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Key points

There is model uncertainty in weather and climate prediction.
It is essential to represent model uncertainty.

In weather (NWP) the problem is well defined, because we
can use observations to determine model uncertainty.

On the climate scales the estimation of model uncertainty is
more challenging, since verifying data is limited

IMO: Stochastic parameterizations are starting to become a
(superior?) alternative to other model-error representations



Overview

Why should we use Model Error
Representations (MER) for weather and
climate predictions?

Model Error Representations in short-range
forecasts (Stochastic Parameterizations, Multi-

physics)

Impact of MER on systematic model errors
and seasonal predictions

Use of MER in Ensemble Data Analysis



Multiple scales of motion

Imm 10m 100 m 1 km 10 km 100 km 1000 km 10000 km
Micrc?- Turbulence  Cumulus CumulonimbusMesoscale Extratropical  Planetary
physics clouds clouds Convective Cyclones waves

systems
Cloud System Resolving Model (CSRM)
Numerical Weather Prediction (NWP) Model
Spatial scales are associated with a range Global Climate Model

of temporal scales here omitted. Multi-
scale nature.




Multiple scales of motion

Imm 10m 100 m 1 km 10 km 100 km 1000 km 10000 km
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The closure problem
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The “spectral gap” Eddy Frequency & Time Period
argument (StuII 1960) Fig. 2.2 Schematic spectrum of wind speed near the ground estimated

from a study of Van der Hoven (1957).




Kinetic energy spectra
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Limited vs unlimited predictability in

| orenz 1960
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FIG. 1. Error energy per unit wavenumber, K~ ' Z(K, t) for t = 0, 2 in steps of 0.1 for (a) SQG
turbulence and (b) 2DV turbulence. The heavy solid line indicates the base-state kinetic
energy spectra per unit wavenumber, K~ 'X(K ), which has a —5/3 slope for SQG and a —3
slope for 2DV.

Rotunno and Snyder, 2008

see also: Tribbia and Baumhefner 2004



The "Spectral Gap” (Stull, 1960)
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Hours 100 10 1 0.1 0.01 0.001

Eddy Frequency & Time Period

Relative Spectral Intensity

Fig. 2.2 Schematic spectrum of wind speed near the ground estimated
from a study of Van der Hoven (1957).




Spectral gap not necessary for stochastic
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Potential to reduce model error

Stochastic

parameterizations can —
Potential

change the mean and

variance of a PDF

Impacts variability of : :
model (e.g. internal Weak:noise Strong noise
variability of the ' '
atmosphere)

Impacts systematic error
(e.g. blocking
precipitation error)

. L
Unimodal Multi-modal




Why model uncertainty representations

Represent/sample
subgrid-scale
fluctuations RMS error

Represent
structural model
error

ensemble




Underdispersivness of ensemble systems
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>»Ensemble is

» Ensemble forecast is
overconfident

RMS errors

»Underdispersion is a form of
model error

> Forecast error = initial error +
model error +

Forecast days

Buizza et al., 2004




Representing model error in ensemble

systems

% The multi-parameterization approach: each ensemble
member uses a different set of parameterizations (e.g. for
cumulus convection, planetary boundary layer,
microphysics, short-wave/long-wave radiation, land use,
land surface)

% The multi-parameter approach: each ensemble member
uses the control physics, but the parameters are varied
from one ensemble member to the next

% Stochastic parameterizations: each ensemble member is
perturbed by a stochastic forcing term that represents the

(stochastic diabatic tendencies) as well as

(stochastic kinetic energy backscatter)



Recent attempts at remedying model

error in NWP

Using conventional Outside conventional
parameterizations parameterizations
Stochastic parameterizations (Buizza Cloud-resolving convective
et al. 1999, Lin and Neelin 2000, parameterization (CRCP) (Grabowski
Palmer et al 2009) and Smolarkiewicz 1999, Khairoutdinov

and Randall 2001)
Multi-parameterization approaches

(Houtekamer 1996, Berner et. al. Nonlocal parameterization., e.g.,

2010) cellular automata pattern generator
(Palmer, 1997, 2001, Bengtsson-Sedlar
et al. 2011)

Multi-parameter approaches (e.g.

%%T)hy et al. 2004, Stainforth et al. Stochastic kinetic energy backscatter in

NWP (Shutts, 2005, Berner et al.

. 2008,2009,2011,Charron et al. 2010,
Multi-Models (e.g. DEMETER, Tennenant et. al 2010)

ENSEMBLES, TIGGE, Krishnamurti et
al. 1999)



Stochastic kinetic-energy backscatter

scheme

Rationale: A fraction of the dissipated energy is scattered upscale and acts as
streamfunction forcing for the resolved-scale flow
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Stochastic kinetic-energy backscatter

scheme

Assume a streamfunction pertu rbation in spherical harmonics representation

Z Z '/rm Pﬂ m ‘”) TmA

Jm=—n

Assume furthermore that each coefficient evolves according to the spectral Markov
process

V"gn(t +1)=(1- fm ) + f}*n\/_f

Find the wavenumber dependent noise amplitudes gn =1 n?

so that prescribed kinetic energy dE is injected into the flow
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Stochastic kinetic-energy backscatter

scheme

Assume a streamfunction pertu rbation in spherical harmonics representation
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Jm=—n

Assume furthermore that each coefficient evolves according to the spectral Markov
process
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Find the wavenumber dependent noise amplitudes gn = ﬁ

so that prescribed kinetic energy dE is injected into the flow
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Forcing streamfunction spectra by coarse-

qaraining CRMs
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Hierarchical Parameterization Strategy

High-resolution model informs
output of lower resolution model

Stochastic kinetic energy
backscatter provide such a
framework

... But there are others, e.g.
Cloud-resolving convective
parameterization




Stochastic kinetic energy backscatter

schemes ...

... in LES

.

Mason and Thompson, 1992, Weinbrecht and Mason, 2008, ...

... in simplified models

.

Frederiksen and Keupert, 2004

... iIn NWP

A N N N

IFS EPS, ECMWEF: Shutts 2005; Berner et al. 2008, 2009; Palmer et al. 2009
MOGREPS, MetOffice: Bowler et al 2008,2009; Tennant et al. 2010
Canadian Ensemble system: Li et al. 2008, Charron et al. 2010

AWFA mesoscale ensemble system, NCAR: Berner et al. 2011



Model uncertainty in short-range weather

forecasts of WRF

&y WRF-Weather Research and Forecast Model
&) Mesoscale Ensemble Prediction System (MEPS)

#) A simplified (constant dissipation) SKEBS- scheme
was released this spring with WRF3.3

&y Acknowledgements: So-young Ha, Chris Snyder,
Josh Hacker, Aime Fournier



Experimental Setup

Weather Research and Forecast Model

15 dates between Nov 2008 and Dec 2009, 00Z and 127, 30 cycles
or cases

40km horizontal resolution and 41 vertical levels
Limited area model: Continuous United States (CONUS)

Initial and boundary conditions from GFS (downscaled from NCEPs
Global Forecast System)

Ensemble CNTL: 10 member ensemble with control physics
Ensemble PHYS: 10 member ensemble with multi-physics scheme
Ensemble STOCH: 10 member ensemble with backscatter scheme

Ensemble PHYS STOCH: STOCH+PHYS



Multi-Physics combinations

Member | Land Surface | Microphysics | PBL | Cumulus | Longwave | Shortwase
1 Thermal Iessler Y5 kI RRTM Dhnelbyia
2 Thermal WSLG MY KI RETM CAM
3 Noah Kessler MY Bl CAM Dhclhia
4 Noah Lin MY Cirell CAM CAM
a Noah WML YU Kl RATM DPruelbvia
i Noah WEMLG MYl Cirell RRATM DPruelbia
7 RUC Lin YU Bl CAM Dl bvia
8 RUC Eta MY KEF RETM Druelbvia
9 RUC Eta Y& Bl RRETM CAM
1] RLIC Thesmps=on Y] Crrell CAM CAM

TasLE 2. Conhiguration of the multi-physics ensemble. Abbreviations are: BM - Betts-Miller;
CAM - Community Atmosphere Model; KF - Kain-Fritsch; MY — Mellor- Yamada-Janjic;
RETM — Rapid Radiative Transfer Model, RUC — Rapid Update Cyele; WESMG - WERE Single-
Moment Six-class; Y5U - Yonsel University, PFor details on the physical parameterization

packages and references see Skamarock et al. {2008).



One of the first studies to compare multi-physics
and stochastic parameterization within the SAME
ensemble prediction system

Multi-physics schemes are very tedious to maintain
(Charron et al., 2010, So-young Ha (pers.
Communication), but WRF has at advantage of
having different parameterization schemes as part
of the release.



Verification against Observations




Spread-Error Consistency in WRF

(without obs error estimate
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Dependence on observation error
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Mean Bias
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Brier Score Profiles: U

Score profile for
CNTL

Score difference with
CNTL. Positive
differences mean
improvement over
CNTL. Diamonds
denote significance
at 95% confidence
level.
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Summary of pairwise comparison

.. PHYS PHYS || 8TOCH | STOCH || PHYS STOCH | PHYS STOCH
Statistics over
. bt ter WOrEE better WOrse Isert e WOLSE
different forecast
. . CNTL B2 (39) (18 (2) |93 (6T)| T (1) | &7 (o4} | 13 (3)
times, variables
. PHYS 63 [14) [ 37 (5) [ ™ (31) | 21 (3)
and vertical | | i
S TOCH it (14) | 42 (8]
levels

TABLE 3. Palrwise comparison of the percentage of outcomes. where model A {columns)
performs better or worse than model B (rows) as measured by the Brier score when veribied
against observations. The outcomes comprise the forecast lead times 12 b and 60 b four
verilication events [see text] and seven vertical levels for the variables zonal wind «, meridional
witkl ¢ and temperature T, tetaling 168 outeomes. The bold numbers in parentheses denote

statistically significant outeomes at the 95% confidence level, The mean monthly bins was

removed Trom each ensemble member prior to the veribeation.



Summary of pairwise comparison

PHYS FHY 5 STOCH | STOCH || PHYS STOCH | PHYS STOCH

baet ten WOrss FTER TS WOrse bsert e WOLEE
CHNTL :39 ) 18 (2) @[5?] T (1) G'r' (o4) | 13 (3]
PHYS 63 (14) | 3T (5) | 79 {31) | 21 (3)
STCMCH ita] (14) | 42 (8)

TABLE 3. Pairwise comparison of the percentage of outcomes, where model A {columns)
performs better or worse than model B (rows) as measured by the Brier score when verifiod
against obhservations. The outcomes comprise the forecast lead times 12 h oand G0 b, four
verification events (see text ] and seven vertical levels for the variables zonal wind «, meridional
witkd ¢ and temperature T, totaling 168 outeomes. The bold numbers in parentheses denote
statistically significant outeomes at the 95% confidence level, The mean monthly bins was

removed Irom each ensemble member prior to the veribication.
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statistically significant outeomes at the 95% confidence level, The mean monthly bins was

removed Irom each ensemble member prior to the veribication.



Summary of pairwise comparison
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statistically significant outeomes at the 95% confidence level, The mean monthly bins was

removed Irom each ensemble member prior to the veribication.



Conclusions

Including a model-error representation leads to ensemble
systems that produce significantly better probabilistic
forecasts than a control physics ensemble that uses the
same physics schemes for all ensemble members.

Overall, the stochastic kinetic-energy backscatter scheme
outperforms the ensemble system utilizing multiple
combinations of different physics-schemes. This is
especially the case for u and v in the free atmosphere.

However, for T at the surface the multi-physics ensemble
produces better probabilistic forecasts, especially when
verified against observations (currently being improved)



Conclusions

The best performing ensemble system is obtained by
combining the multi-physics scheme with the stochastic
kinetic-energy backscatter scheme. The superiority of
the combined scheme is most evident at the surface and
in the boundary layer.

Consistent with other studies (Palmer et al. (2009),
Charron et al. (2010) and Hacker et al. (2011):Combining
multiple stochastic parameterizations or stochastic
parameterization with multiple physics-suites resulted in
the most skillful ensemble prediction system.



Uncertainty in state estimation using

WRF-DART

Create an ensemble of analyses that is representative of
analysis error => initial conditions

DART- Data Assimilation Research Testbed based on
Ensemble Kalman Filter (EnKF)

Ensemble analysis is under-dispersive, e.g. due to
sampling error => inflation factor => can model
uncertainty scheme make inflation redundant?

2 Domains nested with feedbacks: outer 45km, inner
15km

Collaborators: So-young Ha, Chris Snyder



Multiple scales of motion

Imm 10m 100 m 1 km 10 km 100 km 1000 km 10000 km
Micro- Turbulence  Cumulus CumulonimbysMesoscale Extrafiopi¢al  Planetary
physics clouds clouds Convictive Cyclones waves

systems

n (NWP) Model

Global Climate Model
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Preliminary Results

STOCH has smallest RMS innovations for both U and T

Adaptive inflation factor is reduced when used in
adaptive mode

STOCH can replace the adaptive inflation (results almost
as good as those shown)

But: Sampling error is fundamental different from model
error represented by SKEBS, so maybe both should be
retained

Or: Combined model and sampling error into a single
term



Multiple scales of motion

Imm 10m 100 m 1 km 10 km 100 km 1000 km 10000 km
Micro- Turbulence  Cumulus CumulonimbysMesoscale Extrafiopi¢al  Planetary
physics clouds clouds Conveictive Cycliones waves

systems

n (NWP) Model

Global Climate Model




Impact on Systematic Error Model Error

Low res control (LOWRES): IFS CY31R2 T95L91

HIGHRES: T511191

STOCH: Stochastic kinetic energy backscatter

PHYS: Improved physics packages: IFS CY36

15 (40) years: 1990-2005, forced by observed SSTs

5 month integrations started Nov1l; 1st month discarded

Compared against (re-)analyses



a)

CNTL

HIGHRES

Bias of zgoo in IFS

d)

Berner et al. 2011, J.
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Blocking 1962-2005
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Berner et al. 2011, J. Clim, submitted



Frequency-
Wavenumber
spectra of OLR
in IFS

NOAA

CNTL

SKEBS

HIGHRES

PHYS

Berner et al. 2011, J. Clim, submitted



Conclusions

Increasing horizontal resolution, improving the physics
packages and including a stochastic parameterization all
improve certain aspects of model error, e.g. z500 bias

Others aspects, e.g. tropical waves were positively
influenced by STOCH and PHYS, but not HIGHRES

=> Unresolved scales may play an important role, but
results also give raise to a cautionary note

=> Stochastic parameterizations should be included ab
initio in physics-parameterization development



Future work

Understand differences between multi-physics and
stochastic representation physically and/or
structurally

Impact on extreme events on decadal timescales

Implement SKEBS in CAM and assess impact on
climate variability



Key points

There is model uncertainty in weather and climate prediction.
It is essential to represent model uncertainty.

In weather (NWP) the problem is well defined, because we
can use observations to determine model uncertainty.

In the climate sciences the estimation of model uncertainty is
more challenging.

Stochastic parameterizations are starting to become a
(superior?) alternative to other model-error representations
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