Quantifying the limits of
convection parameterization
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Scale Separation

“Consider a horizontal area ... large enough to contain an
ensemble of cumulus clouds, but small enough to cover
only a fraction of a large-scale disturbance. The existence
of such an area is one of the basic assumptions of this
paper.”

-- AS 74



A summer afternoon in Colorado

A parameterization
determines the “expected”
collective effects of many
clouds over a large area.

One of the issues is that the
sample size is not very large.

The space scales are not sufficiently separated.



Limiting Cases

a) 4 C(t)=R[F()]

0) 4 C(t)=R[F()]

o 4 C(t)=R[F(t-7)]

Quasi-Equilibrium
Convection

Non-Deterministic
Convection

Deterministic but
Non-Equilibrium
Convection



Higher resolution

o\ Gradualist approach: dx gradually decreases, without
changing parameterizations
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Does increased resolution improve the results?

“Ratio’ refers to the ratio of forecast error to
its saturation value. Black diamonds for the T799
“perfect model,” white circles for real forecasts.

Forecast time wh 71% for control

S 14
@ 13
511 *
5] S o oo @
e 8 T T 1
0 200 400 600 800
Truncation
Buizza 2010:

“...although further increases in resolution are expected to improve the
forecast skill in the short and medium forecast range, simple resolution
increases without model improvements would bring only very limited
improvements in the long forecast range.”



Error versus resolution
without changing the parameterizations
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Parameterize different.
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Parameterizations for
low-resolution models are
desighed to describe the
collective effects of
ensembles of clouds.
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Increasing
resolution

CRM

Parameterizations for
high-resolution models are
desighed to describe what
happens inside individual
clouds.

Expected values --> Individual realizations



Todd Jones



Ensembles of CRM runs

An extension of

Xu, Kuan-Man, Akio Arakawa, Steven K.
Krueger, 1992: The Macroscopic Behavior of

Cumulus Ensembles Simulated by a Cumulus
Ensemble Model. J. Atmos. Sci., 49, 2402-2420.

Extended how?

® Three-dimensional model (important for sample size)
® Sensitivity to forcing period

® Sensitivity to domain size
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Experiment Design

s« Constant SST ¢ Large=-scale forcing by
# Prescribed radiation advective cooling and
moistening

2 256 km square domain
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Experiment Design

¢ Series of constant forcing simulations

= Series of periodically forced simulations
* Periods range from 120 hours down to 2 hours
2 15 cycles each

s Subdomains:

Fraction Whole Quarter 16th 64th 256th

Width, km 256 128 64 32 16
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Surface Precipitation [mm hr]

Surface Precipitation [mm hr]

Dependence on Period
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Dependence on Domain Size
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Smaller Domain

256 x 256 km Domain

128 x 128 km Domain

16 x 16 km Domain
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A pé'rfect'parameterization

The ensemble mean of the CRM results represents
a perfect deterministic non-equilibrium parmeterization.

It is, of course, a perfect parameterization of the CRM, not
of the real world.

C(t)=R[F(t -1)]
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A deterministic parameterization simulates ensemble means.

A stochastic parameterization simulates individual realizations.



Standard Deviation / Mean

What is the best we can do?

Subdomain Side Length (km)

P‘(*r'":f)’d 256 128 64 32 16
15 0.125  0.698 1.205 1.745  2.215
30 0.113 0.656 1.177 1.693 2.185
60 0.116  0.664 1.222 1.760  2.227
120 0.147  0.707 1.282 1.815  2.257
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A stochastic parameterization should be able to explain

these numbers.




Standard Deviation / Mean

What is the best we can do?

Subdomain Side Length (km)

P‘(*r'":f)’d 256 128 64 32 16
15 0.125 0.698 1.205 1.745 2.215
30 0.113 0.656 1.177 1.693 2.185
60 0.116  0.664 1.222 1.760  2.227
120 0.147  0.707 1.282 1.815 2.257

A stochastic parameterization should be able to explain
these numbers.

Even with a large domain and slowly varying forcing,

a perfect parameterization will routinely produce ~10%
errors, due to inadequate sample size. That is as good
as it gets.



The Multiscale Modeling Framework

Advective Forcing ===

Heating & Drying

“Super-Parameterization”

¢ Each CRM runs continuously.
¢ The CRMs do not communicate with each other.

e MMFs are much faster than GCRMs.



What’s different?

e We use the equation of motion.
» No closure assumptions
» No triggers

Mesoscale organizatio
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R helcomputational cost is higher.

Jdhe MMF is ~200 times more expensive
than a conventional model.

B The MMF works wellon parallel machings
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The MMF produces improved variability
on a wide range of time scales. |

¢ MJO Eee—— o

e Seasonal
monsoons

e ENSO

http://www.cmmap.org/research/pubs-mmf.html



http://www.cmmap.org/research/pubs-mmf.html
http://www.cmmap.org/research/pubs-mmf.html

Super-Parameterization

A super-parameterization is a stochastic parameterization, because'it
exhibits sensitive dependence on its past history.

Because of the CRM’s two-dimensionality, the MMF probably
exaggerates the stochastic component of convection.

A super-parameterization can simulate the lag between theforcingand
the convective response.

. We don’t know whether or to what extent the successes of super=
parameterization are due to these attributes.
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® Because a super-parametenZaubas built-in memory and
exhibits sensitive dependenceloREs Pasthistory, it can
represent non- equmbnu NONFAELERIMIIStIC convection.



