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• Estimation of analysis and background error statistics 
with the Ensemble of Data Assimilations (EDA)

• Parameterizations of model error in the ECMWF EDA

• Impact of model error parameterizations on the EDA 
sample statistics 

• Conclusions and Plans

Outline
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For a linear system the data assimilation update is:

Under the assumptions of statistically independent 
background (Pb), observation (R) and model errors (Q),  the 
evolution of the system error covariances is given by:

The EDA method
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Consider now the evolution of the same system where we 
perturb the observations and the forecast state (tk+1) with 
random  noise drawn from the respective error covariances:

where ηk~(0,R), ζk~(0,Q).
If we define the differences between the perturbed and 
unperturbed state and                    , their evolution 
and the evolution of their sample statistics are governed by the 
same equations (Fisher et al., 2005): 

The EDA method
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The EDA method
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This implies that:

1. We can use an ensemble of perturbed assimilation cycles 
to simulate the errors of our reference assimilation cycle;

2. The ensemble of perturbed DAs should be as similar as 
possible to the reference DA (i.e., same or similar K
matrix)

3. The applied perturbations ηk, ζk must have the required 
error covariances (R, Q);     



Model Error Representation WS, 20-24 June 2011

Slide 6

The EDA method
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Analysis
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The EDA method

• 10 ensemble members using 4D-Var assimilations

• T399 outer loop, T95/T159 inner loops. (Reference DA: T1279
outer loop, T159/T255/T255 inner loops)

• Perturbation applied to all relevant sources of uncertainty:

1. Observations randomly perturbed according to their 
prescribed R matrix;

2. SST perturbed with climatological error structures 

3. Model error represented by stochastic methods

Slide 7
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Model error representation

• In the EDA we do not represent model error through a 
covariance matrix (Kalman filter – Weak constraint 4D-Var) 
but with physically plausible Monte Carlo realizations

• Two model error parameterizations are available in the IFS: 

1. Stochastically Perturbed Parameterization 
Tendencies(SPPT)

2. Stochastic Kinetic Energy Backscatter (SKEB)

• They are both used in the operational Ensemble Prediction 
System (EPS)

• Only the SPPT parameterization is currently used in 
operational EDA

• Goal: Converge toward a unified representation
Slide 8
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Model error representation

Stochastically Perturbed Parameterization Tendencies 
(SPPT)

• Physics tendencies P perturbed by ΔP = rP, with r a random 
pattern

• Gaussian distribution, truncated at 2 (instead of uniform distr.)

• Same pattern r for T; q; u; v

• Random pattern r uses AR-1 processes in spectral space and is 
smooth in space and time

• Three components with different correlation scales: 6 h, 3 d, 30 d 
and 500 km, 1000 km, 2000 km

• Improved version of the original SPPT scheme (stochastic physics, 
Buizza, Miller & Palmer (1999))

Slide 9 from: M. Leutbecher
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Model error representation

Stochastic Kinetic Energy Backscatter (SKEB)

• Rationale: A fraction of the dissipated energy is backscattered 
upscale and acts as streamfunction forcing for the resolved-scale 
flow (Shutts and Palmer 2004, Shutts 2005, Berner et al. 2009)

Streamfunction forcing = [bD]1/2 F(x; t);

where b,D,F denote the backscatter ratio, the (smoothed) total 
dissipation rate and the 3-dim evolving pattern

• Total dissipation rate: sum of
1. “Numerical" dissipation: loss of KE by numerical diffusion + 

interpolation in semi-Lagrangian advection;
2. Dissipation from orographic gravity wave drag parameterization;

3. An estimate of the deep convective KE production

• Boundary layer dissipation is omitted
• see Tech Memo 598, Palmer et al. (2009) for details 

Slide 10
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Impact of model error parameterizations

• The impact of different model error parameterizations can 
be evaluated in the context of an EDA 

• This is arguably a different and more stringent test than is 
possible with an EPS:

1. Effects accumulate over assimilation cycles;

2. Background errors for use in the deterministic analysis 
require the estimation of multivariate pdfs;

3. Background errors span a larger portion of phase space 
than forecast errors at longer lead times

Slide 11
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Impact of model error parameterizations

• To test these ideas three EDA cycles have been run with 
different model error parameterizations:

1. fgk7: no model error parameterizations;

2. fi8s: SPPT parameterization;

3. fgk6: SPPT + SKEB parameterizations

• All other aspect of the EDA setup are equal 

• Results shown are time averages over a 20 day period (i.e., 
40 assimilation cycles; 20100405 – 20100425)

Slide 12



Model Error Representation WS, 20-24 June 2011

Slide 13

Slide 13

N S

Impact of model error parameterizations

Impact of SPPT on T spread (fi8s-fgk7) Addit. Impact of SKEB on T spread (fgk6-fi8s)

EDA Temperature spread – no model error (fgk7) 

Mean Vertical
EDA T spread

Cross Section
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N S

Impact of model error parameterizations

Impact of SPPT on VO spread (fi8s-fgk7) Addit. Impact of SKEB on VO spread (fgk6-fi8s)

EDA Vorticity spread – no model error (fgk7) 

Mean Vertical
EDA Vo spread

Cross Section
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Impact of model error parameterizations
Impact of SPPT on T spread (fi8s-fgk7)

N S

SPPT on T spread: model lev 48 (200 hPa) SPPT on T spread: model lev 78 (850 hPa)

Impact of SPPT
EDA T spread
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Impact of model error parameterizations
Additional Impact of SKEB on T spread (fgk6-fi8s)

SKEB on T spread: model lev 38 (100 hPa) SPPT on T spread: model lev 78 (850 hPa)

N S

Impact of SKEB
EDA T spread
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Impact of model error parameterizations
Impact of SPPT on VO spread (fi8s-fgk7)

N S

SPPT on VO spread: model lev 64 (500 hPa)

Impact of SPPT
EDA Vo spread
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Impact of model error parameterizations

N S

Additional Impact of SKEB on VO spread (fgk6-fi8s)

SKEB on VO spread: model lev 30 (50 hPa) SKEB on VO spread: model lev 78 (850 hPa)

Impact of SKEB
EDA Vo spread
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Impact of model error parameterizations

BG Errors triggered by orographic wave activity are seen 
in analysis increments maps
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Impact of model error parameterizations

Does the use of model error param. make the EDA 
spread a “better” predictor of background error StDev?

(perceived background errors = control bg – operational ana)

BG Error Temperature lev 78 (850 hPa) Impact of SPPT + SKEB on EDA T spread 
lev 78 (850 hPa)
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Impact of SPPT + SKEB on EDA Vo spread lev 64 

Slide 21

Impact of model error parameterizations

BG Error Vorticity lev 78 (850 hPa) Impact of SPPT + SKEB on EDA Vo spread lev 78 

BG Error Vorticity lev 64 (500 hPa)
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Impact of model error parameterizations

Does the use of model error param. make the EDA 
spread a “better” predictor of background errors StDev?

For a reliable (E)DA:

(1)

Innovation Variance  =  Expected Innovation Variance

     RHHBdd
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Impact of model error parameterizations

Radiosonde temperature obs.
Innovation StDev (dashed line)
Expected Innovation StDev (continuous line)

NH TR
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Impact of model error parameterizations

Radiosonde zonal wind obs.
Innovation StDev (dashed line)
Expected Innovation StDev (continuous line)

NH TR
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Impact of model error parameterizations

Does the use of model error param. make the EDA 
spread a “better” predictor of background errors StDev?

EDA spread should be a good predictor of the magnitude of 
background errors in a statistical sense: larger (smaller) EDA 
spread should correspond to larger (smaller) background 
errors, on average
We evaluate this by binning 

according to  the magnitude of the expected innovation 
variance (Wang & Bishop, 2003)

     RHHBdd T diagdiagdiag T
iii 
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Impact of model error parameterizations

Radiosonde temperature obs.
Northern Extra-Tropics

NH  200 hPa NH  850 hPa
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Impact of model error parameterizations

Radiosonde zonal wind obs.
Northern Extra-Tropics

NH  200 hPa NH  500 hPa
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Impact of model error parameterizations

Radiosonde obs., Tropics

T  850 hPa U  200 hPa



Model Error Representation WS, 20-24 June 2011

Slide 29

Slide 29

Impact of model error parameterizations

EDA spread should be able to predict the magnitude of 
background errors in a “deterministic” sense: areas where EDA 
spread is large (small) w.r. to its climatological mean should 
correspond to areas of larger (smaller) background uncertainty.

The effect of model error param.
can be quantified by looking at 
the time averaged spatial correlation 
between EDA spread and perceived
background errors  
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Impact of model error parameterizations

Time averaged spatial correlation between temperature EDA 
spread and perceived background errors  

NH TR
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Impact of model error parameterizations

Time averaged spatial correlation between vorticity EDA spread 
and perceived background errors  

SH TR
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Impact of model error parameterizations

EDA perturbations are also used to diagnose the covariance
structures of background errors. 
This is currently done offline to estimate a climatological B in 
4D-Var, and it is envisaged to be done online to compute a 
flow-dependent B when a sufficiently large EDA will be 
available.

We would like the estimate how much the EDA perturbations  
project onto the background error patterns.
An approx. measure is the ‘Perturbation versus Error 
Correlation Analysis’ (PECA, Wei and Toth, 2003)
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Impact of model error parameterizations

Where   εb = control bg - verifying analysis, 
pertj = memberj bg – control bg

What is the impact of model error parameterizations on this 
diagnostic? 
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Impact of model error parameterizations
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Should we be concerned?

SHNH TR
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Conclusions and Plans

• The EDA is arguably the best tool available to us to estimate 
analysis and background errors

• The EDA depends on a ‘correct’ specification of the sources 
of uncertainties: observation errors, model errors, 
boundary condition errors. This makes it a stringent test for 
errors parameterizations  

• Model errors are represented in the EDA using physically 
plausible Monte Carlo realizations also used in the ECMWF 
EPS: SPPT and SKEB

• The use of model error parameterizations improves the 
statistical reliability of the EDA short range forecasts.

Slide 35
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Conclusions and Plans

• EDA still underdispersive wrt radiosonde innovations (and 
own analysis): problems in R or model error tuned for EPS? 

• The use of model error parameterizations improves the 
spatial correlation of the EDA spread with the ‘perceived’ 
background errors standard deviation

• The use of the SKEB param. in addition to the SPPT gives 
additional benefit, especially for the representation of wind 
field errors 

• These positive diagnostics indications will be verified in an 
assimilation experiment using errors from an EDA with 
same model error parameterizations as in EPS    

Slide 36
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Conclusions and Plans

• The impact of current model error param. (especially SKEB) 
on the EDA ability to simulate bg error covariances needs 
further investigation: assimilation experiments using 
climatological B statistics derived from EDA with different 
model errors are required    
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N S

Impact of model error parameterizations

Impact of SPPT on U spread (fi8s-fgk7) Addit. Impact of SKEB on U spread (fgk6-fi8s)

EDA U wind spread – no model error (fgk7) 

Mean Vertical
EDA U spread

Cross Section
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