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e Energy and (potential) enstrophy are conserved by the adiabatic,
frictionless governing equations...

e ...but nonlinearity leads to systematic transfers between scales

Meteosat ‘tropospheric
relative humidity’
(red low, green high)

e How well do numerical models handle those transfers, especially
near the truncation Iimit? ... Source of uncertainty.

Page 2



IIIIIIIIIIII

Energy and Enstrophy cascades E ETER
John Thuburn

Outline

e EXxplicit subgrid models vs ILES

e Barotropic vorticity equation as a model problem
Effect of unresolved scales on enstrophy and energy spectra
Effect of some numerical schemes on enstrophy and energy spectra

Parameterization of energy backscatter
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Numerical representation of energy and potential enstrophy
transfers

Foremost, need to remove potential enstrophy. Typically either

(a) use conservative numerics supplemented by some scale-selective
dissipation such as kV?" (but note its multiple roles)

or

(b) use inherently dissipative numerics such as semi-Lagrangian or
non-oscillatory finite volume (ILES).

May also include some representation of energy backscatter.
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Implicit Large Eddy Simulation (ILES)

Finite resolution => need to represent effects of unresolved scales:
SG model.

At the same time, all numerical methods have truncation errors.

Can truncation errors play the role of a SG model?

Some success claimed for 3D turbulence. (Except when upscale
effects are important, e.g. near a wall.)

What about (layerwise) 2D turbulence?

Upscale energy transfers, but steeper spectrum so stronger slaving of
small scales to large.
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What if we don’t remove resolved enstrophy?

Vorticity: step 1000

Vorticity: step 0
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There is evidence that models dissipate too much energy

If we remove enstrophy at horizontal wavenumber kg at a rate Z
then we necessarily remove KE at a rate F = Z/k2._ > Z/k?

diss max"*

At current climate resolutions this is too large.

Eg. Z~10"%s3 Need E ~107°m 253 s0 kgis ~ 107> m™!.

Page 7



IIIIIIIIIIII

Energy and Enstrophy cascades E ETER
John Thuburn

What does ILES or any explicit SG model need to capture?

Barotropic vorticity equation as model problem:

D¢ _
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Statistically steady turbulence
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Spectral interactions associated with truncated scales

x1e-09 x1e-08

x1e—-09

0.5

E tenden

cy kT =48

0 100 200 300
E tendency kT =96

0 100 200 300
E tendency kT =144

0 100 200 300

x0.001

x0.001

x0.0001

0.5

Z tendency kT =48

0 100 200 300
Z tendency kT =96

0 100 200 300
Z tendency kT =144

0 100 200 300

Page 10



IIIIIIIIIIII

Energy and Enstrophy cascades E ETER
John Thuburn

Schematic of energy transfers

Energy

Wavenumber

Cascade local in k; backscatter nonlocal.

(See also Huang and Robinson 1997; Thompson and Young 2007)
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Spectral interactions as represented by V4 and V&
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UTOPIA advection of ¢

Quasi-third-order upwind scheme.

Inherently dissipative, but more scale-selective than first-order
upwind.

Should be comparable to semi-Lagrangian with cubic interpolation.

Can include a flux limiter to prevent over/under-shoots.
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Spectral interactions as represented by UTOPIA scheme
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Anticipated Potential Vorticity Method
Sadourny and Basdevant (1985).

9 .
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Spectral interactions as represented by APVM
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Can we represent the energy backscatter to large scales?
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A simple backscatter scheme for BVE

Let ¢* = UTOPIA((M)
and let 0E = E((™) — E(¢Y)

Choose a vorticity pattern §¢ and let (" = (* 4 adC.

SE
[ 98¢ dA

gives energy conservation (to an excellent approximation).

o = —
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Which vorticity pattern 6¢ to use?

E.g.

5¢p = Z4Aw (large scales)

6Cy = ( — Z4M (small scales)

0(o was found to work better in numerical tests, giving better energy
statistics and also a small but measurable improvement in [, errors.

(But this is not really ‘backscatter’; more of an energy fixer!)
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Decaying turbulence E and Z time
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Possible improvements to ‘backscatter’ scheme

e Use scale similarity to derive ¢

e Use spectral dissipation characteristics of basic scheme to derive 6¢
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Discussion - extension to more complex flows

e [ he effect of finite Rossby radius;
e Transition to k—5/3 energy cascade regime;

e Extension to realistic 3D flow: available vs unavailable energy;
fronts; convection; orography; other physical processes...

Page 22



IIIIIIIIIIII

Energy and Enstrophy cascades E ETER
John Thuburn

Conclusions

e For the BVE, explicit calculation of the effects of unresolved scales
shows enstrophy removal near the truncation limit and energy input
at the most energetic scales. Very robust.

e Both ILES schemes and simple explicit dissipation schemes can
remove enstrophy at small scales (but are typically not scale-selective
enough

e Neither ILES schemes nor standard SG models capture the energy
backscatter.

e A simple ‘backscatter’ model can improve energy statistics and [s
errors (but it's really an energy fixer).

e It should be possible to extend this approach to more complex flow.
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Subgrid

forcing of vorticity

Vorticity: step 5005
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Scale similarity of backscatter?

Vorticity SG termk =16 Vorticity SG term k =32 Vorticity SG term k =48 Vorticity SG term k =64
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