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» Understand better the behaviour of HadCM3,
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Climate simulators and their parameters

Parameters . . .
HadCM3 : g — climate simulation.
Boundary conditions

» We would like to

» Understand better the behaviour of HadCM3,
» Propagate parametric uncertainty into projections, and
» Tune the parameters, which are under-determined.

» The challenges that we face:

» A very long run-time (weeks/months per run)
» Substantial internal variability in the outputs
» Somewhat ad hoc collection of simulator runs.



Climate simulators and their parameters

Parameters . . .
HadCM3 : " — climate simulation.
Boundary conditions
» We would like to

» Understand better the behaviour of HadCM3,
» Propagate parametric uncertainty into projections, and
» Tune the parameters, which are under-determined.

» The challenges that we face:

» A very long run-time (weeks/months per run)
» Substantial internal variability in the outputs
» Somewhat ad hoc collection of simulator runs.

> Statistical task: estimating the smooth function m in
HadCM3(r, MH) — HadCM3(r, PI) = m(r) + internal variability(r)

where r is the parameter values, and Pl and MH are Pre-Industrial
and Mid-Holocene boundary conditions.



An ensemble of HadCM3 runs

Each picture shows Had{C,A}M3's mid-Holocene North American
MTWA anomaly for one setting of the simulator parameters.
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Each picture shows Had{C,A}M3's mid-Holocene North American
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Five steps to an emulator for HadCM3

1. Consider the simulator f(r) to be the sum of a smooth
function plus internal variability, and estimate
S & Var(internal variability).

2. Dimensionally-reduce the smooth function, keeping only those
linear combinations that we trust.

3. Estimate the mean and variance functions for the
dimensionally-reduced smooth function, using the ensemble

and S.

4. Recover the mean and variance of the smooth function in the
full-dimension simulator output space.

5. Extensive full-dimension predictive diagnostic checking.



2. Dimensionally reduce the simulator output



2. Dimensionally reduce the simulator output

» Project the smooth component m(r) onto the column-space
of a matrix of basis vectors D (few columns), such that

actual climate ~ f(r) := (DD )" m(r)
where D1 is the Moore-Penrose inverse of D.

» We can, equivalently, write
f(r)=(D")"D"m(r) = (DF)"v(r) (1)

where v(r) := D"m(r) is a low-dimensional smooth function,
effectively the coefficients of the linear combinations in (D).

» We will construct a mean function and variance function for v
which we can then map into a mean function and variance
function for f, using (t).



D

Our choice of filtering matrix,
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adige adrhj adrye adsbb adshd adsea adseo

aeqgne aeqnf

aetwa aetwb

aezwe aezwe aezwg aenwp afcra aferb




Our choice of filtering matrix, D

afcre aferd aferf aferh aferi aferj aferk

aferl aferm afern afcro aferp aferg aferr

aeyeb afcja afcjb afcjg affib. affie affif
affig VamAh afgsa T afgsb B a;Sc afgsd T afgse
afgsg ‘ afgsh ;ﬂba afibb afibc. afibe afjbf

affic affid afjph aibj




Choosing the regressors of v(r)



Choosing the regressors of v(r)

A simple approach here is to reduce the sum of squared residuals over the
transformed variables, having adjusted for the covariance structure of the

internal variability. Dummy regressors are used to check for over-fitting.
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(Nb: we can get to 0 if we want to!)



Checking the emulator (LOO)
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Checking the emulator (LNO)
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Checking the emulator (LNO)
WWMMMWM
M‘MWMWWM

afibh afibj

MMMM



Dirty linen plot

‘Collateral perturbations’ in the experiment meant that switching
on the sulphur cycle with a slab ocean removed an anthropogenic
cooling that should not have been in a pre-industrial simulation.



Dirty linen plot

‘Collateral perturbations’ in the experiment meant that switching
on the sulphur cycle with a slab ocean removed an anthropogenic
cooling that should not have been in a pre-industrial simulation.

» This picture is very tentative and shows the emulator mean
function with all other parameters at their standard settings.

coupled = TRUE coupled = FALSE, Scyc = Off coupled = FALSE, Scyc = On
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Emulators are very important in identifying and adjusting for
coding issues.



Integrating out the parameters

The emulator gives us a conditional mean and variance for the sim-
ulator output: conditional indicating that it depends on the choice
of r. We can integrate the parameters out according to a specified
distribution to find the unconditional mean and variance.

(a) Unconditional expectation (b) Unconditional standard deviation
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Integrating out the parameters

Sampling the isotherms gives a feeling for spatial variability. These
isoterms are shown at —2°C (blue), 0°C (black), +2°C (red), +4°C
(orange), and +6°C (yellow).






Integrating out the parameters

There are two contributions to the unconditional variance: (a) the
variability of simulator’s response to the parameters, and (b) un-
certainty about the simulator (the latter can be reduced with more
runs). Here, it is the variability of the response which is contributing
more.

(a) Variance of the expectation function (b) Expectation of the variance function




Summary

REM: Statistics does not provide ‘numbers'—it provides a
framework within which we can examine the impact of our
Jjudgements on our conclusions and actions. One important role of
this framework is to clarify the questions.

Climate simulator questions:

1. How to get a robust estimate of internal variability?

2. What linear combinations of high-dimensional spatial outputs
are ‘trustworthy’?

3. How to choose the regression functions for the simulator
smooth component?

On the basis of our choices we compute an unconditional mean
and variance for HadCM3 output, allowing for parametric
uncertainty, and we attribute the variance primarily to parametric
uncertainty, rather than not having enough simulator runs.
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