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Convection in large-scale models

∂(ρs)
∂t

= −∂(ρus)
∂x

− ∂(ρvs)
∂y

− ∂(ρws)
∂z

− ∂(ρu�s�)
∂x

− ∂(ρv�s�)
∂y

− ∂(ρw�s�)
∂z

+ρQ

resolved terms sub-grid 
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vertical

flux
sources

To parametrize:

sub-grid vertical
flux−∂(ρw�s�)

∂z sources

+ρQ = +ρ(Qrad +C +E)
radiation evaporation

condensation

Surrogate for convective heating:

Apparent heat sourceQ1 = Qrad +L(c− e)− 1
ρ

∂(ρw�s�)
∂z
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Convection in large-scale models

Predict vertical distribution of heating, moistening and 
momentum changes

Cloud model

Predict the overall amount of the energy release

Closure

Decide on existence and type (e.g., deep vs. shallow) of 
convection

Trigger model
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Real data to explore the problem

✤ Most if not all the research into the stochasticity of convection has 
relied on the use of models

✤ While justifiable to some extent, ultimately it is the real world we 
wish to represent

✤ It is timely to explore observations and make them useful to the 
discussion 

✤ To do so requires frequent concurrent observations of the large and 
small scales in a convecting atmosphere
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The data set - Construction
Large Scales Small Scales
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Some basic relationships
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Some basic relationships

b c d

Domain-mean convective rainfall Convective area fraction Number of convective cells

Relationship to large-scale q-convergence
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What do we mean by “stochastic”?

Heating/Precipitation PDF

Sample for 
arbitrary 

large-scale 
states

Deterministic

Stochastic

A bit of both
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A “new” kind of plot
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A “new” kind of plot
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How stochastic is it? - Lets wear 
CAPEs
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How stochastic is it? - A 
converging view
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How stochastic is it? - A 
converging view

Both mean and 
standard deviation 
increase with large-
scale “forcing”.
However, the signal to 
noise ratio decreases.
Hence, overall 
convective behaviour 
becomes more 
“predictable” as the 
“forcing” increases.
This is contrary to some 
implementations of 
“stochastic” convection.
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Next Steps

✤ Extend to more sites

✤ Study domain size dependence

✤ Forced modelling

✤ Large domain modelling
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Conclusions

✤ Data sets of with frequent concurrent observations of large and small 
scales in a convecting atmosphere can be constructed at least at some 
sites using a combination of NWP analyses and radar data.

✤ Early results indicate poor relationships between stability-based 
measures and the small scales but much stronger links between 
convergence based variables and convective heating. C&E!?

✤ As a consequence, the degree of stochastic behaviour is a strong 
function of the “model” chosen to link the scales - all the more reason 
to build uncertainty estimates straight into the parametrizations.. 

✤ Naturally, poor models can look very stochastic, better models less so.
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Conclusions

✤ How do we know when we have a bad model 
and when the problem is truly stochastic?

✤ Efforts on all sides of parametrization are 
required and the well-balanced application of 
data, theory and models is required in finding 
the answers!

✤ This workshop should contribute to a 
programme to do this better! 
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