Stochastic tendency perturbations for NWP ensembles

Martin Leutbecher

European Centre for Medium-Range Weather Forecasts

Workshop on Representing Model Uncertainty in numerical weather prediction (NWP) models and in climate models

Acknowledgements: Glenn Shutts, Martin Steinheimer & Peter Bechtold Lars Isaksen, Massimo Bonavita & Roberto Buizza Frederic Vitart, Tim Stockdale, Thomas Jung and Tim Palmer

Outline

Introduction

- Tendency perturbations used in ECMWF ensembles
 - Stochastically Perturbed Parameterization Tendencies (SPPT)
 - Stochastic Kinetic Energy Backscatter (SKEB)

Impact of tendency perturbations on the EPS

- 4 Model uncertainty and analysis uncertainty
 - Kalman filter
 - Ensemble of 4D-Vars (EDA)

Summary

E 6 4 E 6

Estimating model error statistics

truth versus (unperturbed) model mismatches over interval Δt

- mismatches $\mathbf{x}_f \mathbf{x}_t$ are state vectors
- spatial, multi-variate and temporal correlations matter
- error will be a function of the initial state

Estimating model error statistics

truth versus (unperturbed) model mismatches over interval Δt

- mismatches $\mathbf{x}_f \mathbf{x}_t$ are state vectors
- spatial, multi-variate and temporal correlations matter
- error will be a function of the initial state

Estimating model error statistics (II)

estimate of truth versus model mismatches over interval Δt

Leutbecher	CECMW
------------	-------

... NWP ensembles

Estimating model error statistics (II)

estimate of truth versus model mismatches over interval Δt

Leutbecher	CECMW
------------	-------

Estimating model error statistics (II)

other estimate of truth versus model mismatches over interval Δt

Leutbecher	CECMW
------------	-------

Estimating model error covariances

observable are $\mathbf{G}_a = \langle (\mathbf{x}_f - \mathbf{x}_a)(\mathbf{x}_f - \mathbf{x}_a)^{\mathrm{T}} \rangle$ and $\mathbf{G}_o = \langle (\mathbf{H}\mathbf{x}_f - \mathbf{y})(\mathbf{H}\mathbf{x}_f - \mathbf{y})^{\mathrm{T}} \rangle$

under some simplifying assumptions (linearity, temporally uncorrelated errors) we expect

 $\mathbf{G}_{o} = \mathbf{H}\mathbf{M}\mathbf{A}\mathbf{M}^{\mathrm{T}}\mathbf{H}^{\mathrm{T}} + \mathbf{H}\mathbf{Q}\mathbf{H}^{\mathrm{T}} + \mathbf{R}$ and $\mathbf{G}_{a} = \mathbf{M}\mathbf{A}\mathbf{M}^{\mathrm{T}} + \mathbf{Q} + \mathbf{A}$

Estimating model error covariances

observable are $\mathbf{G}_a = \langle (\mathbf{x}_f - \mathbf{x}_a)(\mathbf{x}_f - \mathbf{x}_a)^{\mathrm{T}} \rangle$ and $\mathbf{G}_o = \langle (\mathbf{H}\mathbf{x}_f - \mathbf{y})(\mathbf{H}\mathbf{x}_f - \mathbf{y})^{\mathrm{T}} \rangle$

under some simplifying assumptions (linearity, temporally uncorrelated errors) we expect

 $\mathbf{G}_{o} = \mathbf{H}\mathbf{M}\mathbf{A}\mathbf{M}^{\mathrm{T}}\mathbf{H}^{\mathrm{T}} + \mathbf{H}\mathbf{Q}\mathbf{H}^{\mathrm{T}} + \mathbf{R} \qquad \text{and} \qquad \mathbf{G}_{a} = \mathbf{M}\mathbf{A}\mathbf{M}^{\mathrm{T}} + \mathbf{Q} + \mathbf{A}$

IF, initial uncertainty A (and R) precisely known, then

$$\label{eq:Q} \textbf{Q} = \textbf{G}_a - \textbf{M} \textbf{A} \textbf{M}^{\mathrm{T}} - \textbf{A} \quad \text{and} \quad \textbf{H} \textbf{Q} \textbf{H}^{\mathrm{T}} = \dots$$

yields the model error covariance \mathbf{Q} . Vice versa, errors in \mathbf{A} (and \mathbf{R}) will alias into errors of our estimate of \mathbf{Q} ($\mathbf{H}\mathbf{Q}\mathbf{H}^{\mathrm{T}}$).

Estimating model error covariances

observable are $\mathbf{G}_a = \langle (\mathbf{x}_f - \mathbf{x}_a)(\mathbf{x}_f - \mathbf{x}_a)^{\mathrm{T}} \rangle$ and $\mathbf{G}_o = \langle (\mathbf{H}\mathbf{x}_f - \mathbf{y})(\mathbf{H}\mathbf{x}_f - \mathbf{y})^{\mathrm{T}} \rangle$

under some simplifying assumptions (linearity, temporally uncorrelated errors) we expect

 $\mathbf{G}_{o} = \mathbf{H}\mathbf{M}\mathbf{A}\mathbf{M}^{\mathrm{T}}\mathbf{H}^{\mathrm{T}} + \mathbf{H}\mathbf{Q}\mathbf{H}^{\mathrm{T}} + \mathbf{R} \qquad \text{and} \qquad \mathbf{G}_{a} = \mathbf{M}\mathbf{A}\mathbf{M}^{\mathrm{T}} + \mathbf{Q} + \mathbf{A}$

IF, initial uncertainty A (and R) precisely known, then

$$\label{eq:Q} \textbf{Q} = \textbf{G}_{a} - \textbf{M} \textbf{A} \textbf{M}^{\mathrm{T}} - \textbf{A} \quad \text{and} \quad \textbf{H} \textbf{Q} \textbf{H}^{\mathrm{T}} = \dots$$

yields the model error covariance \mathbf{Q} . Vice versa, errors in \mathbf{A} (and \mathbf{R}) will alias into errors of our estimate of \mathbf{Q} ($\mathbf{H}\mathbf{Q}\mathbf{H}^{\mathrm{T}}$).

The analysi error covariance **A** depends on the assimilation technique α , **H**, **R** and **Q**. Thus, we have

$$\mathbf{G}_{a} = \mathbf{M} \, \mathbf{A}(\alpha, \mathbf{H}, \mathbf{R}, \mathbf{Q}) \, \mathbf{M}^{\mathrm{T}} + \mathbf{Q} + \mathbf{A}(\alpha, \mathbf{H}, \mathbf{R}, \mathbf{Q}) \tag{1}$$

 \rightarrow a nontrivial inverse problem!

Leutbecher (CECMW
--------------	--------------

5 / 29

Ambiguity between initial uncertainty and model uncertainty

 Without constraining the estimate of A (completely) by data assimilation, both the representation of initial uncertainties (A) and tendency perturbations (Q) need to be set for an ensemble forecasting system.

Ambiguity between initial uncertainty and model uncertainty

- Without constraining the estimate of A (completely) by data assimilation, both the representation of initial uncertainties (A) and tendency perturbations (Q) need to be set for an ensemble forecasting system.
- However, setting **A** and **Q** for ensemble forecasts may be an under-determined problem!
- If the estimate of A is "too small" (ie. the ensemble variance due to initial uncertainty represented by A is lower than the error variance), "larger" Q can compensate.

(B)

Ambiguity between initial uncertainty and model uncertainty

- Without constraining the estimate of **A** (completely) by data assimilation, both the representation of initial uncertainties (**A**) and tendency perturbations (**Q**) need to be set for an ensemble forecasting system.
- However, setting **A** and **Q** for ensemble forecasts may be an under-determined problem!
- If the estimate of A is "too small" (ie. the ensemble variance due to initial uncertainty represented by A is lower than the error variance), "larger" Q can compensate.
- Consider for instance αà and βQ for two estimates of analysis error covariance and model error covariance.
 Can we determine *unambiguously* (α, β) for a NWP ensemble?

u850hPa, Northern Extra-tropics

spread_em, rmse_em 2010041300-2010050200 (20)

u850hPa, Northern Extra-tropics

ContinuousRankedProbabilityScore 2010041300-2010050200 (20)

u850hPa, Northern Extra-tropics

ContinuousIgnoranceScoreGaussian, ContinuousIgnoranceScoreGaussianClimate 2010041300-2010050200 (20)

Model uncertainty representation at ECMWF Status quo

The EPS uses

• Stochastically Perturbed Parameterization Tendencies (SPPT) a.k.a. stochastic physics

• Stochastic Kinetic Energy Backscatter (SKEB)

Model uncertainty representation at ECMWF Status quo

The EPS uses

 Stochastically Perturbed Parameterization Tendencies (SPPT) a.k.a. stochastic physics

• Stochastic Kinetic Energy Backscatter (SKEB)

The trajectory and the nonlinear forecast of the perturbed members of the EDA (Ensemble of 4D-Vars) use SPPT only.

- Work is in progress to make the representation of model uncertainties in the nonlinear forecasts in EPS and EDA consistent
- Full consistency requires more \rightarrow weak-constraint 4D-Var

- A TE N - A TE N

Stochastically Perturbed Parameterization Tendencies SPPT

- Physics tendencies P perturbed by $\Delta P = rP$, with r a random pattern
- Improved version of the original SPPT scheme (stochastic physics, Buizza, Miller & Palmer (1999)

Stochastically Perturbed Parameterization Tendencies SPPT

- Physics tendencies P perturbed by $\Delta P = rP$, with r a random pattern
- Improved version of the original SPPT scheme (stochastic physics, Buizza, Miller & Palmer (1999)
- 2D Random pattern r uses AR-1 processes in spectral space and is smooth in space and time (instead of 10°× 10° tiles changing every 6 time steps)
- Three components with different correlation scales:
 6 h, 3 d, 30 d and 500 km, 1000 km, 2000 km with standard deviations of 0.52, 0.18, 0.06, respectively

Stochastically Perturbed Parameterization Tendencies SPPT

- Physics tendencies P perturbed by $\Delta P = rP$, with r a random pattern
- Improved version of the original SPPT scheme (stochastic physics, Buizza, Miller & Palmer (1999)
- 2D Random pattern r uses AR-1 processes in spectral space and is smooth in space and time (instead of 10°× 10° tiles changing every 6 time steps)
- Three components with different correlation scales:
 6 h, 3 d, 30 d and 500 km, 1000 km, 2000 km with standard deviations of 0.52, 0.18, 0.06, respectively
- Gaussian distribution, truncated at $\pm 2\sigma$ (instead of uniform distr.)
- Same pattern r for T, q, u, v (instead of an independent patterns for each variable)

see Tech Memo 598, Palmer et al. (2009) for more details

- 3

- 4 同 6 4 日 6 4 日 6

Multi-variate uniform versus univariate Gaussian

Leutbecher	CECMW
------------	-------

Multi-variate uniform versus univariate Gaussian

multi-variate uniform in 4 dimensions:

- probability to be within interquartile range for all four variables is 1/16
- probability to perturb at least one of the four variables in excess of 0.92 of the maximum perturbation amplitude is $0.5 = (1 2 \times 0.08)^4$.

Tendency pert^{ns} and the frequency of heavy precipitation

multi-variate uniform distribution of (u, v, T, q) ten. perturbations uni-variate Gaussian tendency perturbations

• = • •

SPPT pattern

Stochastic Kinetic Energy Backscatter SKEB

- Rationale: A fraction of the dissipated energy is backscattered upscale and acts as streamfunction forcing for the resolved-scale flow (Shutts and Palmer 2004, Shutts 2005, Berner et al. 2009)
- Streamfunction forcing = $[bD]^{1/2} F(\mathbf{x}, t)$, where b, D, F denote the backscatter ratio, the (smoothed) total dissipation rate and the 3-dim evolving pattern, respectively

Stochastic Kinetic Energy Backscatter SKEB

- Rationale: A fraction of the dissipated energy is backscattered upscale and acts as streamfunction forcing for the resolved-scale flow (Shutts and Palmer 2004, Shutts 2005, Berner et al. 2009)
- Streamfunction forcing = $[bD]^{1/2} F(\mathbf{x}, t)$, where b, D, F denote the backscatter ratio, the (smoothed) total dissipation rate and the 3-dim evolving pattern, respectively
- Total dissipation rate: sum of
 - "numerical" KE dissipation by numerical diffusion + interpolation in semi-Lagrangian advection
 - dissipation from orographic gravity wave drag parameterization
 - an estimate of the deep convective KE production
- Boundary layer dissipation is omitted

see also Tech Memo 598, Palmer et al. (2009) for further details

くぼう くほう くほう しほ

SKEB forcing

- *F* uses AR-1 processes in spectral space with random vertical phase shifts
- decorrelation time of pattern F is set to 7 h
- structure of pattern constrained by results from coarse-graining studies with T1279 IFS and CRM

Leutbecher CECMWF

... NWP ensembles

Recent operational implementations affecting the EPS

3

< 回 ト < 三 ト < 三 ト

Recent operational implementations affecting the EPS

Note, EDA uses the 1-scale version of SPPT (as implemented in 35r3 in the EPS)

Impact of tendency perturbations on the EPS

for a fixed representation of initial uncertainties

- initial perturbations as used since 36r4
 - EDA perturbations instead of evolved SV perturbations
 - ▶ 50% reduced amplitude of initial SV perturbations
- 40 cases: Aug/Sep 2008 and Oct-Dec 2009
- T639, 50 member
- cycle 36r2
- 6 different tendency perturbations
 - no ten. perturbations
 - original SPPT, BMP99 (Buizza, Miller & Palmer, 1999)
 - single-scale SPPT (SPPT1 as implemented in 35r3)
 - three-scale SPPT (SPPT3 as implemented in 36r4)
 - stochastic kinetic energy backscatter (SKEB)
 - SPPT3+SKEB

16 / 29

Ensemble standard deviation (no symbols), EM RMSE (+)

v850hPa, Northern Mid-latitudes

spread_em, rmse_em 2008081012-2009122812 (40)

Ignorance score (=Logarithmic score)

 $CIgnS = -log(p_{fc}(y))$; the smaller the better

v850hPa, Northern Mid-latitudes

ContinuousIgnoranceScoreGaussian 2008081012-2009122812 (40)

Spread-reliability of 500 hPa height — 20° – 90° N

Jan 2010 configuration versus Nov 2010 configuration

Spread-reliability of 500 hPa height — 20° – 90° N

Impact of halved SV perturbation amplitude

- Main improvement from reduced SV perturbation amplitude
- Probabilistic skill of 0.5 × SV is inferior to 36R2 configuration

- smaller contribution from 36R1 \rightarrow 36R2
- upgraded tendency perturbations prevent underdispersion

20 / 29
Kalman filter and model uncertainty see Daley & Menard (1993)

• variance evolution in the Kalman filter:

forecast step	$\mathbf{P}^f = \mathbf{M} \mathbf{P}^a \mathbf{M}^T + \mathbf{Q}$	(2)
analysis step	$\mathbf{P}^{a} = (\mathbf{I} - \mathbf{K} \mathbf{H}) \mathbf{P}^{f}, \qquad ext{where}$	(3)
gain matrix	$K = P^f H^T (H P^f H^T + R)^{-1}$	(4)

Kalman filter and model uncertainty see Daley & Menard (1993)

• variance evolution in the Kalman filter:

forecast step	$P^f = MP^aM^{\mathcal{T}} + Q$	(2)
analysis step	$\mathbf{P}^{a} = (\mathbf{I} - \mathbf{K} \mathbf{H}) \mathbf{P}^{f}, \qquad ext{where}$	(3)
gain matrix	$K = P^f H^T (H P^f H^T + R)^{-1}$	(4)

- Equivalence between 4D-Var and a Kalman smoother
- Many ensemble assimilation techniques aim at approximating the Extended Kalman filter

Kalman filter and model uncertainty see Daley & Menard (1993)

• variance evolution in the Kalman filter:

forecast step	$\mathbf{P}^f = \mathbf{M} \mathbf{P}^a \mathbf{M}^T + \mathbf{Q}$	(2)
analysis step	$\mathbf{P}^{a} = (\mathbf{I} - \mathbf{K} \mathbf{H}) \mathbf{P}^{f}, \qquad$ where	(3)
gain matrix	$K = P^f H^T (H P^f H^T + R)^{-1}$	(4)

- Equivalence between 4D-Var and a Kalman smoother
- Many ensemble assimilation techniques aim at approximating the Extended Kalman filter
- What is the impact of model uncertainty in the simplest possible KF?
- DM93 studied properties of the KF with stationary R M Q H for the case where all matrices can be diagonalized simultaneously
 ⇒ independent KF's, each provides the analysis for one scalar variable

Sensitivity to model error variance

Stationary Kalman filter for a scalar variable a_{1}

• all variances normalized by $\mathbf{R} = \sigma_o^2$

٧F

Leutbecher 🧧	ECM	V
--------------	-----	---

Impact of representing model uncertainties

in EDA and EPS on ensemble forecasts

- 3 EDA experiments; (10 member, T399):
 - no tendency perturbations
 - SPPT
 - SPPT+SKEB
- 5 EPS experiments (20 member, T639):

pertn.	perturbation in EPS	
in EDA	None	SPPT+SKEB
None	Off-Off	Off-ON
SPPT+SKEB	ON-Off	ON-ON
SPPT		SPPT-ON

- no SV perturbations
- EDA perturbations defined with respect to EDA mean
- analysis uncertainties accounted for in verification
- 20 cases in April/May 2010
- cycle 36r4
- see also earlier results in Sec. 3 of Tech Memo 598, Palmer et al. (2009)

Leutbecher CECMWF

Ensemble standard deviation (no symbols), EM RMSE (+) $500 \text{ hPa geopotential} - 35^{\circ}\text{N} - 65^{\circ}\text{N}$

Ensemble standard deviation (no symbols), EM RMSE (+) $500 \text{ hPa geopotential} - 35^{\circ}\text{N} - 65^{\circ}\text{N}$

Continuous Ignorance Score

500 hPa geopotential — $35^{\circ}N-65^{\circ}N$

Continuous Ignorance Score

500 hPa geopotential — $35^{\circ}N-65^{\circ}N$

Spread-reliability: t = 48 hNorthern mid-latitudes $35^{\circ}\text{N}-65^{\circ}\text{N}$

Spread-reliability: t = 48 hNorthern mid-latitudes $35^{\circ}\text{N}-65^{\circ}\text{N}$

Spread-reliability: meridional wind t = 48 hTropics 20°S–20°N

Leutbecher CECMWF

... NWP ensembles

< 日 → < 直 → < 亘 → 亘 の < ○ Reading, 20-24 June '11 27 / 29

Spread-reliability: meridional wind t = 48 hTropics 20°S–20°N

Leutbecher CECMWF

Reading, 20-24 June '11 27 / 29

.∃ >

Conclusions

- Stochastic tendency perturbations used in the operational ECMWF ensembles contribute significantly to ensemble spread and improve probabilistic skill.
- Improved ensemble forecast variances and improved probabilistic skill through a combination of
 - introduction of EDA perturbations
 - reduced amplitude for SV perturbations
 - more active representation of model uncertainties

Conclusions

- Stochastic tendency perturbations used in the operational ECMWF ensembles contribute significantly to ensemble spread and improve probabilistic skill.
- Improved ensemble forecast variances and improved probabilistic skill through a combination of
 - introduction of EDA perturbations
 - reduced amplitude for SV perturbations
 - more active representation of model uncertainties
- Not having precise estimates of initial error covariances hampers diagnostic of the characteristics of (random) model tendency errors
- Diagnostics may need to be improved to distinguish well different representations of model uncertainty.
- Model uncertainty contributes to initial uncertainty whereever a short-range forecast is used as prior information. A consistent representation of model uncertainty in data assimilation and forecast can help to better constrain the formulation of model uncertainty.

Plans

- Compare operational schemes with more basic tendency perturbations. For instance, additive noise, e.g. from scaled tendencies constructed from a tendency archive, (e.g. YOTC data)
- Diagnose tendency differences from different models started from the same initial conditions (resolution, different parameters, different parameterization schemes, ...). What is the nature of the *random component* of the differences?
- Develop improved diagnostics that permit to evaluate better the realism of different tendency perturbations.