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Estimating model error statistics

truth versus (unperturbed) model mismatches over interval ∆t

mismatches xf − xt are state vectors

spatial, multi-variate and temporal correlations matter

error will be a function of the initial state
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Estimating model error statistics (II)

estimate of truth versus model mismatches over interval ∆t
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Estimating model error statistics (II)

other estimate of truth versus model mismatches over interval ∆t
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Estimating model error covariances
observable are Ga = 〈(xf − xa)(xf − xa)T〉 and
Go = 〈(Hxf − y)(Hxf − y)T〉
under some simplifying assumptions (linearity, temporally uncorrelated
errors) we expect

Go = HMAMTHT + HQHT + R and Ga = MAMT + Q + A

IF, initial uncertainty A (and R) precisely known, then

Q = Ga −MAMT − A and HQHT = . . .

yields the model error covariance Q. Vice versa, errors in A (and R) will
alias into errors of our estimate of Q (HQHT).
The analyis error covariance A depends on the assimilation technique α,
H, R and Q. Thus, we have

Ga = MA(α,H,R,Q) MT + Q + A(α,H,R,Q) (1)

→ a nontrivial inverse problem!
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Ambiguity between initial uncertainty and model
uncertainty

Without constraining the estimate of A (completely) by data
assimilation, both the representation of initial uncertainties (A) and
tendency perturbations (Q) need to be set for an ensemble
forecasting system.

However, setting A and Q for ensemble forecasts may be an
under-determined problem!

If the estimate of A is “too small” (ie. the ensemble variance due to
initial uncertainty represented by A is lower than the error variance),
“larger” Q can compensate.

Consider for instance αÃ and βQ̃ for two estimates of analysis error
covariance and model error covariance.
Can we determine unambiguously (α, β) for a NWP ensemble?
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A-Q-Ambiguity (an example with the EPS)
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A-Q-Ambiguity (an example with the EPS)
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Model uncertainty representation at ECMWF
Status quo

The EPS uses

Stochastically Perturbed Parameterization Tendencies (SPPT)
a.k.a. stochastic physics

Stochastic Kinetic Energy Backscatter (SKEB)

The trajectory and the nonlinear forecast of the perturbed members of the
EDA (Ensemble of 4D-Vars) use SPPT only.

Work is in progress to make the representation of model uncertainties
in the nonlinear forecasts in EPS and EDA consistent

Full consistency requires more → weak-constraint 4D-Var
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Stochastically Perturbed Parameterization Tendencies
SPPT

Physics tendencies P perturbed by ∆P = rP, with r a random pattern

Improved version of the original SPPT scheme (stochastic physics,
Buizza, Miller & Palmer (1999)

2D Random pattern r uses AR-1 processes in spectral space and is
smooth in space and time (instead of 10◦× 10◦ tiles changing every 6
time steps)

Three components with different correlation scales:
6 h, 3 d, 30 d and 500 km, 1000 km, 2000 km with standard deviations
of 0.52, 0.18, 0.06, respectively

Gaussian distribution, truncated at ±2σ (instead of uniform distr.)

Same pattern r for T , q, u, v (instead of an independent patterns for
each variable)

see Tech Memo 598, Palmer et al. (2009) for more details
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Multi-variate uniform versus univariate Gaussian

multi-variate uniform in 4 dimensions:

probability to be within interquartile range for all four variables is 1/16

probability to perturb at least one of the four variables in excess of
0.92 of the maximum perturbation amplitude is 0.5 = (1− 2× 0.08)4.
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Tendency pertns and the frequency of heavy precipitation

multi-variate uniform distribution of (u, v ,T , q) ten. perturbations
uni-variate Gaussian tendency perturbations
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SPPT pattern

5

Multi-scale SPPT

500 km
6 h

1000 km
3 d

2000 km
30 d
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Stochastic Kinetic Energy Backscatter
SKEB

Rationale: A fraction of the dissipated energy is backscattered
upscale and acts as streamfunction forcing for the resolved-scale flow
(Shutts and Palmer 2004, Shutts 2005, Berner et al. 2009)

Streamfunction forcing = [bD]1/2 F (x, t),
where b,D,F denote the backscatter ratio, the (smoothed) total
dissipation rate and the 3-dim evolving pattern, respectively

Total dissipation rate: sum of
I “numerical” KE dissipation by numerical diffusion + interpolation in

semi-Lagrangian advection
I dissipation from orographic gravity wave drag parameterization
I an estimate of the deep convective KE production

Boundary layer dissipation is omitted

see also Tech Memo 598, Palmer et al. (2009) for further details
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SKEB forcing
streamfunction vorticity

F uses AR-1 processes in spectral space with random vertical phase
shifts

decorrelation time of pattern F is set to 7 h

structure of pattern constrained by results from coarse-graining
studies with T1279 IFS and CRM
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Recent operational implementations
affecting the EPS

Note, EDA uses the 1-scale version of SPPT (as implemented in 35r3 in
the EPS)
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Impact of tendency perturbations on the EPS
for a fixed representation of initial uncertainties

initial perturbations as used since 36r4
I EDA perturbations instead of evolved SV perturbations
I 50 % reduced amplitude of initial SV perturbations

40 cases: Aug/Sep 2008 and Oct–Dec 2009

T639, 50 member

cycle 36r2

6 different tendency perturbations
I no ten. perturbations
I original SPPT, BMP99 (Buizza, Miller & Palmer, 1999)
I single-scale SPPT (SPPT1 as implemented in 35r3)
I three-scale SPPT (SPPT3 as implemented in 36r4)
I stochastic kinetic energy backscatter (SKEB)
I SPPT3+SKEB
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Ensemble standard deviation (no symbols), EM RMSE (+)
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Ignorance score (=Logarithmic score)
CIgnS = − log(pfc(y)); the smaller the better
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Spread-reliability of 500 hPa height — 20◦–90◦N
Jan 2010 configuration versus Nov 2010 configuration
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Oct–Dec 2009
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Major improvement of a
long-standing deficiency

Which change of the EPS
configuration is responsible?
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Spread-reliability of 500 hPa height — 20◦–90◦N
Impact of halved SV perturbation amplitude
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Main improvement from reduced
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inferior to 36R2 configuration

smaller contribution from 36R1
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upgraded tendency perturbations
prevent underdispersion
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Kalman filter and model uncertainty
see Daley & Menard (1993)

variance evolution in the Kalman filter:

forecast step Pf = MPa MT + Q (2)

analysis step Pa = (I−KH) Pf , where (3)

gain matrix K = Pf HT (HPf HT + R)−1 (4)

Equivalence between 4D-Var and a Kalman smoother

Many ensemble assimilation techniques aim at approximating the
Extended Kalman filter

What is the impact of model uncertainty in the simplest possible KF?

DM93 studied properties of the KF with stationary R M Q H for the
case where all matrices can be diagonalized simultaneously
⇒ independent KF’s, each provides the analysis for one scalar variable
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Sensitivity to model error variance
Stationary Kalman filter for a scalar variable

slow pertn growth
frequent obsns

fast pertn growth
infrequent obsns

all variances normalized by R = σ2
o
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Impact of representing model uncertainties
in EDA and EPS on ensemble forecasts

3 EDA experiments; ( 10 member, T399):
I no tendency perturbations
I SPPT
I SPPT+SKEB

5 EPS experiments (20 member, T639):

pertn. perturbation in EPS
in EDA None SPPT+SKEB
None Off-Off Off-ON

SPPT+SKEB ON-Off ON-ON
SPPT SPPT-ON

I no SV perturbations
I EDA perturbations defined with respect to EDA mean
I analysis uncertainties accounted for in verification

20 cases in April/May 2010

cycle 36r4

see also earlier results in Sec. 3 of Tech Memo 598, Palmer et al. (2009)
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Ensemble standard deviation (no symbols), EM RMSE (+)
500 hPa geopotential — 35◦N–65◦N
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Continuous Ignorance Score
500 hPa geopotential — 35◦N–65◦N
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Spread-reliability: t = 48 h
Northern mid-latitudes 35◦N–65◦N

500 hPa geopotential height 850 hPa meridional wind
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Spread-reliability: meridional wind t = 48 h
Tropics 20◦S–20◦N
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Conclusions

Stochastic tendency perturbations used in the operational ECMWF
ensembles contribute significantly to ensemble spread and improve
probabilistic skill.

Improved ensemble forecast variances and improved probabilistic skill
through a combination of

I introduction of EDA perturbations
I reduced amplitude for SV perturbations
I more active representation of model uncertainties

Not having precise estimates of initial error covariances hampers
diagnostic of the characteristics of (random) model tendency errors

Diagnostics may need to be improved to distinguish well different
representations of model uncertainty.

Model uncertainty contributes to initial uncertainty whereever a
short-range forecast is used as prior information. A consistent
representation of model uncertainty in data assimilation and forecast
can help to better constrain the formulation of model uncertainty.

Leutbecher . . . NWP ensembles Reading, 20–24 June ’11 28 / 29



Conclusions

Stochastic tendency perturbations used in the operational ECMWF
ensembles contribute significantly to ensemble spread and improve
probabilistic skill.

Improved ensemble forecast variances and improved probabilistic skill
through a combination of

I introduction of EDA perturbations
I reduced amplitude for SV perturbations
I more active representation of model uncertainties

Not having precise estimates of initial error covariances hampers
diagnostic of the characteristics of (random) model tendency errors

Diagnostics may need to be improved to distinguish well different
representations of model uncertainty.

Model uncertainty contributes to initial uncertainty whereever a
short-range forecast is used as prior information. A consistent
representation of model uncertainty in data assimilation and forecast
can help to better constrain the formulation of model uncertainty.

Leutbecher . . . NWP ensembles Reading, 20–24 June ’11 28 / 29



Plans

Compare operational schemes with more basic tendency
perturbations. For instance, additive noise, e.g. from scaled
tendencies constructed from a tendency archive, (e.g. YOTC data)

Diagnose tendency differences from different models started from the
same initial conditions (resolution, different parameters, different
parameterization schemes, . . . ). What is the nature of the random
component of the differences?

Develop improved diagnostics that permit to evaluate better the
realism of different tendency perturbations.
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