure 8: Expanded view of the difference in profile between the case of added GHG 
energy and base case for a geostrophic wind of 8 m/s. 



Figure 11: Differential heating for the case with clear air radiational forcing added 
radiative energy minus base case versus wind speed for different stability 
functions. 
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Figure 12: Model budget showing disposition of added longwave energy (4.8Wm-2 ) after 12 hours of 
simulation for the UAH model for the case of with clear air radiative forcing for the England-McNider (EM), 
Beljaars-Holtslag (BH) and Louis stability function.
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Conclusions

The positive feedback due to a redistribution of heat when the SBL is destabilized 
by added downward radiation may be part of the reason for the differential rise 
in observed minimum temperatures.

The models/processes presented here that have increased temperature of 0.5-
1.0K would explain a significant part of the differential minimum temperature 
warming.

Global models don’t have the mechanisms or resolution to capture this feed 
back.

Downward radiation by aerosols which is also not handled well in GCMs may play 
a major role  in the warming of minimum temperatures.



Recommendations

Understanding trends in minimum temperatures is important to 
understanding climate change. How much can we trust SBL models to 
respond correctly to added radiation or other changes (land use)?

GABLS should test the sensitivity of the SBL to added downward 
radiation or land-use parameters  as its next model inter-comparison 
study. 

GABLS-2 or GABLS-3 could be used as the control framework.
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=  Boundary Layer Height

=  Heat Increment 

=  Temperature change 

If heat input is the same then deeper boundary 
layers would warm at a greater rate

But Steeneveld et al 2010 showed that the heat 
input itself is a function of surface fluxes 
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Figure 13: Differential heating - added GHG energy – base case 
versus wind speed for the Steeneveld soils case with clear air 
radiational forcing. 



Vose et al 2005 noted that 
asymmetry (nighttime warming) 
was greatly reduced since 1979 in 
the NOAA data set.

However – the number of stations 
in their analysis was drastically cut 
since 1979
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Figure 20: Difference in vertical profile between added GHG energy and base 
case from UAH for the case with clear air radiative cooling for two different 
roughness values.  
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