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1 Introduction

Most operational assimilation schemes rely on the theotgadt-variance linear statistical estimation
(Talagrand 1997). Within this framework, analysis systemesin particular dependent on statistics for
observation and background. Those statistics are notqgtlgrienown or specified, which can lead to
a sub-optimality of the analysis step. It is shown in thisgrahat a posteriori diagnostics can help to
check the consistency of an analysis scheme. The genenadfrark of such diagnostics is presented
in section2. Section3 focuses on diagnostics of the differences between anaysidackground and
observation information. Observation space diagnostiegpeesented in sectiohand their ability to
allow a tuning of observation or background covariancesvesstigated. Finally, different measures of
observation impacts on analyses and forecasts are discinssectionb.

2 General framework

In an assimilation cycle, the backgrous®lis given by the evolution of the previous analysis by
the forecast mode\l. The subsequent analysed statas obtained as an optimal combination of the
background and the observatioy®s The two forecast and analysis steps write

X =M(OE)
X = A,Y),
whereA stands for the possibly nonlinear analysis operator.

The estimate? can be classically obtained as the solution of the minirnamatf the following cost-
function :

I(x) = 3°() +3°(x) = 1/2[(x* =) TB~1( %) + (y* — H(x) TR H(y° —H(x))].

whereJ®(x) andJ°(x) respectively are the background and observation termgiddaB andR respec-
tively stand for the background and observation error Ggamae matrices, anH is the possibly non-
linear observation operator including model integratiothie 4D-Var formalism. Such a cost-function
can be solved by the minimization of a series of quadrati¢-toxtion with observation operators
linearized around successive trajectories (Courtier £984).

It can be shown that the following two equations stand fored@ution of the different errors involved
in a forecast / analysis scheme, even in a slightly non4liaealysis scheme such as 4D-Var:

€2 = Megd™ 4 M
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£2 = (I —KH)&” + Ke®,

whereM andH respectively are linearized versions of the mollebnd the observation operatbt.
Matrix K is defined by

K=BHT(HBHT +R) %,

vectorse?, €2, €M, £° respectively contain background, analysis, model andreagen errors, and?~
is the analysis error vector at the previous analysis step.

It is easy to check that, if the gain matikis consistent with the true covariances for background and
observation errors, innovatiomsand analysis errors® should be de-correlated from a statistical point
of view:

E[e?d"] = 0. (1)

A direct consequence of the previous important properthas tagged innovations should also be de-
correlated in time (Daley 1992 ). Equatiol) @lso translates into two other properties: lagged incre-
ments should be de-correlated (see Chapnik 2006 for antigagen of this diagnostic), and the dif-
ferences between un-assimilated observations and thesanahould be orthogonal to the innovation
vectord (Talagrand 2004).

3 "Jmin" diagnostics

3.1 Analysis consistency diagnostics
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Figure 1: Tuning coefficients of observation errors in thech ARPEGE 4D-Var.

As in Talagrand (1997) and Desroziers and Ivanov (20013,possible to introduce an extended vector
of observationg, combining the proper observatiog with dimensionp, and the background vector
x2, with the same dimensiamas the unknown true stat& This writesz= {(x*)T (y*)T}" with

X =x 4 g,

and

YO =H(X)+£°.
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Then, it is possible to write under the form
z=T(xX)+¢,

wherel is an extended observation operator @nd the vector of background and observation errors
with dimensionn+ p.

An important property pointed out by Talagrand (1999) ig thd; stands for a sub-term df with p;
elements, then, the statistical expectatiod; of*) should be

E[3(0®)] = pi — Tr(MATT S, @)

wherel ; and§ respectively stand for the observation operator and tle eavariance matrix associ-
ated with thosep; elements. MatriXA is the analysis error covariance matrix and is given by

A=B1+HTRH) L

In particular, for; = |, andS = B, and knowing thak = AHTR™1, it follows that
E[3°(®)] = Tr(HK),
and forl'i = H andS =R,
E[0°(*)] = p—Tr(HK),
and then
E{J0&)} = E[3°()] + E[3°()] = p.

This means that, if the background and error statistics@rectly specified, then the expectation of the
global cost function at its minimum should be equalptoAs pointed out by Bennett et al (1993) and
Talagrand (1999), this is a simpdeposterioriconsistency criterion of the analysis scheme.

—

Desroziers and Ivanov (2001) have shown that the quanfiti€s; AT S 1), appearing in expression
(2), could be evaluated even if matrik is not explicitly known, as in a variational formulation, by
Monte-Carlo procedure with

Tr(rArT s :1/LZcS|°iTRf1Hi6a, (3)
whered{ areL perturbations on the analysis, obtained with perturbatiifhon the whole set of obser-
vations, and/, is the vector of perturbations on the subset of observationgy.

It is shown in Desroziers and Ivanov (2001) that the previevsuations oE[J;(x?)] can be used to
tune a weighting factas®? of observation error variances such as

% = 3P0 /E[P()-

Fig. 1 shows the tuning coefficiesf obtained in the operational ARPEGE 4D-Var for the differsumb-
set of observations that indicate that observation ermersadher overestimated in the analysis scheme.

Desroziers et al (2009) have pointed out that the quantiid8(x?)] are direct by-products of an en-
semble of perturbed assimilations, as it is implementedatjpmally at Météo-France.

4 Observation space diagnostics

Other diagnostics of the consistency of an analysis schemenailable. It can be simply shown
(Desroziers et al 2005) that the covariance betweerdfhanalysis-minus-backgroundifferences in
observation space and the innovatiohshould be equal to

E[d3d"] =HBHT, (4)
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Figure 2: A\ spectra for background (left panels) and observation ex(pight panels). Lengthscales
for background and observation errors aré £ 300 km and P = 0 km respectively. (Red curves)
exact spectra, (Blue curves) (erroneous) spectra spedifidite analysis, (Green curves) retrieved
spectra after 1 iteration (top panels) or convergence (@otpanels). Exact values of error standard-
deviations are sigmabt = 1 and sigmaot = 2. Originally spexdifialues in the analysis are sigmab0
= 2 and sigmao0 = 1. Retrieved values sigmabn/sigmaon aftiéeration or convergence are
displayed in the titles of the figures.

if matrix HK = HBHT(HBHT + R)~! is in agreement with the true covariances for background and
observation errors.

This is a first additional diagnostic to the diagnostic orowvations. It provides a separate consistency
check on background error covariances in observation space

Similarly, the covariance between th& observation-minus-analysidifferences and the innovatiah
should correspond to
E[d3d"] =R (5)

Finally, the cross-product between ttig analysis-minus-backgroundifferences in observation space
and thedg observation-minus-analysdifferences can also be derived:

E[d3dST] = HAHT. (6)
Expressions4) and 6) can be used in turn, as in Desroziers and lvanov (2001) r® background or
observation error variances but also correlations. It leaslshown in Desroziers et al (2005), relying on

a toy analysis problem on a circular domain, that the follayixed-point iteration converges towards
the exact values of background and observation error @@ andv® (assumed to be homogeneous
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Figure 3: Same as Fig2, but with L° = 300 km and £ = 100 km.

over the domain), under the condition that background ars@mfation correlations are well specified
and sufficiently different:
VW = Tr(E[d3d"]
{ V= Tr(E[d3d].

As in Desroziers et al (2005), and Menard et al (2009), if doumi data density is assumed over the
domain, with one observation at each grid point, a spectadion of the previous iteration can be
written:

(AP = WAP
Ao = VPA°
/\b _ Ab(/\bt —|—/\0t)/(/\b+/\o)

A° — AO(Abt —|—/\0t)/(/\b+/\o)
W= zk:l,p/\E = F(\/o)
woo= 2k:l7p/\(|2 = G(Vo)v

whereAP, A° respectively stand for the eigenvalues of matriBendR, A°, A° their counterparts for
the corresponding correlation matrices gnthe number of eigenvalues. It is easy to check fkfatA°
are such a@\°+ A% = AP'+A° whereAP!, A% are the exact eigenvalues BfandR. Observation and
background error variances are also linked/®y-\° = F (W*) + G(V°) = VPt 2,

Fig. 2 shows the convergence of the iteration Wnand\° (and accordingly of\°, A°), in the toy
analysis problem treated in Desroziers et al (2005), witlaekground error lengthscalé® = 300 km

and no correlation in observation errot’ & 0 km). In this case, the fixed point iteration converges
towards the right values. The plot &f(\°) explains why the convergence towards the exact values is
so fast for this case. Note that there are two undesirabld fisents when applying the iteration, which
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Figure 4: Function G\°), with L® = 300 km and £ = 0 km, and true value of observation error
variance ¥ = 4.

also are the boundary values of the possible intervalfor® = 1 andv® = VPt +v°' and which can be
easily eliminated.

The convergence of the algorithm is still guaranteed bwatdf the lengthscales of background and
observation errors become closer (F&).(see also Chapnik 2009 for a discussion of the convergence
of the algorithm). It could even falil if the two correlatioanigthscales are too close and in this case the
sum of background and observation variances is equal tagheinnovation variancev® -+ v°t), but

the ratio between® andv° will stay equal to the ratio specified at the beginning of tieeation. This
case is equivalent to the scalar case mentioned in Menatd28QG®9), where no scale separation allows
to distinguish background error variance from observagioor variance.

Fig. 6 shows that even if the lengthscale of observation error igprdectly represented in matrik
(exact value_t = 100 km, but specified value® = 0 km), the algorithm converges towards a reasonable
value ofv°. However, it has to be noted that the retrieved value ovienasts the exact value, as a larger
value of\° would be, on the contrary, required to compensate for thie ¢daepresentation of error
correlation inR.

As shown in Desroziers et al (2005), there is also a scopesiogsuch diagnostics for the estimation
of correlation between observation errors. Neverthelessclear that the application of the diagnostics
has still to be better understood from theoretical and agboints of view.

5 Observation impact and optimality

5.1 Degree of Freedom for Signal

The analysis sensitivity to a particular subsef observations can be given by its Degree of Freedom
for Signal (DFS) introduced by Rodgers (2000). This qugingitdefined by

OH; (x®)
o
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Figure 5: Same as Figd, but with L° = 300 km and = 200 km.

It measures the sensitivity of the analysis to a perturhaifa particular subset of observations and then
the weights of these observations in the analysis. Caréinall (2004) have used the DFS to measure
the analysis sensitivity to observations in a real sizemtsion system. Rabier et al (2002) have also
shown how to use such a diagnostic to select IASI channelsdierdo extract the useful information
from the very large amount of data provided by this instrumen

Fisher (2003) has investigated the possibility to compluetovtal DFS brought by the complete set of
observations in a real size data assimilation. He has cadpdifferent methods to compute such a
guantity. One of them is based on the estimation of the sed#ifluence matrixiK by a randomiza-
tion procedure, as proposed by Girard (1987). Such a rarmion procedure has also been used by
Wahba et al (1995) to compute the Generalized Cross Validatiterion and inspired the randomized
estimation of thée[J°(x?)] proposed by Desroziers and lvanov (2001).

Again, since an ensemble of perturbed analyses is basedptinitegerturbations of observations and
implicit perturbations of the background, it can providéireations of theDF S, with nearly no addi-
tional computational cost (Desroziers et al 2009).

Hence, it can be shown (Chapnik et al 2006) that the previapsession of the partial DFS can be
re-written

DFS =Tr(IAr{ S 1), €)

wherei is a subset of observations.

One can recognize a part of the expressignof the expectation of a sub-part of the cost function.
Talagrand (1999) has interpreted this expression as a meeafstne contribution of the subset of obser-
vationsi to the overall precision. ThBFS can thus be computed by the Monte Carlo procedure used
in expressionJ), corresponding also to the implementation of an ensenfiperturbed assimilations.

Fig. 7 shows the computation of DFS associated with the differetstaf observations used in the French
ARPEGE 4D-Var. The computation relies on the use of the ehkeassimilation run operationally at
Météo-France.
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Figure 6: Same as Fig3 (L = 300 km and P = 100 km), but with mis-specified correlation in
matrix R (L° =0 km in R).

5.2 Other measures of the impact of observations

It is easy to check, that if the gain mat#xis optimal in an analysis system, then the following relatio
stands:

Al=B 1+ Y HIRH; )

whereH and R, correspond to subsets of observations with independeatsefalso independent of
background errors). If the inverse of an error covariancérimne associated with a measure of the
precision of the corresponding observations, the previelagion says that the precision of the analysis
is equal to the sum of the precision of the different sourdesmaependent observations (including
background). Multiplying expressio®) by matrix A, it follows that

In = AB'+ Y AHIRH; (10)
|
= (In—KH)+% KiHj, (11)
|
whereK;j is the restriction oK to the independent subset of observatianghe last equation makes

appear the weights associated to the background and tofiiedt subsets of observationsThis leads
to

n="Tr(ln—KH)+ ¥ Tr(KiHj), (12)
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Figure 7: DFS of observations in the French ARPEGE 4D-Var.

which expresses, in turn, that the total number of degredseetiomn for the analysis is given by
Tr(In—KH), which measures the degrees of freedom for the analysisngofrom the background
and Tr(KjH;), which are the degrees of freedom for the analysis coming ®ach source of proper
observations. Finally, multiplying equatiof)(by matrixB, it follows that

B = A+ZAHiTR,-‘1Hi (13)

= A+ KiHiB. (14)

Using linear regression terminology, this last expressays that the covariance matrix of the predicted
vector gy, (the background error vector) is equal to covariance of ésidual error vectog, plus the
sum of the explained covariances by the different subsetbsdrvations.

5.3 Forecast sensitivity to observations

An increased amount of research has been done recently iarinainweather prediction to assess the
observation impact on short-range forecasts. LanglandBakédr (2004) have for example proposed a
procedure for estimating the impact of observations on asoreaof short-range forecast error, using
adjoint versions of the forecast model and the data asgiarilgprocedure. A similar approach was
followed by Zhu and Gelaro (2008). Desroziers et al (200%eh@oposed a randomization procedure
for evaluating the error variance reduction brought by olz@ns on analyses and forecasts. Trémolet
(2008) has also recently introduced a way of computing theiratdof the assimilation scheme in an
incremental variational formalism.

Following Langland and Baker (2004 ), the measure of theityuaf a forecastx’ = M(x) can be
evaluated by the following cost-function:

J(x) = (M(x) =x")TCM(x) —x),

whereC is, for example, the energy norm, axitia verifying analysis at final time.

If the errore = x— X at initial timet' is not too largeM(x) — x¥ can be approximated by the evolution
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of this initial errore by the tangent-linear mod#, andJ(x) can be re-written

J(g) = (Mg)TC(Me).

The impact of observations on the forecast can be obtainéteatifference betweed(e?) andJ(£?).
This difference can be derived by a Taylor expansiogfdCardinali 2008):

J(E®) = J(e®)+ (P — )T (e?)+1/2 (6" — €?)TI"(£?)(eP — £3)
= J()+2(e"— ) TMTCMe? + (6° — e8)TMTCM(eP — £3)
J(e)+2d"KTMTCMe® +d"KTMTCM(£P — £,
whereJ'(€2) andJ” (&?) respectively are the gradient and the Jacobian matrikabk?.
The key issue that must be pointed out here is that the firgtrdestm should be equal to zero in an

optimal analysis because of the orthogonality propertywben the innovation vectarand the analysis
error 2.

Alternatively a Taylor expansion aP can also be written:

J(e?) = () +2 (62— €”)TMTCMeP + (62 — eP) TMTCM(£2 — €P)
= J(e”) +2d"KTMTCMeP + dTKTMTCM(£2 — £P).

Itis easy to check that, in this case, the statistical exgbect of the first order term is equal tdZTr(MTCM KHB),
which is twice the optimal value of the error reduction byervsations.

Thus, it appears that, in both cases, the truncation of tiilmaxpansion at first order is not valid (see
also Errico 2007). A second order expansion is then needigrnatively, the formula used in Langland
and Baker leads to the same correct expression and can q@étéel as the application of a trapezoidal
rule, as pointed out by Daescu (2008):

J(e%) —J(e°) = 1/2 (%~ %) T (J'(e°) + J'(e%)).

6 Conclusion

Relying on statistical linear estimation theory, a set obateriori diagnostics of the data assimilation
system can be defined. Diagnostics of internal consistehtyecassumed covariances of background
or observation error covariances have in particular beesgmted. It is clear that those diagnostics do
not suffice in determining all these covariances. The tuitiey may allow rely on implicit additional
assumptions, but they can help greatly in determining agfarhknown statistics such as observation
error variances.

Different approaches to measure the impact of observatoranalyses or subsequent forecasts have
been proposed. The last section showed that they must berimepted and interpreted with care.
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