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Introduction

» Current operational GCMs poorly represent the variability associated
with tropical convection

» GCM convective parameterizations often fail to capture the highly
intermittent organized structures of the convectively coupled waves

» Superparameterization and CRM approaches are still too
computationally expensive to apply to climate forecast problems

» Stochastic convective parameterization is computationally
Inexpensive way to address the issue of missing variability in tropics.



Convectively coupled waves and MJO
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Introduction

» A promising approach is to use a stochastic lattice to represent
subgrid variability: Majda Khouider 2002, Khouider et al. 2003,
Majda et al. 2008

» The stochastic multicloud model was introduced by Khouider Biello
and Majda in 2010 (hereafter KBM10) in context of paradigm
two-baroclinic modes single column model.

» This stochastic parameterization is based on a Markov chain lattice
model where each lattice site is either occupied by a cloud of a
certain type (congestus, deep or stratiform) or it is a clear sky site.

» The convective elements interact with the large scale environment
and with each other through convectively available potential energy
(CAPE) and middle troposphere dryness.

» Spatial interactions are ignored, and the resulting coarse grained
stochastic process is computationally inexpensive to evolve via
Gillespie algorithm.

» A modified version of KBM10 model is used here to study flows
above the equator without rotation effects.
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Multicloud model
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Dynamical Core of the multicloud model

The dynamical core of the model consists of two forced and coupled
shallow-water systems for first two baroclinic modes of potential
temperature and zonal velocity.

1

Momentum, jst mode, j = Oiuj — 0k0; = —Cqupu; — —u;
TR

1,2

Potential temperature, 1st 0:01 — Oyu; = P — Q,%)l - 7'5191

mode

1
Potential temperature, 2nd  0:0, — Zf)’xul — H, — H, — Q,O?,z — 7‘5192
mode

The precipitation P = Hy + £&Hs + £ H, allows for the contribution of
deep convective as well as stratiform and congestus rain.

For simplicity we remove congestus rain by letting £, = 0 and set
parameter & so that at RCE 40 percent of rain comes from stratiform
clouds



Stochastic lattice

Top of the troposphere
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The number of convective sites is set to 30° for the experiments on the
40 km grid



Transition rates are defined through three atmospheric
qualities with scaling parameters

» Dryness of Atmosphere D = 96”5096"”
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> Scaled low level CAPE C; = EAPE!

» Scaled CAPE C = gj\gg) (Note that CAPEy can be viewed as

"activation” energy)




Transition rates and time scales

Creation of congestus clouds requires dry atmosphere and abundance of
low level CAPE. Note the parity of the congestus creation and decay time

scales
Transition Transition Rate Time scale(h)
Formation of congest Ry = %MF(C/)F(D) T01=L175id
Decay of congestus Rip = }mF(D) T10=17gid
Conversion of congest to | Rip = %F(C)(l — (D)) T12=174/id
deep
Formation of deep Ro2 = %OZF(C)(l — (D)) T02=37grid
Conversion of deep to strat- | Ry3 = %23 T23=3Tgrid
iform
Decay of deep Roo = %20(1 — 1 (C)) T20=375rid
Decay of stratiform R3y = }30 T30=97grid

[(x) =1— e for x > 0 and 0 otherwise




Intermittent solution of single column simulation

The time series shows intermittent patterns of large and small convective
events. Both small and large convective events follow the congestus to
deep to stratiform pattern.
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Intermittent solution of single column simulation (closeup)

Smaller congestus cloud heavy convective events precondition
atmosphere for large convective events dominated by the direct clear sky

to deep convection transitions
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Walker type circulation simulations (outline)

Paradigm analog of Walker circulation in deterministic GCMs

Walker circulation in stochastic multicloud model with moderate
resolution

Walker circulation in stochastic multicloud model with coarse resolution

Quantitative comparison of the variability



Deterministic SST gradient induced Walker type

circulation (mean)
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Deterministic SST gradient induced Walker type
circulation (deviations from the mean)
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Eastward propagating waves in the suboptimal parameter
regime deterministic simulation
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SST gradient induced Walker type circulation (mean)
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SST gradient induced Walker type circulation (deviations)

Congestus cloud decks are localized to the center region of the warm
pool.
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Precipitation Profi

Stochastic multicloud
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Structure of a eastward propagating wave born on the
boundary of the warm pool

Both cloud fractions and heating fields follow the congestus to deep to
stratiform pattern. This results in characteristic tilt of the heating field.
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Mean circulation strength and variability of heating fields
for the stochastic and deterministic parameterizations

» Stochastic multicloud model outperforms its deterministic
counterpart, providing higher variability with more realistic
convective structures.

» Stochastic model can be scaled to coarse grid in a manner that
preserves the variability and statistical structure of the coherent

features.
Model grid | Tgig | N max (U, W) std(Hy) | std(H.)
(km) K/Day | K/Day
Stochastic | 40 1 302 | (10m/s,2cm/s) | 2.14 2.83
Stochastic | 160 | 1 120° | (12m/s,3cm/s) | 1.34 1.89
Stochastic | 160 | 1 30 | (12m/s,3cm/s) | 1.67 2.41
Stochastic | 160 | 3 302 | (12m/s,4cm/s) | 1.80 2.21
Stochastic | 160 | 4 302 | (12m/s,6cm/s) | 1.96 2.07
Stochastic | 160 | 5 302 | (11m/s,5cm/s) | 2.09 1.80
Stochastic | 160 | 16 302 | (10m/s,3cm/s) | 0.49 0.89
Determin. | 40 - - (4m/s,4cm/s) 0.97 0.14
Determin. | 160 | - - (bm/s,4cm/s) 0.55 0.14




Free tropospheric moisture equation is identical to KBM10 except for the
addition of moisture convergence term

Free tropospheric moisture  0:;q + 0 [(u1 + Gun) g + @(Ul =+ 5\U2)] —

8_5
_p L =~
. 1
Boundary layer equivalent 0:0 = —(E — D)
) hi
potential temperature
Downdrafts D = mo[l + p(Hs — He)/ Q1] A mbe

Sea surface evaporation E/hp, = Te_l( x5 — Oeb)

flux

For simulations with spatial SST gradient 6%,(x) = 5cos (ze05) in
central 20 000 km of the domain and -5K outside of the region



Convective heating closures

Congestus heating closure He = 055« \/CAPE+

Deep heating closure Hy = (ng - Tc(fyd)(aleeb + arq —
_l’_
so(6s + 72t2)))

Stratiform heating closure

Hs = as[UsQ C(lgs) (aleeb + arq —
ao (01 + 1202))]"

Maximum energy available for CAPE = CAPE + R(0ep — (01 +
deep convection v202))

Maximum energy available for CAPE; = CAPE + R(0ep — (61 +
congestus convection v502))

Te(ox) = i—iﬂ?



Conclusions

» The stochastic model dramatically improves the variability of
tropical convection compared to the conventional moderate and
coarse resolution paradigm GCM parameterizations.

» This increase in variability comes from intermittent coherent
structures such as synoptic and mesoscale convective systems,
analogs of squall lines and convectively coupled waves seen in nature
whose representation is improved by the stochastic parameterization.

» Furthermore, simulations with sea surface temperature (SST)
gradient yield realistic mean Walker-cell circulation with plausible
high variability.

» An additional feature of the present stochastic parameterization is a
natural scaling of the model from moderate to coarse grids which
preserves the variability and statistical structure of the coherent
features.



Quantifying Uncertainty in Climate
Change Science: Empirical Information
Theory, Fluctuation Dissipation

A. Majda and B. Gershgorin, Quantifying Uncertainty in Climate Change
Science through Empirical Information Theory, PNAS 107, p. 14958 (2010)

A. Majda, R. Abramoyv, and B. Gershgorin, High Skill in Low Frequency
Climate Response through Fluctuation Dissipation Theorems despite
Structural Instability, PNAS 107, p. 581 (2010)

A. Majda and B. Gershgorin, Improving Model Fidelity and Sensitivity for

Complex Systems through Empirical Information Theory, PNAS, in press
(2011)

A. Majda and B. Gershgorin, The Link between Statistical Equilibrium Fidelity

and Forecasting Skill for Complex Systems with Model Error, PNAS, in press
(2011)

A. Majda, B. Gershgorin, and Y.Yuan, Low Frequency Climate Response and

Fluctuation Dissipation Theorems: Theory and Practice, JAS 67,p. | 186
(2010)



Practical questions In
climate change science

How will the mean temperature change if the
heating from the sun increases?

How will the variance of the temperature
respond to the changes of CO2 concentration?

How will the mean velocity profile in the ocean
behave if the salinity starts changing?

How will the mean temperature in April change if
the heating in January decreases?



Quantifying Uncertainty in Climate Change
Science through Empirical Information Theory

Quantifying the uncertainty for the present climate and the predictions of climate
change in the suite of imperfect Atmosphere Ocean Science (AOS) computer models
IS a central issue in climate change science.

Basic questions:

»A How to measure the skill of a given model in reproducing the present climate and predicting
the future climate in an unbiased fashion?

»B How to make the best possible estimate of climate sensitivity to changes in external or
internal parameters by utilizing the imperfect knowledge available of the present climate?
What are the most dangerous parameters for climate change given uncertain knowledge of the
present climate?

»C How do coarse-grained measurements of different functionals of the present climate affect
the assessments in A), B)?

What are the weights which should be assigned to different functionals of the present climate as
targets to improve the performance of the imperfect AOS models?

Which new functionals of the present climate should be observed in order to improve the
assessments in A), B)?

Difficulty: Don’'t know dynamics for actual climate!



Empirical Information Theory

Jaynes 1957
Majda, Abramov, Grote 2005 AMS
Majda, Wang 2006, Cambridge Press

Empirical information theory and climate science

With a subset of variables @ € RY and a family of measurement
functionals E (@) = (E;(©)), 1 <j < L, for the present
climate, empirical information theory builds the least biased
probability measure 7y, (%) consistent with the L measurements

of the present climate, E;.



The natural way to measure the lack of information in one probability
density, (@), compared with the true probability density, p(u),
is through the relative entropy, P(p, q), given by

P(p,q) = /pln (g) .

This functional on probability densities has two attractive features
as a metric for climate change science:

1) P(p,q) > 0 with equality if and only if p = g,
2) P(p, q) is invariant under general nonlinear changes of variables.

P(m, ) precisely quantifies the intrinsic error in using

the L measurements of the present climate, E L

An AOS model for the present climate is described by n™ (),
intrinsic model error in the climate statistics is given by

P(m, ).



Consider a class of imperfect models, M, for the climate, the best climate
model for the coarse-grained variable u is the M, € M so that the true
climate has the smallest additional information beyond the modelled
climate distribution 7™ (), i.e.,

Mo\ M
P(m,m )—]\21161/1\1473(77,77 ).

Also, actual improvements in a given climate model with distribution
7M (%) either through higher resolution or improved parameterization
resulting in a new 7., (%) should result in improved information for

the actual climate, so that

P(m, W%St) < P(m, 7TM),

otherwise, objectively, the model has not been improved compared
with the original climate model.



Factl : P(r,7m17) = P(m, 7)) + P(np, w17 )

= (S(rr) — S(m)) + P(mp,mpr) for L' < L.

The unbiased intrinsic error in the finite number of climate
measurements in of the actual climate is exactly the entropy
difference. With Factl and a fixed family of L measurements
of the actual climate, the optimization principles can be
computed explicitly by replacing the unknown =

by the hypothetically known 77, in these formulas
M

so that for example, 7"+ is calculated by

P(T&'L,T(%*) — ]\I}léi}\l/lP(WL,ﬂ%).



Algorithms for effective calculation of the empirical
metrics for climate uncertainty

Practical setup for calibration of contemporary AOS models: climate
measurements and model measurements involve only mean and covariance
of w so that 7y, is Gaussian with climate mean « and covariance R while
oM is Gaussian with model mean ; and covariance Rj,.

P(nr, ™) has the explicit formula:

P, a) = | 3@ T (Rar) (@~ Ton)

| -3 logdet(RRy/) + 5 (tx(RRy) - ).

First term is the signal, reflecting the model error in the mean but weighted
by the inverse of the model covariance, R;j, while the second term,

the dispersion, involves only the model error covariance ratio, RRK/_,l.

This intrinsic metric is invariant under any (linear) change of variables

which maps Gaussian distributions to Gaussians and the signal and dispersion
terms are individually invariant under these transformations.

Non-Gaussian statistics: Kleeman (2002), Majda Kleeman Cai (2002),
Haven Majda Abramov (2005), Abramov (2006-7-9)



A simple example with an intrinsic barrier
for improving model sensitivity

du
— =au + v+ F,
Perfect model: % .
— =qu+ Av+ oW,
dt
smooth Gausssian measure if a+A<0, aA—q>0.
duM

Imperfect model: —~vmunr + Far + oW

dt



Climate Fidelity for Imperfect Model

Response to change in forcing:

oU = A oF, duy = L(SF,
aA — q YM




Information Model Error

With perfect model fidelity

2
Plrs, )= spt|- A

SF|°.
2 aA—q Yum oF

In this situation with A>0, the attempt to minimize
the information theoretic model error is futile
because no finite minimum over TM
is achived and necessarily yas — 00
in the approach to the minimum - intrinsic barrier.

With A<O, minimize the . 1
lack of information in /M — —A" " (aA—q), A<,

the sensitivity: Capture fidelity and sensitivity!




Empirical theory for finding the most dangerous
climate change directions from the present climate

Consider a family of parameters X € R? with 7y the true climate that

occurs; A — external parameters, changes in forcing, internal variability,
change in dissipation.

The most dangerous perturbed climate is the one with largest
uncertainty of the present climate

P(ms ,m) = max P(ms, ).

i NERP



7"'—»

5 — 7, then for small values of \:

X=0

— —

P(rs,m) = X I(m)X + O(|A\]?).

Fisher information:

Fact 2: The most dangerous climate change direction
occurs along the unit direction €& € R?

which is associated with the largest eigenvalue, A\,
of the above quadratic form.




Exactly solvable test models for climate
change science

U(t)=U(t)+U'(t), zonal jet, seasonal cycle
v(x,t), turbulent Rossby waves

T(x,t)+ay = “T7, passive tracer with mean gradient
(CO2, CO, etc)

dU _ . similar equation for each

— = —y(U -U(t)) + oW, Fourier mode of v

dt

2 Statistically exactly solvable
oT | U(t)a_T — —Oé?J( t) 14 /{a Gershgorin, Majda (2010),
Ot | ox Ox2’  Bourlioux, Majda (2002)

UM , oM , ™™ . solutions with Model Error

Mimic GCM: increase damping, Vs, eddy duffusivity for 7™



Mean zonal jet
. . : : 10

N
Spectrum of v
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Pdf for T’ like atmospheric tracers
in observations, Neelin et al (2010)
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Fraction of the signal part in the total lack of information P

0.8} :
0.6} /N , \

0.4r

0.271




Stochastic Model Parameterization
eddy diffusivity _, space-time white noise

T .
> 07T drTy + O'TW(ZL’, t).

oT — oT
M Moo —avpy(z,t) + (K + Kar) 5.2

Ot Uni (t) ox

Systematic information-theoretic improvement with optimal stochastic forcing:

|) Optimal noise increases as model error eddy-diffusivity increases
2) Larger noise is needed for refined coarse-grainings

3) There is a significant information gain in the dispersion with optimal stochastic parameterization vs
deterministic one

. . . : : * o
4) Optimal value with the smallest informationis at kp; = 0.1k}, where Ky = 57—
M 27y
Optimal noise k=1,2,3 k=5,8, 12
5 : _ 0.35 - S '
s _
/ . -
0.3 :
4 ‘ ! 41
0.25 '
3' < :/ \\\\\\\\“\ o] 3-.
|_| £ 0.2 /d’lll\\“\\‘\\ E
g —— §- 0 15‘ -m §
trrrrrn k=3 01‘ ‘-—‘ 1
' o \‘;_/ 1 -~ 77
— — —k=8 0.05F ]
------- k=12 s
0 | 0 - .
0 0.5 1 0 0.5 1 % 0.5 1

Eddy diffusivity Eddy dh.‘fusivity Eddy diffusivity



Revealing long-range predictability and model error
through coarse-grained partitions of phase space

@ Giannakis & Majda (2011), Quantifying the predictive skill
in long-range forecasting. Part [: Coarse-grained
predictions in a simple ocean model, submitted to J.
Climate.

@ Giannakis & Majda (2011), Quantifying the predictive skill
in long-range forecasting. Part II: Model error in
coarse-grained Markov models with application to
ocean-circulation regimes, submitted to J. Climate.

@ Giannakis, Majda & Horenko (2011), Information theory,
model error, and predictive skill of stochastic models for
complex nonlinear systems, submitted to Physica D.



Strategies for phase-space partitioning

n-dim. space of initial data

r

Each cluster is characterized by
its centroid, 6.

@ Collect observations z(t) over a time window A7 and
compute the average,

1
AT
27 = ATdtz(t).

@ Set S equal to the cluster that lies closest to 747 e,

S =argmindy, di = ||z — 6]
k



The predictive information content in a partition

Predictive skill given that the initial data
lie in the k-th cluster:

>
z Peq(At) k k k
S Dy =Ppr>Peq)s Pi(A) =p(Ar | S =Kk).
go
s “Super-ensemble” measure of skill:
o
Z mDF, e =p(S =k).
Ay
Interpretation

@ D; is equal to the mutual information I(A;; S) between the
coarse-grained initial data S and the value A; of the
prediction observable at time ¢.

@ D; vanishes if and only if S and A; are statistically
independent; namely, in the t — oo limit.




Mathematical Strategies for Filtering
Turbulent Dynamical Systems

By Andrew J. Majda
Morse Professor of Arts and Sciences
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Courant Institute of Mathematical Sciences (CIMS)
New York University

Main Collaborators:

John Harlim, North Carolina State University
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Modern Applied Modus Operandi

Theory: Important mathematical guidelines
Qualitative Exactly Solvable Models

Novel Algorithms:
Applications to Real Problems in Science/Engineering

General Refs for Talk: Research/Expository
A. Majda, J. Harlim, and B. Gershgorin “Mathematical Strategies for Filtering
Turbulent Dynamical System” 2010, Dis. Cont. Dyn. Sys., 27, pp 441-486

Introductory Graduate Text
A. Majda and J. Harlim, “Mathematical Strategies for Real Time Filtering of
Turbulent Signals in Complex Systems,” Cambridge University Press (2011 )




Exactly Solvable Test Models and NERF Algorithms

Prototype Test Problems which are Nonlinear yet exactly
solvable statistically for filtering multiple time scale systems

Examples: Gravity Waves, Moisture, and Large Scale Flow 1n
Tropics or Mesoscale, Tracking hazardous pollutants in real time
from partial observations

References:
1. B. Gershgorin and A. Majda, 2008, “A nonlinear test model for
filtering slow-fast systems,” Comm. Math. Sci., 6, 3, pp. 611 — 649

2. B. Gershgorin and A. Majda, 2010, “Filtering a nonlinear slow-fast
system with strong fast forcing,” Comm. Math. Sci. 8, 1, pp. 67 — 92

3. B. Gershgorin and A. Majda, 2011, “Filtering a statistically exactly
solvable test model for turbulent tracers from partial observations,” J.

Comp. Phys, Vol. 230, February 2011, pp 1602-1638



What is filtering?

1. Forecast (Prediction) 2. Analysis (Correction)

| U 1me1 (posterior)
| true sign

m+1lm (prior)

Unim (posterior)

observation (Vm + 1) observation Vg 1)
® ® ® ®
‘m tm+1 ‘m tm+1

The correction step is an application of Bayesian update

p(um+1|m+1) = P(um+1\m|vm+1) ~ p(um+1\m)P(Vm+1|um+1\m)

Kalman filter formula produces the optimal unbiased posterior

mean and covariance by assuming linear model and Gaussian
observations and forecasts errors.




Theoretical and Computational Issues:

» Handling nonlinearity! Why not particle filter? Convergence
requires ensemble size that grows exponentially with respect to
the ensemble spread relative to observation errors rather than
to the state dimension per se(Bengtsson, Bickel, and Li 2008).

» How to handle large system? Perhaps N = 10° state variables
(e.g., 200 km resolved Global Weather Model)

» Where is the computational burden? Propagating covariance
matrix of size N x N (6N minutes = 300,000 hours).

» Some successful strategies: Ensemble Kalman filters (ETKF
of Bishop et al. 2001, EAKF of Anderson 2001). Each
involves computing singular value decomposition (SVD).

» However, these accurate filters are not immune from
" catastrophic filter divergence” (diverge beyond machine
infinity) when observations are sparse, even when the true
signal is a dissipative system with "absorbing ball property” .




Mean Stochastic Model

The prototype one-mode stochastic mean model
du(t) = [(—fy +iw)u(t) + F(t)} dt + odW/(t)

where one fits the parameters using climatological statistical
quantities such as the energy spectrum and correlation time.

his " poor-man” strategy is discussed in Harlim and Majda
Nonlinearity 2008, Comm. Math. Sci. 2010.




Stochastic Parameterized Extended Kalman Filter:

We consider the following canonical model that accounts additive
and multiplicative biases:

du(t) = [(—v(t) +iw)u(t) + F(t)+b(t)} dt + odW(t)
db(t) = (—7p +iwp)b(t)dt + ogprdWp(t)
dy(t) = —d,(v(t)—A)dt+ o, dW,(t)

We find stochastic parameters {vp, wp, 0p, d, 0~} that are robust
for high filter skill beyond the MSM and in many occasions
comparable to the perfectly specified filter model.

This special form has exactly solvable nonlinear solutions and

moments and we do not need any linearization as in the standard
EKF.
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Test model for true signal

Consider the following SDE

dL;(tt) = —~(t)u(t) + iwu(t) + UW(t) + f(t)

as a test model for filtering with model error.

To generate significant model errors as well as to mimic
intermittent chaotic instability as often occurs in nature, we allow
v(t) to switch between stable (v > 0) and unstable (v < 0)
regimes according to a two-state Markov jump process.

Assume the following observation model:

Vin = U(tm) + o0, op ~ N(0, r°). (1)




True Signals for Unforced and Forced cases

Unforced system
I I I

Re[u(t)]

Forced system
I I I

Re[u(t)]
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One mode demonstration of the filtered solution:

observed mode

A 1=0.25, r°=E=0.008, perfect model, RMS x=0.042
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One mode demonstration of the filtered solution:

unobserved parameters

NEKE-C: d., =0.01d, o ~ =90, =0.1d, 0, =50
I I I

| |

0.5+ =
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Canonical Spatially Extended Turbulent Systems

We consider a stochastic PDE with time-dependent damping
Langevin equation for the first five Fourier modes, i.e.,

dug(t .

;E ) = —Ve(t)u(t) + iwgur(t) + o Wi(t) + fi(t), k=1,...,5,
and linear Langevin equation with constant damping d for modes
k > b,

duk(t) B

— —auk(t) + iwkuk(t) + Ok Wk(t) -+ fk(t), k > b.

dt
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Example: 123 grid pts (61 modes) but only 41 observations (20
modes) available

Physical Space

sparse observations for P=3

Fourier Space

aliasing set A(1) = {1,-40,42} for P=3 and M=20

aliasing set A(11) = {11,-30,52} for P=3 and M=20




Incorrectly specified forcings, observed only 15

observations of 105 grid points
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Canonical Model for Midlatitude Geophysical Flows:

The dynamical equations for the perturbed variables are:

0 0 0

D )+ USE + (B4 KU+ v
0 3 0
;2 J(¢2,q2) = U q - (8 — kdU) % VO g + KV

where q; Is the quasi-geostrophic potential vorticity given as

||
@
<
_|_
3
§

q; d(wg_J n

with 7 = V1, ky

= V8/Lq




In the two-layer case, the barotropic vertical and baroclinic modes

are defined as 1, = (Y1 +12)/2 and ¢ = (Y1 — ¢2)/2,

respectively.
Notice that the barotropic mode dynamical equation,

Oqp | o , 2 8
ot ! J(wba qb) =+ B Ox ! KV wb -+ vV dp
OV*c

+(J(¢c, ge) + U wzwc) =0

Ox

is numerically stiff when k3 is large (ocean case).
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Stochastic Models for Filtering the barotropic mode:

Recall that

6’% | | 8¢b | 5 3 o B
57 J(¥b, qp) + B Ix KV Yp +1vVTqp + (baroclmlc term) =0

where g, = By + V2.

Poorman’s stochastic models: replace the nonlinear terms and

all of the baroclinic components by Ornstein-Uhlenbeck processes.
Discrete Fourier Transform:

=)ty et
k

Thus, each horizontal mode has the following form

dip(t) = (—d + iw)(t)dt + f(t)dt + odW(t)

and our task is to parameterize d,w, f(t),o?




Longer deformation radius case (“atmospheric”

regime).
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Shorter deformation radius case (“oceanic” regime).
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1. MSM: We introduce reduced stochastic models through
replacing the nonlinearity and baroclinic components with
Ornstein-Uhlenbeck process for filtering purpose. This
reduced poor man’'s strategy is numerically very cheap and
accurate in a regime when the dynamical systems is strongly
chaotic and fully turbulent.

2. SPEKF: We introduce a paradigm model for “online” learning
both the additive and multiplicative biases from observations
beyond the MSM. This model is analytically solvable such
that NO LINEARIZATION is needed when Kalman filter

formula is utilized.




Stochastic Super-resolution:
Estimating turbulent heat transport in
the ocean using satellite altimetry

Characteristic lengthscales (km)

r| = Zonal resolution R Lo
r| = = = Meridional resolution ~ |s-----tr----- - 1
=+ = Deformation wavelength |- - - - -
----- Observed eddy diameter|:

-80 -60 -40 -20 0 20 40 60 80
Latitude (degrees)

“New methods for estimating poleward eddy heat
transport using satellite altimetry”

Shane R. Keating, Andrew J. Majda & K. Shafer Smith
J. Phys. Oceanogr. 2011 (submitted)



