
  

Representing deep convective 
organization in a high resolution 

NWP LAM model using 
cellular automata

Lisa Bengtsson-Sedlar
SMHI

ECMWF, WMO/WGNE, WMO/THORPEX and WCRP WS  on 
Representing model uncertainty and error in numerical weather and climate 

prediction models

2011-06-22



  

What is cellular automata
An elementary cellular automata (Wolfram 1983) is a 
dynamical system with a state vector which takes on a 
number of discrete states determined by a given rule. This 
rule relates the state at one point in space and time to the 
state of the neighbouring CA grid-cells at the previous time-
step.



  

Interesting for organization of deep 
convection  

x

y

● Auto-correlation in space and 
time

● Spatial and temporal scales of 
deep convection

● Inherent memory

● Lateral communication, 
organization.

● Stochastic statistical 
representation of sub-grid 
variability

CA acting on a higher resolution than that of the model grid.



  

Atmospheric Variability
● How well does a forecast model reproduce the characteristic 

variability of the atmosphere in the limit of deterministic 
predictability?

● Lorenz (1982) suggested a way to parameterize the growth of 
small initial errors in a perfect model:

                  

E = Error
alpha = growth rate
s = systematic (climate drift) error
beta = Asymptotic saturation value



  

Atmospheric Variability

● If the error growth is governed by

the relation between E and dE/dt will lie on a parabola and 
can be fitted with a quadratic polynomial.

  

                  

Bengtsson et. al 
2008

= 110.5 m



  

Atmospheric Variability
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Atmospheric Variability

● The particular example shows an EPS which is under-
dispersive, i.e not variable enough. 

● One solution is to add stochastic physics.

● Question is, should such “noise” be added within the EPS as 
“multiplicative noise” (i.e Buizza, 1999), or, if the model 
itself is lacking in variability, should we aim to construct 
parameterizations in the deterministic model which have 
stochastic elements? i.e. Lin and Neelin (2002, 2003), 
Shutts (2005), Teixeira and Reynolds (2008), Plant and 
Craig (2008)
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Atmospheric Variability 

● A typical example of sub-grid variability arises from deep 
convection in the atmosphere.

● Idea from Palmer, (1997, 2001), Shutts, 2005 and Berner, 
2008 to use a cellular automaton as a “pattern generator” in 
order to introduce “multiplicative noise” on the spatial scales 
of convection in the ECMWF EPS

● Another approach could be to use a CA within the deep 
convection parameterization of the deterministic model, and 
let the CA be a function of the atmospheric model fields.



  

Deep convection organization
● Many “organizing mechanisms” in the atmosphere.

● Examples of such processes are vertical wind shear, 
underlying sea surface temperature (SST) gradients, cold pool 
dynamics and water vapour feedbacks (Tompkins 2001). 

● Also, ducted gravity waves, initiated from deep convection, act 
to organize convective clusters and meso-scale convective 
systems (Huang 1998). 

● Fast moving gravity waves are either damped, or not resolved 
in time in most NWP models.



  

Idealized study of CA parameters
● Design neighbourhood rules that govern the CA to achieve a 

statistical representation of the sub-grid scale motions.

● In particular the horizontally propagating gravity waves.

● Study impact of CA parameters in an idealized setup.

Q(x,y,t)=fraction of CA



  

Forget about physical processes of deep convection for a 
moment, and look only at scale interaction between different 
atmospheric scales. i.e. how large-scale waves interact with the 
convective scales.

Uncoupled

Random

CA 7x7

CA 3x3

CA 3x3
Advected



  

Hovmöller diagram
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Even if different horizontal resolutions generate different 
sizes of convective structures, the time-scale is the most 
important for how much energy is back-scattered to the 
larger scales



  

Ensemble Spread



  

Using a CA in a 3D model with full physics.
● Thus far, we've studied scale interaction using a CA to generate 

“clusters” mimicking organization through atmospheric gravity 
waves.

● The structures generated by the CA yields a greater back-scatter 
to the larger scales than that of pure random noise.

● The amount of energy back-scattered to the larger atmospheric 
scales depends on the parameters of the CA scheme, and the 
memory is the most important. 

● We've seen that a CA encompasses several components which 
are of interest for deep convection organization, such as lateral 
communication, memory and stochasticity.

● Want to explore in a state-of-the-art NWP model. 



  

NWP model implementation

● Branch of ALADIN model for the gray-zone 
scale (~5 km) “ALARO”

● Link CA to the closure assumption based on 
the prognostic equation of updraft mesh 
fraction.

● Use CAPE and moisture convergence as input 
to CA

● CA in “IFS” used from Martin Steinheimer, 
Peter Bechtold, Judith Berner



  

Updraught mesh-fraction

Storage =
Increase of mesh
fraction

Sink =
Gross 
condensation 
(consumption 
by updraft)

Source = 
resolved 
moisture 
convergence

Source/(sink) 
organization by 
CA

Function of 
CAPE
or/and
Low level 
moisture 
convergence

I II III IV



  

Radar image, squalline 14/7-10
16 UTC (or 18 CET)

ALARO 36h1.1, total 1h precip.
(No data assimilation, cold start)

1 hour precip from radar image.



  

Time evolution of normalized CAPE 
and moisture convergence (term III).



  

Probabilistic/Deterministic rules
● Probabilistic

(+): Can update the CA on a more physical basis

(+): Can introduce stochastisity within the parameterization

(-) : Does not necessarily remain active (i.e all cells can “die”). 
Needs to be seeded more frequent, strong dependence on the 
“convective input fields”

● Deterministic (GOL)

(+): Designed with rules such that the CA remains active 
throughout the forecast period (without seeding new cells). 
Inherent autocorrelation in space and time, through self-
organization, allowing for communication between grid-boxes -> 
larger spatial scales. 

(-) : No physical basis for the rules. (However, accurate space/time 
scales (through clustering) can be achieved, depending on tuning 
parameters of the scheme).



  

CA field



  

REF CAPE_CONV
Updraft mesh frac
16 utc

NOCA 
Updraft mesh frac
16 utc

REF CAPE_CONV
Updraft mesh frac
16 utc

16 UTC 16 UTC

ALARO reference, 36h1.1 ALARO CA-CAPECONV, 36h1.1

Updraught mesh fraction, 2010-07-14, 16 UTC



  

REF 
CAPE_CONV
Precip total
16 utc

REF CAPE_CONV
Precip total
16 utc

Total precipitation, 2010-07-14, 16 UTC

ALARO reference, 36h1.1 ALARO CA-CAPECONV, 36h1.1

16 UTC 16 UTC



  

Time evolution of precipitation

Seems to be an increase in total amount, as a result of an 
increase of the sub-grid



  

Future direction and key research 
questions

● Should stochastic physics be introduced to 
the deterministic model? Increased model 
variability -> saturate at the limit of 
deterministic predictability. 

● Can enhanced organization by CA yield a 
more variable deterministic model?

● Can enhanced organization by CA help 
improve forecast of MJO? 

● How to measure “organization”?
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