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statistical post-processing: the janitorial service of numerical prediction
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What can post-processing and
reforecasts do that other model error
corrections cannot?

Provide context on how unusual today’s forecast event
is, relative to other forecast events.

Compensate for errors due to finite ensemble size.
Provide extra “resolution” via statistical downscaling.

Compensate for remaining systematic model biases not
addressed through stochastic techniques, thereby
increase reliability, increase forecast skill.

Provide sufficient samples to quantify forecast errors
for particular locations, hydrologic basins



Disadvantages of post-processing

* Right answer perhaps, but for wrong reason? We prefer to directly
improve the model in physically realistic ways.

— Also, some errors are too complex to adjust via post-processing; for these,
there is no substitute for improving the model.

* Additional computational and infrastructural burden to compute
reforecasts and reanalyses, compile observation time series.
— ECMWHF's (relatively sparse) weekly 5-member reforecast * 20 years = 100
extra members / week to compute.

— Generally greater benefit the more years, more days, more members in
reforecast, but proportionally more expensive.

— Without high-quality, long observation time series, many of the benefits of
reforecasts + statistical post-processing are lost.

— Need to keep computing reforecasts with current model version, else
improvements are temporary.

e |If real climate or model-error statistics change significantly during
reforecast period, decreased accuracy of post-processed estimates



Post-processing and
reforecast
advantages



Reforecast advantage: facilitates quantitatively
assessing how unusual an event is (EFI)

%& EPS I-EFI 05@00+48/72h vt 07@00-08@00

The forthcoming -
I nte ra Ctlve E FI (I - E FI ) Weather anomalies predicted by EPS: Thursday 05 February 2009 at 00 UTC

1000 hPa Z ensemble mean ( Saturday 07 February 2009 at 12 UTC)
can be u Sed to and EFIl values for 24h TP, 10m wind gustand 2m temperature
IdentlfleS areas Where valid for 24hours from Saturday 07 February 2009 at 00 UTC to Sunday 08 February 2 t00 UTC

the ensemble forecast
distribution is
significantly different
from the climatological
distribution, and
visualize the grid point
distributions.

This plot shows the I-
EFI +48/72h forecasts
issued on 5@00UTC
and valid between
7@00UTC and
8@O0UTC.

Extreme hot and windy

HEPEX Toulouse (15-19 June 2009) - Florian Pappenberger: ECMWF: Supporting Hydrological Forecasting 16



Extreme Forecast Index
(needs accurate forecast climatology,
such as provided by reforecasts)

J 7, (p)
N

p is the percentile of the cumulative distribution estimated from
the ensemble; F;(p) is how the p-percentile of the climate record
ranks in the EPS (0 the minimum, 1 the maximum). This
“Anderson-Darling” version introduces a weighted statistic that
gives more power in the tails of the distribution. 2/mis
normalization factor to keep -1 < EFI £ 1.

L1 =

From: LalLaurette, QJIRMS, 2003, and http://www.ecmwf.int/products/forecasts/efi_guide.pdf



EFI
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Adjusting for errors due to finite ensemble size.

Imagine: your
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Adjusting for errors due to finite ensemble size.
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Imagine: your
20-member
storm-scale ensemble
(which is a calibrated
system, truth consistent
with a random draw
from ensemble)

Your job: estimate
reliable probabilities
on the grid.

Zero probability

for this cell? Yes if
you use ensemble
relative frequency



Kernel density estimation
to produce smooth pdf
from limited-size ensemble

Density function
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|
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Provide extra “resolution”
via statistical downscaling

(b) Ensemble—mean Precipitation (c) Logistic Regression
1—day fcst, Pr(Precip >50 mm), 1—day fest,
(a) NARR Analyzed Precipitation 0000 UTC 1997 01 01 0000 UTC 1997 01 0

25 5 10 15 25 50 75

5 10 15 25 50 75 1 .
Forecast 24—h Accum. Precip. (mm)
M

1 2.5 10 20 30 40 S0 60 70 80 90
Analyzed 24—h Accum. Precip. (mm)
T

Probability (%)

“resolution” here is used as in its definition in the Brier Score decomposition, the ability of

a forecast model to successfully forecast deviations from the overall climatological probability.
14



Brier Skill Score

Brier Skill Score

Ensemble Relative Frequency
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[111

Verified over 25 years of forecasts;
skill scores use conventional
method of calculation which may
overestimate skill

(Hamill and Juras, QJRMS, Oct 2006).
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Reforecast vs. multi-model, T,

2m Temperature, 250 European Stations, DJF 2008/09
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ECMWEF’s forecasts were corrected here using a blend of bias correction from the past
30 days of forecasts and a more sophisticated regression approach using reforecasts.

courtesy of Renate Hagedorn, ECMWF & DWD



BSS

BSS
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Reforecast vs. multi-model
precipitation over US, Jul-Oct 2010
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Verification of 1-degree resolution forecasts
against 1-degree precipitation analyses over
CONUS.

The following forecasts are plotted:
20-member ECMWEF forecasts (black);
ECMWE, calibrated via logistic regression
using 9 years of ECMWF 4-member
weekly reforecasts (green); multi-model
(blue) and multi-model, calibrated using
the last 30 days of forecasts/analyses.

Reforecasts appear to provide most
improvement at heavy precipitation
thresholds, consistent with other previous
results.



Observed Frequency (%)

Sample reliability diagrams
ECMWEF, reforecast-calibrated, multi-model
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Reforecast advantage: permits quantifying
forecast errors for particular locations, basins

Verzasca ; RGES Verzasca ; RGES
1971 - 2001 : 31 days gliding window daily climatology 1989 - 2008 : 31 days gliding window

Observation

total runoff (mm/d)
total runoff (mm/d)

T
Mar May Jul Sep Nov Mar May Jul Sep Nov

TopLeft: Discharge Climatology Quantiles (30 day gliding mean) for the Verzasca basins
obtained forcing the hydrological model PREVAH with COSMO-LEPS reforecasts (1971-2000).
TopRight: Observed daily discharge climatology (1989-2008)

from Felix Fundel et al. poster, ftp://ftp.wsl.ch/pub/zappa/imprints/del3_1/cleps_bcn.pdf 19



Hydrologic
Ensemble
Prediction

Experiment

Note that hydrologists envision

a step to make sure that ensemble
inputs to their hydrologic system
are as reliable and sharp as possible.

from Schaake et al. 2007 BAMS article

Land-surface state
observations (snow,
streamflow,...)

Weather-Climate
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Meteorological
Pre-processor
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Calibrated
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Ensembles

Calibrated
Land-surface state
Ensembles

Hydrological
Forecast
Model(s)

Streamflow
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Hydrological
Product
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Y

Calibrated
Streamflow
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Verification
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Reforecast use: tropical cyclogenesis

ECMWF Monthly Forecast DAY 12-18
Tropical Storm Frequency 06/09-12/09/2010
Forecast start reference is 26/08/2010 Climate = 1992-2009
Ensemble size = 51,climate size = 90
Forecast mean e Climate median
20°E 40°E 60°E 80°E 100°E 120°E 140°E 160°E 180° 160°W 140°W 120°W 100°W 80°W 60°W 40°W 20°W

20°E 40°E 60°E 80°E 100°E 120°E 140°E 160°E 180° 160°W 140°W 120°W 100°W 80°W 60°W 40°W 20°W
Not Significant Significant at 5%

Many forecast models over-forecast tropical cyclogenesis. This ECMWF product
uses TCgenesis from reforecasts to provide some calibration for possible biases.

Ref: D. Richardson, personal communication, ECMWEF.



Reforecast / calibration
disadvantages



Not all model deficiencies can be addressed
easily through post-processing

An example from NSSL-SPC Hazardous Weather Test Bed, forecast initialized 20 May 2010
http://tinyurl.com/2ftbvgs

30-km SREF P > 0.5” 4-km SSEF P >0.5“ Verification

{
{ ¥
100521 /DOO0Y027 SREF 6—hr QPF Prob > .
10 S0

{
{ ¥
0.5 20100521 /00 UTC 6—HR QPE > O
S50 70 9 0.50 1.00 1.50 2.00 3.00 S.0 7.00 9.00
- - T T T T T e pp——

With warm-season QPF, comparatively coarse resolution and parameterized convection
in operational SREF system produces forecast that is clearly inferior to the 4-km,

resolved convection in SSEF. Calibration isn’t likely to provide nearly the improvement
that the extra resolution will provide.



Computational burden

Real-time ensemble: assume 50 members, 2x
daily = 100/day = 700/week

Minimal reforecast: 5 members, 20 years, 1x
weekly = 100/week : 1/7 extra

Moderate reforecast: 10 members, 30 years,
1x daily = 2100/week : 3x extra.

Full reforecast: 50 members, 30 years, 2x daily
= 21000/week : 30x extral



Disadvantage: non-stationary
forecast errors in reforecasts?

* |f real climate or model-error statistics change significantly during
reforecast period, decreased accuracy of post-processed estimates.

(@) fit of short-term forecasts to radiosondes
50
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‘ urm52 + Vrm52 (m/S)

== FGGE Main June 1979 = = FGGE Final June 1979 == ERA-15 full year 1979 === ERA-40 June 1979 ERA-Interim June 1979 === Operations June 2007

Pressure (hPa)

From Dee et al., QJRMS, 2011 article on ERA-Interim



Changing climate: today’s forecasts
warmer than those in training data set?
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If forecast today is warmer than any in the reforecast training data set, we’ll be
“extrapolating the regression” when we apply statistical corrections.



Conclusions

 Statistical post-processing (using reforecasts) may
complement other methods of addressing model
uncertainty.

— correct for model bias.
— generally large improvements in forecasts of rare events.

* |t's not a solution for all problems, and it does increase
system complexity, computational burden.

* Worth considering how these data sets may be
leveraged to facilitate model uncertainty research.



