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Outline

@ Introduction

@ Tendency perturbations used in ECMWF ensembles
@ Stochastically Perturbed Parameterization Tendencies (SPPT)
@ Stochastic Kinetic Energy Backscatter (SKEB)

© Impact of tendency perturbations on the EPS

@ Model uncertainty and analysis uncertainty

e Kalman filter
@ Ensemble of 4D-Vars (EDA)

© Summary
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Estimating model error statistics

truth versus (unperturbed) model mismatches over interval At

@ mismatches xs — X; are state vectors
@ spatial, multi-variate and temporal correlations matter

@ error will be a function of the initial state
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Estimating model error statistics (II)

N

estimate of truth versus model mismatches over interval At
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Estimating model error statistics (II)

other estimate of truth versus model mismatches over interval At
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Estimating model error covariances
observable are G, = {(xr — x,)(xr — xa)*) and
Go = ((Hxr —y)(Hxs —y)")

under some simplifying assumptions (linearity, temporally uncorrelated
errors) we expect

G, = HMAMTHT + HQH" +R and G,=MAMT +Q+A
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Estimating model error covariances

observable are G, = ((xf — x,)(xs — x5)T) and

Go = ((Hxr — y)(Hxs —y)")

under some simplifying assumptions (linearity, temporally uncorrelated
errors) we expect

Go = HMAMTH' + HQH" +R  and G,=MAM' +Q+A
IF, initial uncertainty A (and R) precisely known, then
Q=G,-MAM' - A and HQH'=...

yields the model error covariance Q. Vice versa, errors in A (and R) will
alias into errors of our estimate of Q (HQHT).
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Estimating model error covariances

observable are G, = ((xf — x,)(xs — x5)T) and

Go = ((Hxr — y)(Hxs —y)")

under some simplifying assumptions (linearity, temporally uncorrelated
errors) we expect

Go = HMAMTH' + HQH" +R  and G,=MAM' +Q+A
IF, initial uncertainty A (and R) precisely known, then
Q=G,-MAM' - A and HQH'=...

yields the model error covariance Q. Vice versa, errors in A (and R) will
alias into errors of our estimate of Q (HQHT).

The analyis error covariance A depends on the assimilation technique «,
H, R and Q. Thus, we have

G,=MA(o,H,R,Q)MT + Q + A(o, H,R,Q) (1)

— a nontrivial inverse problem!
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Ambiguity between initial uncertainty and model
uncertainty

e Without constraining the estimate of A (completely) by data
assimilation, both the representation of initial uncertainties (A) and
tendency perturbations (Q) need to be set for an ensemble
forecasting system.
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Ambiguity between initial uncertainty and model
uncertainty

e Without constraining the estimate of A (completely) by data
assimilation, both the representation of initial uncertainties (A) and
tendency perturbations (Q) need to be set for an ensemble
forecasting system.

@ However, setting A and Q for ensemble forecasts may be an
under-determined problem!

@ If the estimate of A is “too small” (ie. the ensemble variance due to
initial uncertainty represented by A is lower than the error variance),
“larger” Q can compensate.
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Ambiguity between initial uncertainty and model
uncertainty

e Without constraining the estimate of A (completely) by data
assimilation, both the representation of initial uncertainties (A) and
tendency perturbations (Q) need to be set for an ensemble
forecasting system.

@ However, setting A and Q for ensemble forecasts may be an
under-determined problem!

@ If the estimate of A is “too small” (ie. the ensemble variance due to
initial uncertainty represented by A is lower than the error variance),
“larger” Q can compensate.

@ Consider for instance A and SQ for two estimates of analysis error
covariance and model error covariance.
Can we determine unambiguously («, 3) for a NWP ensemble?
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A-Q-Ambiguity (an example with the EPS)

u850hPa, Northern Extra-tropics
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A-Q-Ambiguity (an example with the EPS)

u850hPa, Northern Extra-tropics
ContinuousRankedProbabilityScore
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A-Q-Ambiguity (an example with the EPS)

u850hPa, Northern Extra-tropics
ContinuouslgnoranceScoreGaussian, ContinuouslgnoranceScoreGaussianClimate
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A-Q-Ambiguity (an example with the EPS)

u850hPa, Southern Extra-tropics

ContinuouslgnoranceScoreGaussian, ContinuouslgnoranceScoreGaussianClimate
2010041300-2010050200 (20)
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Model uncertainty representation at ECMWF

Status quo

The EPS uses
e Stochastically Perturbed Parameterization Tendencies (SPPT)
a.k.a. stochastic physics

@ Stochastic Kinetic Energy Backscatter (SKEB)
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Model uncertainty representation at ECMWF

Status quo

The EPS uses

e Stochastically Perturbed Parameterization Tendencies (SPPT)
a.k.a. stochastic physics

@ Stochastic Kinetic Energy Backscatter (SKEB)

The trajectory and the nonlinear forecast of the perturbed members of the
EDA (Ensemble of 4D-Vars) use SPPT only.

@ Work is in progress to make the representation of model uncertainties
in the nonlinear forecasts in EPS and EDA consistent

@ Full consistency requires more — weak-constraint 4D-Var
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Stochastically Perturbed Parameterization Tendencies
SPPT

@ Physics tendencies P perturbed by AP = rP, with r a random pattern

@ Improved version of the original SPPT scheme (stochastic physics,
Buizza, Miller & Palmer (1999)

Leutbecher ECECMWF ...NWP ensembles Reading, 20-24 June '11 9 /29



Stochastically Perturbed Parameterization Tendencies
SPPT

@ Physics tendencies P perturbed by AP = rP, with r a random pattern

@ Improved version of the original SPPT scheme (stochastic physics,
Buizza, Miller & Palmer (1999)

@ 2D Random pattern r uses AR-1 processes in spectral space and is
smooth in space and time (instead of 10°x 10° tiles changing every 6
time steps)

@ Three components with different correlation scales:
6h, 3d, 30d and 500 km, 1000 km, 2000 km with standard deviations
of 0.52, 0.18, 0.06, respectively
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Stochastically Perturbed Parameterization Tendencies
SPPT

@ Physics tendencies P perturbed by AP = rP, with r a random pattern

@ Improved version of the original SPPT scheme (stochastic physics,
Buizza, Miller & Palmer (1999)

@ 2D Random pattern r uses AR-1 processes in spectral space and is
smooth in space and time (instead of 10°x 10° tiles changing every 6
time steps)

@ Three components with different correlation scales:
6h, 3d, 30d and 500 km, 1000 km, 2000 km with standard deviations
of 0.52, 0.18, 0.06, respectively

e Gaussian distribution, truncated at £2¢ (instead of uniform distr.)

@ Same pattern r for T,q, u, v (instead of an independent patterns for
each variable)

see Tech Memo 598, Palmer et al. (2009) for more details
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Multi-variate uniform versus univariate Gaussian

q

A

A
q

Leutbecher

LCECMWF ...NWP ensembles Reading, 20-24 June '11 10 / 29



Multi-variate uniform versus univariate Gaussian

q

A A

y ,
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T T

multi-variate uniform in 4 dimensions:

@ probability to be within interquartile range for all four variables is 1/16

@ probability to perturb at least one of the four variables in excess of

0.92 of the maximum perturbation amplitude is 0.5 = (1 — 2 x 0.08)*.
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Tendency pert™ and the frequency of heavy precipitation

—— multi-variate uniform distribution of (u, v, T, q) ten. perturbations
——= uni-variate Gaussian tendency perturbations
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SPPT pattern
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Stochastic Kinetic Energy Backscatter
SKEB

@ Rationale: A fraction of the dissipated energy is backscattered
upscale and acts as streamfunction forcing for the resolved-scale flow
(Shutts and Palmer 2004, Shutts 2005, Berner et al. 2009)

e Streamfunction forcing = [bD]'/? F(x, t),
where b, D, F denote the backscatter ratio, the (smoothed) total
dissipation rate and the 3-dim evolving pattern, respectively
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Stochastic Kinetic Energy Backscatter
SKEB

@ Rationale: A fraction of the dissipated energy is backscattered
upscale and acts as streamfunction forcing for the resolved-scale flow
(Shutts and Palmer 2004, Shutts 2005, Berner et al. 2009)

e Streamfunction forcing = [bD]'/? F(x, t),
where b, D, F denote the backscatter ratio, the (smoothed) total
dissipation rate and the 3-dim evolving pattern, respectively

@ Total dissipation rate: sum of

» “numerical” KE dissipation by numerical diffusion 4 interpolation in
semi-Lagrangian advection

» dissipation from orographic gravity wave drag parameterization
> an estimate of the deep convective KE production

@ Boundary layer dissipation is omitted

see also Tech Memo 598, Palmer et al. (2009) for further details
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SKEB forcing
streamfunction vorticity
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@ F uses AR-1 processes in spectral space with random vertical phase
shifts

@ decorrelation time of pattern F is setto 7 h

@ structure of pattern constrained by results from coarse-graining
studies with T1279 IFS and CRM
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Recent operational implementations
affecting the EPS

36r2: EDA pert. 36r4:

35r3: . SV pertn amplitude
. replace evolved SVs;
(ri\:lssceaclleiPPT SV pertn ampl. reduced by 50%
reduced by 10% glz::‘éale SPPT &

36rl:
resolution
increased to

T639/319
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Recent operational implementations
affecting the EPS

36r2: EDA pert. 36r4:

35r3: . SV pertn amplitude
. replace evolved SVs;

revised SPPT SV pertn ampl. reduced by 50%

(1-scale) 3-scale SPPT &

reduced by 10%

SKEB

36rl:
resolution
increased to

T639/319

Note, EDA uses the 1-scale version of SPPT (as implemented in 35r3 in
the EPS)
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Impact of tendency perturbations on the EPS

for a fixed representation of initial uncertainties

@ initial perturbations as used since 36r4

>

>

>

vV vy vy VvYyy

EDA perturbations instead of evolved SV perturbations
50 % reduced amplitude of initial SV perturbations

40 cases: Aug/Sep 2008 and Oct—Dec 2009
T639, 50 member

cycle 36r2
6 different tendency perturbations

no ten. perturbations

original SPPT, BMP99 (Buizza, Miller & Palmer, 1999)
single-scale SPPT (SPPT1 as implemented in 35r3)
three-scale SPPT (SPPT3 as implemented in 36r4)
stochastic kinetic energy backscatter (SKEB)
SPPT3+SKEB
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Ensemble standard deviation (no symbols), EM RMSE (+)

v850hPa, Northern Mid-latitudes
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lgnorance score (=Logarithmic score)
ClgnS = — log(pw(y)); the smaller the better
v850hPa, Northern Mid-latitudes

ContinuouslgnoranceScoreGaussian
2008081012-2009122812 (40)
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Spread-reliability of 500 hPa height — 20°-90°N

Jan 2010 configuration versus Nov 2010 configuration
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@ 40 cases: Aug/Sep 2008 and

RMS spread (m)

Oct—Dec 2009
@ 1639, 50 member
@ cycle 36r2
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long-standing deficiency

configuration is responsible?
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Spread-reliability of 500 hPa height — 20°-90°N

Impact of halved SV perturbation amplitude
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@ Main improvement from reduced
SV perturbation amplitude

@ Probabilistic skill of 0.5 x SV is
inferior to 36R2 configuration
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@ smaller contribution from 36R1
— 36R2

@ upgraded tendency perturbations
prevent underdispersion
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Kalman filter and model uncertainty
see Daley & Menard (1993)

@ variance evolution in the Kalman filter:

forecast step PF=MP"M™ +Q (2)
analysis step P? = (1 - KH)P’, where (3)
gain matrix ~ K=P HT(HPTHT +R)™! (4)
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Kalman filter and model uncertainty
see Daley & Menard (1993)

@ variance evolution in the Kalman filter:

forecast step PF=MP°M" +Q
analysis step P? = (1 - KH)P’, where
gain matrix ~ K=P HT(HPTHT +R)™!

@ Equivalence between 4D-Var and a Kalman smoother

@ Many ensemble assimilation techniques aim at approximating the

Extended Kalman filter
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Kalman filter and model uncertainty
see Daley & Menard (1993)

@ variance evolution in the Kalman filter:

forecast step PF=MP"M™ +Q (2)
analysis step P? = (1 - KH)P’, where (3)
gain matrix K=P'HT(HPTHT +R)! (4)

@ Equivalence between 4D-Var and a Kalman smoother

@ Many ensemble assimilation techniques aim at approximating the
Extended Kalman filter

@ What is the impact of model uncertainty in the simplest possible KF?

@ DMO3 studied properties of the KF with stationary R M Q H for the
case where all matrices can be diagonalized simultaneously
= independent KF's, each provides the analysis for one scalar variable
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variance

Sensitivity to model error variance

Stationary Kalman filter for a scalar variable

slow pert” growth
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e all variances normalized by R = o2
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Impact of representing model uncertainties
in EDA and EPS on ensemble forecasts
o 3 EDA experiments; ( 10 member, T399):
» no tendency perturbations
» SPPT
» SPPT+SKEB

@ 5 EPS experiments (20 member, T639):

pertn. perturbation in EPS
in EDA None | SPPT+SKEB
None Off-Off Off-ON
SPPT+SKEB | ON-Off ON-ON
SPPT SPPT-ON

» no SV perturbations
» EDA perturbations defined with respect to EDA mean
» analysis uncertainties accounted for in verification

@ 20 cases in April/May 2010
o cycle 36r4
® sce also earlier results in Sec. 3 of Tech Memo 598, Palmer et al. (2009)
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Ensemble standard deviation (no
500 hPa geopotential — 35°N-65°N

symbols), EM RMSE (+)
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Ensemble standard deviation (no symbols), EM RMSE (+)

500 hPa geopotential — 35°N-65°N
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Continuous Ignorance Score
500 hPa geopotential — 35°N-65°N
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Continuous Ignorance Score
500 hPa geopotential — 35°N-65°N
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Spread-reliability: t = 48h
Northern mid-latitudes 35°N-65°N

500 hPa geopotential height

850 hPa meridional wind
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Spread-reliability: t = 48h
Northern mid-latitudes 35°N-65°N

500 hPa geopotential height 850 hPa meridional wind
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Spread-reliability: meridional wind t = 48h

Tropics 20°S-20°N

850 hPa 200 hPa
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Spread-reliability: meridional wind t = 48h
Tropics 20°S-20°N

Leutbecher

2
RMS spread (m/s)
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Conclusions

@ Stochastic tendency perturbations used in the operational ECMWF

ensembles contribute significantly to ensemble spread and improve
probabilistic skill.

@ Improved ensemble forecast variances and improved probabilistic skill
through a combination of

» introduction of EDA perturbations
» reduced amplitude for SV perturbations
» more active representation of model uncertainties
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Conclusions

@ Stochastic tendency perturbations used in the operational ECMWF
ensembles contribute significantly to ensemble spread and improve
probabilistic skill.

@ Improved ensemble forecast variances and improved probabilistic skill
through a combination of

» introduction of EDA perturbations
» reduced amplitude for SV perturbations
» more active representation of model uncertainties

@ Not having precise estimates of initial error covariances hampers

diagnostic of the characteristics of (random) model tendency errors

@ Diagnostics may need to be improved to distinguish well different
representations of model uncertainty.

@ Model uncertainty contributes to initial uncertainty whereever a
short-range forecast is used as prior information. A consistent
representation of model uncertainty in data assimilation and forecast
can help to better constrain the formulation of model uncertainty.
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Plans

@ Compare operational schemes with more basic tendency
perturbations. For instance, additive noise, e.g. from scaled
tendencies constructed from a tendency archive, (e.g. YOTC data)

@ Diagnose tendency differences from different models started from the
same initial conditions (resolution, different parameters, different
parameterization schemes, ...). What is the nature of the random
component of the differences?

@ Develop improved diagnostics that permit to evaluate better the
realism of different tendency perturbations.
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