

Stable boundary layer modeling at the Met Office

Adrian Lock with contributions from many other Met Office staff

- Current operational configurations and performance
- "Recent" changes
- Stable boundary layers in complex terrain (COLPEX)
- Fog
- Summary

Current operational configurations

The operational forecast models

NWP horizontal grid lengths, lid:

• Global NWP: ~25 km, 80km

• Global seasonal: ~135km, 80km

• [N.Atlantic/Europe: 12 km, 80km]

• UK: 1.5km, 40km

Operational configurations

- Current global climate-seasonal configuration = GA3.0
 - Documented in Walters et al (Geoscientific Model Development, 2011)
 - PBL scheme = non-local K-profile + local Ri for SBLs
 - Massflux scheme for convection, PC2 prognostic cloud scheme, etc
 - N96 (~135km) and L85 (80km lid, 9 levels below 1km)
- Current global NWP = GA3.1 = GA3.0 except:
 - Enhanced SBL mixing: "long tail" stability functions over land (instead of "Mes"), λ_{M} doubled in PBL, no reduction of λ (to 40m) above PBL top
 - Single aggregate surface tile (cf 9 tiles)
 - N512 (~25km) and L70 (reduced stratospheric resolution)
- UK model (UKV for "variable" grid but mainly 1.5km)
 - As GA3.0 but no convection parametrization, Smith fixed pdf cloud scheme, Smagorinsky diffusion in horizontal
 - Very nearly the same PBL scheme (eg same stability functions)
 - L70_UK (40km lid, 16 levels below 1km)

Operational vertical grids

Current vertical grids (lowest levels for U/T):

PBL Tails

- $K = \lambda^2 \frac{du}{dz} f(Ri)$ • f(Ri) in local scheme (used for SBLs):
 - SHARPEST over sea, "Mes tail" over land (except "long tail" in GA3.1)
 - "Mes tail" motivated by surface heterogeneity
 - = linear transition between Louis at z=0 and SHARPEST at z=200m

Why GA3.1 for NWP?

- Suppresses (but doesn't fix) systematic errors of GA3.0
- Single tile gives cooling especially where significant tree fraction
 - Reduces North American negative PMSL bias in particular
- Long-tail warms deserts at night (reduce emissivity instead?)

Summer diurnal cycle of biases

for Europe (global forecasts from 12Z)

- Too warm at night (except deserts), too cold by day
 - Sharper tail only gives small (0.1-0.2K) cooling at night
- Too much cloud at night (consistent), too little by day (inconsistent!)
 - but cloud cover verification not easy to interpret

Diurnal cycle of UK clear sky T bias

- Still too warm at night, too cold by day, even when cloud free
- Day:
 - Excessive evaporation?
 - Too well-mixed?
- Night:
 - Excessive turbulent mixing (mes tail)?
 - Grid-box mean cf grass?
- Role of ground heat flux in suppressing diurnal cycle?
- Revisit surface roughness (currently z_{0h}=0.1z_{0m})
- Looks like it ought to be tractable!
 - Further analysis of SEB errors needed

Temperature given no cloud forecast or observed in Jul 2011

Colours denote forecast range

Relevant "recent" changes to PBL scheme

- Brown et al (2008)
 - Non-local momentum transport
 - reduces slow daytime wind bias over land
 - SHARPEST tails over the sea
 - Both improve surface drag and forecast wind direction over the sea
- John Edwards' decoupled screen T diagnostic
- Frictional heating from turbulent dissipation (~τ_idu_i/dz)
 - Non-trivial near-surface warming (up to 1K/day)
- Monotonically damping, second-order-accurate, unconditionallystable implicit solver of Wood et al. (2007)
 - Huge reduction of noise in near surface winds/temperatures

UKV (1.5km) valley cooling problems

Winter 2010

Control

Control + 12km orography

T_{1.5m}12Z 2nd Feb

- Screen T up to 20K too cold in Scottish valleys
- Goes away if orography smoothed to 12km – not popular!
 - Standard is to use Raymond filter that suppresses 2Δ completely, 4Δ by 50% and 6Δ hardly at all
- Suggestion that flow decouples over valleys too readily (period actually quite windy)
- Similar problems seen in 12km models with steep 6∆ valleys (~70km across – ie Himalayas)

600

200

400

1000

800

800

200

Orographic height

Valley cooling

Subgrid drainage shear

- Initial attempts to related length of tail to orography (eg McCabe and Brown, 2007) had little impact as resolved Ri typically large
- Instead, approximate the wind shear associated with unresolved orographic drainage flows on slopes of α as

$$S_d = N^2 \alpha t \ f(z / \sigma_h)$$

 Include this wind shear in the turbulent mixing parametrization, as an enhancement to the standard resolved scale vertical wind shear

$$K = \lambda^2 (S + S_d) f(Ri)$$
 with $Ri = \frac{N^2}{(S + S_d)^2}$

- Typical values for $N^2 \sim 1 \text{K}/100 \text{m}$, $\alpha \sim 0.15$ and t=30mins gives $S_d \sim 0.1 \text{s}^{-1}$, or a drainage flow of 2ms⁻¹ at 20m.
 - This then implies Ri~0.04 and K~1 m²s⁻¹

UKV valley cooling

- Including this representation of shear from unresolved drainage flows in local PBL scheme
 - Safely allows use of high res orography (~6km) in 1.5km model
 - No subsequent sign in verification of a warm bias in orographic regions

© Crown copyright Met Office

 $T_{1.5m}$ at 12Z 2/2/10

Stable boundary layers in complex terrain First results

- Extensively instrumented hills and valleys in Shropshire for ~1year
- Very high resolution (100m) UM simulations
 - Provide a database which will aid interpretation of the observations
 - Inform choices about the next generation of operational forecast models
- To better understand the mechanisms leading to the formation of cold pools, drainage flows and fog in valleys
- Evaluate the performance of 1.5km operational forecasts and develop improvements:
 - Coarse-grain 100m UM to inform parametrization developments
 - eg the parametrization of shear from unresolved drainage flows
 - · surface temperature downscaling

Photos courtesy of Jeremy Price and Dave Bamber, MRU Cardington

© Crown copyright Met Office

Upper Duffryn Valley site

- 3 main sites
 - 30/50m masts with sonics, T, q; radiometers; ground heat flux and temperature; visibility measurements
 - doppler lidar
 - frequent sondes during 17 IOPs
- ~20 other AWS sites

COLPEX_100 Orography

9th September 2009 IOP

- Initial focus on a clear-sky COLPEX IOP
- Simulation from 15UTC 09 to 15 UTC 13 September 2009

Potential temperature at 2m, winds at 1m

Potential temperature at 2m, winds at 1m

Potential temperature at 2m, winds at 1m

North-South section through Upper Dyffryn, Clun Valley

North-South section through Upper Dyffryn, Clun Valley

Clearly 1.5km resolution is inadequate!

Model screen temperature: Δ =100m L140 vs Δ =1.5km L70

Impact of vertical resolution on screen temperature

 Δ =100m; L140 vs L70

 L140 also improves Springhill (also by cooling slightly) and improves Burfield by warming

SCM impact of vertical resolution is negligible! GABLSII: L70 vs L140

COLPEX_100m impact of vertical resolution L70 vs L140 at 9pm

L140 generates realistically colder shallow SBL in valley

COLPEX_100m impact of vertical resolution L70 vs L140 at 10pm

Sustancia the theoretic entry in the second of the second

Trees/hedges 2-3K warmer than fields so gridbox mean T will be biased warm

Cold pool formation

140-level 100 m model results

Cold pool strength

Temperature differences 09-13 Sept 2009

- Repeatable nighttime ∆T of approx. -4 K
- 100m L140 model ②
 gives good
 prediction of ∆T
 amplitude
- Coarser vertical resolution (L70) results in weaker cold pools

Heat budget

- Met Office •Q: What are the dominant sources of cooling?
 - •Can use the model θ budget to identify which are the important processes at different times during the night.

Fog

10th-11th December 2009 COLPEX IOP

11th December 00Z

Satellite fog/low-cloud product 11th December 04Z

Differences in theta profiles at 1630

L70 and L140 against observations

Increasing resolution greatly improves vertical structure of theta profile:

- captures inversions at ~60m, ~250m and "mixed-layer" between
- again doesn't have linear near-surface profile too turbulent?

Differences in time series of visibility, L70 and L140 against observations

 Despite better vertical T structure, L140 forms fog much earlier than L70, which was already too early

Parametrization of cloud formation

- RH is (correctly) high in L140 UM over a relatively deep layer
 - But there is no cloud at all in reality (from LW fluxes) despite 100% RH!
 - RHcrit already set to 99% in model

Sensitivity to microphysics

- Fog development at Duffryn also very sensitive to assumed cloud droplet number concentration
 - fewer drops are larger and so fall out faster
 - leaves RH at 97-98% so potentially too dry?

N=300 cm⁻³

$N=20 \text{ cm}^{-3}$

UKV sensitivity to SBL mixing

"LEM tails"

More fog (eg eastern England) but now too widespread and thick

Control visibility

100 1000 1e+4 3e+4 7e+4

LEM tail visibility

Impact of LEM tails on RH distribution

Met Office Control: Mes tail

- Sharper tails (less turbulent mixing) improves high end of RH distribution
- But gives too much fog
 - Revise dew deposition? Improve drop number (aerosol activation)?

Summary

Met Office

Summary (1)

- Diurnal cycle of screen T biases is reasonably consistent across all resolutions and timescales, suggests problems are robust
- Very active area so short term progress should be possible:
 - Generally warm by night (except deserts: ε<0.97?), cold by day
 - Still seen under clear skies so not exclusively a cloud problem
 - Excessive nocturnal turbulent mixing (->sharper tail)
 - Higher vertical resolution helps (in 100m 3D model at least)
 - Excessive evaporation by day?
 - Overdone direct radiative effect of aerosol?
 - Surface heat capacity too large (diurnal and cloud clearing)?
 - Higher soil resolution?
 - Winter cold bias in screen T in high latitudes remains an issue (exacerbated by sharper tails)
 - Representation of snow?
 - More pronounced decoupling?
 - Further analysis of surface energy budget errors and comparison with satellite surface temperatures on-going

Met Office

Summary (2)

- Fog
 - aerosol activation and drop number (and thence size)
 - interaction with radiation (currently a fixed drop size)?
 - would this (realistically) reduce the strong feedback between initial fog formation and radiative fluxes?
 - improve fog deposition, including horizontally onto vegetation

Stable boundary layers in complex terrain

- COLPEX 100m/L140 UM actually doing a remarkably good job, but much more work to be done:
 - further investigation of surface temperatures and drainage flow structure
 - fine details of vertical structure are important for temperature evolution and fog formation
 - continue progress with understanding where and how cold pools form
 - coarse-graining to inform parametrization in standard NWP configurations

Unfortunately it is important to get everything right!