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Outline

I will argue that the linear space spanned by the local
ensemble perturbations provides a good representation
of the local error space at, not only the analysis, but also
the longer forecast times
Implications for

the representation of model uncertainties and errors in
numerical models and
post-processing
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Mapping a Local Vector into the Space of Ensemble
Perturbations, S`

An arbitrary local state vector x` can be decomposed as

x` = x̄` + δx`,

where δx` is the difference between x` and the ensemble
mean x̄`.
The perturbation vector δx` can be decomposed as

δx` = δx(‖)
` + δx(⊥)

` ,

where δx(‖) is the component that projects into S`

The vector δx(⊥)
` is the component of δx` that does not

project into S`.
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Formal Definition of S`: Part I

The K -member ensemble of local state estimates:

{x(k)
` , k = 1 . . .K}

The ensemble mean:

x̄` = K−1
K∑

k=1

xe(k)
`

The ensemble perturbations:

{x′(k)
` = x(k)

` − x̄`, k = 1 . . .K}

The ensemble-based estimate of the covariance matrix:

P̂` = (K − 1)−1
k∑

k=1

x′(k)
`

(
x′(k)

`

)T
,
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Formal Definition of S`: Part II

The range of P̂` (spanned by the K ensemble
perturbations) defines a linear space S` [dim(S`) ≤ K − 1]
The normalized eigenvectors associated with the first
K − 1 eigenvalues of P̂`,

{uk , k = 1, . . . ,K − 1}

define an orthonormal basis in S`

The basis vectors represent linearly independent patterns
of uncertainty in the ensemble perturbations in the local
region at `.
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Decomposition of the Error in a Local State Estimate

The true local state, xt
`, can be written as

xt
` = x̄` + δxt

` = x̄` + δxt(‖)
` + δxt(⊥)

`

The local ensemble spread, VS` = trace(P̂` is an
estimate of the TV` expected value of ‖xt

`‖2. Thus the
expected value, VS, of VS` over all locations and
verification times, should be equal to the expected value,
TV , of TV` over all locations and verification times.
The projection of δxt

` into S` is δxt(‖)
` . We introduce the

notation TVS for the expected value of
(
δxt(‖)

`

)2

When δxt
` can be expressed as a linear combination of the

ensemble perturbations, δxt(‖)
` = δxt

` and TVS = TV
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Analysis-Forecast System

Data Assmilation: Local Ensemble Transform Kalman
Filter with 40 ensemble members. (Szunyogh et al. 2008)
Model: 2004 version of NCEP GFS at resolution T62
(about 210 km) and 28-levels
Statistics: Collected for 45 days (January and February
2004), all results shown are for NH extratropics
Observations: (Non-radiance) observations of the
atmosphere
Variance Inflation: Was tuned to satisfy VS ≈ TVS (larger
VS was found to degrade the analyses and ensuing
forecasts)
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Local State Vector

We define a local state vector x` with all N state variables of
the model representation of the state within a local volume
centered at location (grid point) `

1000 km 1000 km

1000 hPa

10 hPa l(λ,ϕ)

Scalar quantities computed based on grid points values within the local
volume are assigned to the center of the horizontal domain of the
local volume
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The Motivation for Choosing a 1000 km by 1000 km
Local Domain

Time Evolution of the Power Spectrum of the Forecast Error
(Meridional Wind at 500 hPa): The errors in the longer term
forecasts are dominated synoptic scale patterns
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The Evolution of VS, TV , and TVS with Forecast Time

For forecast times longer than about 3 days, S` provides a good
representation of the state xt

`, but the ensemble underestimates
the magnitude of δxt

`
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Discussion of the Results on V , TV , TVS

The Good News: Because S` provides a good
representation of the difference between the ensemble
mean and the true state (dominant potential error
patterns), linear post-processing techniques have great
potentials. New approaches for the interpretation of the
ensemble based statistics may also exist.
The Problem: Why does the ensemble spread, VS, grows
slower than the projection of the forecast uncertainty on
the ensemble space, TVS?

I. Szunyogh Representing Model Uncertainty and Error



Potential Answers

Sub-optimality of the data assimilation system, which
generates the initial perturbations
Lack of accounting for the effects of model uncertainties
Lack of accounting for patterns of uncertainty in the initial
conditions, which later pay an important role in the
evolution of the forecast uncertainty, due to the use of a
small ensemble
Some combination of the above (e.g., a larger ensemble
may have benefits only if the effects of model uncertainties
are better represented)
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Lack of Accounting for the Effects of Model
Uncertainty Is Unlikely to Be the Sole Explanation

The results with randomly (nearly uniformly) distributed
simulated observations are surprisingly similar to those with
observations of the atmosphere

that is defined by 5 3 5 horizontal grid points and the

entire column of the model atmosphere. Computing pro-

jections in the vector space S‘ requires the definition of a

scalar product on S‘. In this paper, we follow the approach

of Oczkowski et al. (2005) and Kuhl et al. (2007): we use

the Euclidean scalar product, but before we compute it, we

transform the ensemble perturbations to ensure that all

vector components have the same physical dimension. In

particular, we choose the transformation weights so that

the square of the Euclidean norm, computed by taking the

scalar product of a transformed ensemble perturbation by

itself, has a dimension of energy. The use of this trans-

formation to compute scalar products of the perturbations

of the state vector of a primitive equation model was first

suggested by Talagrand (1981).

4. Numerical experiments

a. Prediction of the magnitude of forecast error

Figure 2 shows the evolution of TV, TVS, and V. In this

figure the expected value is estimated by taking the spatial

average over all grid points in the NH extratropics (308–

908N) and the temporal average over all forecasts started

between 0000 UTC 11 January 2004 and 0000 UTC

15 February 2004.

Interestingly, the difference between TVS and V at

longer lead times is much larger than the difference be-

tween TV and TVS. In other words, although the linear

space S‘ spanned by the ensemble perturbations provides

a good representation of the space of forecast uncertainties,

the ensemble severely underestimates the total variance inS‘.

Even though, this underestimation is more serious in the

FIG. 1. The time mean forecast error shown for the meridional

component of the wind at 500 hPa averaged over all latitudes in the

NH extratropics. Results are shown for the experiment that as-

similates conventional observations using the original values of

inflation (triangles) and doubled inflation (circles).

FIG. 2. The time evolution of TV (squares), TVS (triangles), and V

(circles) for the NH extratropics. Results are shown for experiments

that assimilate (top) randomly distributed simulated observations,

(middle) simulated observations at the locations of conventional

observations, and (bottom) observations of the real atmosphere.

Note the scale is exponential. Also note the different scale in (bot-

tom) panel.
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Spread-Skill Relationship Part I: Linear Regression is
Not a Good Approach

Spread (VSl) [m/s]

Sk
ill

 (|
δx

t |)
 [m

/s
]

Because there is a large spread of the ‘skill’
for large values of the spread, the conditional
expectation is not a sharp predictor of the 
actual value of the skill
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Spread-Skill Relationship Part II: 95th Percentile of
δ2xt can be Well Predicted Based onVS

y = 4998.6Ln(x) - 23704

RPREDICTED=0.954938
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Concluding Remarks Part I

We outlined one possible approach for the validation of the
ensemble
The linear space spanned by the ensemble perturbations
provides a good representation of the possible states of
the system
The same ensemble underestimates the magnitude of the
forecast uncertainty. (The ensemble is not skillful, either, in
distinguishing between the importance of the error
pattern–results were not shown.) The lack of accounting
for the effect of model uncertainties may not fully explain
this result.
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Concluding Remarks Part I

Using the same ensemble for data assimilation and
forecasting may not be optimal, which provides support for
the approach of mixing ensemble perturbations from the
data assimilation with SVs in the ensemble forecast
system (e.g., Meteo France, ECMWF)
Exploring the relative merits and drawbacks of
post-processing vs. a representation of model
uncertainties within the models promises to be an
interesting research topic
Cautionary Note: The proposed approach has not been
tested on fields of high spatial variability (e.g., in the
tropics, on precipitation, etc.)
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