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Motivation

Two kinds of uncertainties:

Initialization
Model error

|IC Ensembles

Multimodels

Success of multimodel combination demonstrated in many studies
(e.g. Krishnamurti et al. 1999, Palmer et al. 2004, Weigel et al. 2008)
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Part 1

Multimodels in weather and seasonal forecasting
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@  Why it works: deterministic perspective

Let m,...m, be the forecasts stemming from n models,
M be the multi-model mean,
O be the verifying observation:

| _ , 1
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(e.g. Annan and Hargreaves 2011)
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@  Why it works: probabilistic perspective

7 DEMETER models: Multi-model better than any single model

2m temperature (global average)
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2 DEMETER models

Red points:
Multi-model locally better
than any single model

R

Weigel et al. 2008
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¥ A conceptual view
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¥ A conceptual view

future
observation
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¥ A conceptual view
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¥ A conceptual view
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@  Multi-model and Skill Score
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| Synthetic toy model forecasts
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Weigel et al. 2008 5 10 15

number of models

Can multi-models outperform best single model?

Yes —> if models are overconfident
No —> if models are already perfectly reliable

Multi-models do NOT improve physical predictability.
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Application to real data (DEMETER)

2 DEMETER models
2m temperature

multi-model
better than
best participating model

both models
highly
overconfident

Weigel et al. 2008
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Recalibration — an alternative strategy?

Rescale ensemble mean +

for & 15 obtamed by taking the condition that ¢
pecasts 15 identical to the observed climatolozy,

lon, together with Eg. 6, m Eq. 2 yields:
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\

inflate ensemble spread

Doblas-Reyes et al. 2005
Johnson and Bowler 2009
Weigel et al. 2009
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Recalibration versus multi-models
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Recalibration

Problems: Problems:
- Part of u is destroyed (usually r<1) - Usually not many models available
- Sample size needs to be large - Model errors often dependent

- Models may differ in p

Optimum results may be achieved by combining multi-models and
recalibration (e.g. Stephenson, 2005; Doblas-Reyes et al. 2005)
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Model weighting

« Optimization with respect to specific skill or error metrics
« Bayesian approaches with climatology as prior
 Regression approaches

(e.g. Rajagopalan et al. 2002, Coelho et al. 2004, DelSole
2007, Raftery et al. 2005, Weigel et al. 2008, and many more)

Forecast1l |-« » | Observation 1
Forecast 2 |+ » | Observation 2
Forecast N |« » |Observation N
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Skill of weighted multi-models
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MULTI-MODELS P 9

Weigel et al. 2010
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Part 2

Multimodels in multi-decadal climate change projections
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O

Example IPCC AR4

Global temperature change (K)
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Knutti et al. 2009
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¥  Multimodel projections

Ensemble of Quantifying
model projections probabilities
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Key guestions:

- Credibility of individual model projections?
- Statistical interpretation of ensemble?
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@ Weighting of long-range climate projections?

What is the probability of throwing a “one” with this dice?

Short-term forecasts: Make inference on Extrapolation problem:
Many experiments probability by analy- Is model performance

Zing characteristics during control period
Climate prc_)jections: Need to pick the represgntati\_/e for
One experiment “right” characteristics scenario period?

Model weighting is straight forward on short time-scales,
but not in the context of long-range climate projections!
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¥  Performance based weighting

Example: RCM weighting in ENSEMBLES project

6
WPROD — 11:[11‘ i

. Large-scale circulation based on weather regime classification

: Meso-scale signal based on seasonal mean temp. and precip.

. Distribution of daily and monthly temp. and precip.

: Extremes in terms of re-occurrence periods for temp. and precip.
. Long-term trends in temperature

. Annual cycle in temperature and precipitation

[EN

—h —h —h —h —h —h
o 01~ WN

n;: Scaling exponent _
Christensen et al. 2010
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U  Effects of weighting

Increase of
error (MSE) 0.8 S OM?2
4 OM1
0.6 -
0.4 -
0.2 -
Benchmark 0.0 Equal weights
|
Decrease of
error (MSE) 0 0.2 0.4 0.6 0.8 1
Model 2 inifintely ' ‘ Both models
better than Model 1 g have same skKill

Weigel et al. 2010
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U  Effects of weighting
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U  Effects of weighting

Increase of
error (MSE) 0.8 Oz
. . . r — -
4 Equal weighting as optimum strategy? oM
0.6
0.4 -
02 Random weights

Benchmark 0.0 Equal weights
l 0.2 - Optimal weights

Decrease of

error (MSE) 0 0.2 0.4 0.6 0.8 1
Model 2 inifintely ' ‘ Both models
better than Model 1 . have same skill

Weigel et al. 2010
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Structural similarities

Dissimilarity
0
Surface temperature CMIP3 ( >
iap_fgoals1 0 g.runl —
inmem3_0,run? }
QiSS_A0MIUNT  ——
14 - n
Family tree” of models —F
mri_cgcm2_ 3 2a,runi
miub_echo_g.run’
Models from same institute gi-echami.rn
and models sharing version ]
of same atmospheric model -
. ro_mk3_5.run1 —
are Shown In Same COIOr L.En_‘[-;_lr-_.t;::::'lr.l.rl||'|'|
ukmo_hadgem1.runi
—1 ceen

ipsl_cm4.runi
mpi_echam5,run

ccema_cgem3_1.runi
cccma_cgem3_1_t63.run :I
giss_model_e_h,run1 :l
giss_model_e_r.run1

Masson and Knutti, 2011
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ENSEMBLES R2TB

Emission scenario Global climate models (GCMs) Regional climate models (RCMs)
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¥  Multimodel projections

Ensemble of Quantifying
model projections probabilities
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Key guestions:

- Credibility of individual model projections?
- Statistical interpretation of ensemble?
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¥ A simple Bayesian model

Observations CONTROL ~ N(p,...)

O O ]
> . AP
E S °

: . | 5 . t A
L Climate mean during control period = A N
Bi: Systematic bias of model i 2 H
Ap: Climate change signal 3
AB;: Projection error of model i S

Buser et al. 2009
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The effect of prior assumptions

Spread of climate < ENSEMBLES RCMs

change signal Ap
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Probabilistic interpretation of multi-model
climate projections can be very problematic

0. 0.5 : 1.0 15 9
Prior assumption of model uncertainty o, .

A. Fischer et al. 2011, subm
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¥  Conclusions (1)

« MMEs improve projections both in a deterministic and
probabilistic sense

« A key aspect for the success of multimodels is the
reduction of overconfidence

« MMEs are ensembles of opportunity

e On shorttime-scales:

« Combination strategies can be judged and optimized
by verification

* Model weighting can further improve skill
* Recalibration can make MMEs reliable
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Conclusions (2)

« As time-scales get longer, the “nature of uncertainties”
becomes increasingly Bayesian

e On multi-decadal time-scales:

« Currently no convincing concept to derive probabilistically
meaningful model weights

« Equal weighting may be better strategy, but also difficult to
accomplish

- “Strictly” probabilistic interpretation highly problematic

« Particularly on long time-scales, approaches which sample
uncertainties more systematically may be preferable
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