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1 Introduction

Most operational assimilation schemes rely on the theory ofleast-variance linear statistical estimation
(Talagrand 1997). Within this framework, analysis systemsare in particular dependent on statistics for
observation and background. Those statistics are not perfectly known or specified, which can lead to
a sub-optimality of the analysis step. It is shown in this paper that a posteriori diagnostics can help to
check the consistency of an analysis scheme. The general framework of such diagnostics is presented
in section2. Section3 focuses on diagnostics of the differences between analysisand background and
observation information. Observation space diagnostics are presented in section4 and their ability to
allow a tuning of observation or background covariances is investigated. Finally, different measures of
observation impacts on analyses and forecasts are discussed in section5.

2 General framework

In an assimilation cycle, the backgroundxb is given by the evolution of the previous analysisxa− by
the forecast modelM. The subsequent analysed statexa is obtained as an optimal combination of the
background and the observationsyo. The two forecast and analysis steps write

xb = M(xa−)

xa = A(xb,yo),

whereA stands for the possibly nonlinear analysis operator.

The estimatexa can be classically obtained as the solution of the minimization of the following cost-
function :

J(x) = Jb(x)+Jo(x) = 1/2[(xb−x)TB−1(xb−x)+ (yo−H(x))TR−1(yo−H(x))],

whereJb(x) andJo(x) respectively are the background and observation terms. MatricesB andR respec-
tively stand for the background and observation error covariance matrices, andH is the possibly non-
linear observation operator including model integration in the 4D-Var formalism. Such a cost-function
can be solved by the minimization of a series of quadratic cost-function with observation operators
linearized around successive trajectories (Courtier et al1994).

It can be shown that the following two equations stand for theevolution of the different errors involved
in a forecast / analysis scheme, even in a slightly non-linear analysis scheme such as 4D-Var:

εb = Mεa− + εm
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εa = (I −KH)εb +Kεo,

whereM andH respectively are linearized versions of the modelM and the observation operatorH.
Matrix K is defined by

K = BHT(HBHT +R)−1,

vectorsεb, εa, εm, εo respectively contain background, analysis, model and observation errors, andεa−

is the analysis error vector at the previous analysis step.

It is easy to check that, if the gain matrixK is consistent with the true covariances for background and
observation errors, innovationsd and analysis errorsεa should be de-correlated from a statistical point
of view:

E[εadT ] = 0. (1)

A direct consequence of the previous important property is that lagged innovations should also be de-
correlated in time (Daley 1992 ). Equation (1) also translates into two other properties: lagged incre-
ments should be de-correlated (see Chapnik 2006 for an investigation of this diagnostic), and the dif-
ferences between un-assimilated observations and the analysis should be orthogonal to the innovation
vectord (Talagrand 2004).

3 "Jmin" diagnostics

3.1 Analysis consistency diagnostics
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Figure 1: Tuning coefficients of observation errors in the French ARPEGE 4D-Var.

As in Talagrand (1997) and Desroziers and Ivanov (2001), it is possible to introduce an extended vector
of observationsz, combining the proper observationsyo, with dimensionp, and the background vector
xb, with the same dimensionn as the unknown true statext . This writesz= {(xb)T(yo)T}

T
with

xb = xt + εb,

and
yo = H(xt)+ εo.
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Then, it is possible to writezunder the form

z= Γ(xt)+ ε,

whereΓ is an extended observation operator andε is the vector of background and observation errors
with dimensionn+ p.

An important property pointed out by Talagrand (1999) is that if Ji stands for a sub-term ofJ with pi

elements, then, the statistical expectation ofJi(xa) should be

E[Ji(x
a)] = pi −Tr(ΓiAΓT

i Si
−1), (2)

whereΓ j andSi respectively stand for the observation operator and the error covariance matrix associ-
ated with thosepi elements. MatrixA is the analysis error covariance matrix and is given by

A = (B−1+HTR−1H)−1.

In particular, forΓi = In andSi = B, and knowing thatK = AHTR−1, it follows that

E[Jb(xa)] = Tr(HK),

and forΓi = H andSi = R,
E[Jo(xa)] = p−Tr(HK),

and then
E{J(xa)} = E[Jb(xa)]+E[Jo(xa)] = p.

This means that, if the background and error statistics are correctly specified, then the expectation of the
global cost function at its minimum should be equal top. As pointed out by Bennett et al (1993) and
Talagrand (1999), this is a simplea posterioriconsistency criterion of the analysis scheme.

Desroziers and Ivanov (2001) have shown that the quantitiesTr(ΓiAΓT
i Si

−1), appearing in expression
(2), could be evaluated even if matrixK is not explicitly known, as in a variational formulation, bya
Monte-Carlo procedure with

Tr(ΓiAΓT
i Si

−1) ≃ 1/L∑
l

δ o
l

T
i Ri

−1H iδ a
l , (3)

whereδ a
l areL perturbations on the analysis, obtained with perturbations δ o

l on the whole set of obser-
vations, andδ o

l i is the vector of perturbations on the subset of observationsi only.

It is shown in Desroziers and Ivanov (2001) that the previousevaluations ofE[Ji(xa)] can be used to
tune a weighting factorso

i
2 of observation error variances such as

so
i

2 = Jo
i (xa)/E[Jo

i (xa)].

Fig. 1 shows the tuning coefficientso
i obtained in the operational ARPEGE 4D-Var for the differentsub-

set of observations that indicate that observation errors are rather overestimated in the analysis scheme.

Desroziers et al (2009) have pointed out that the quantitiesE[Jo
i (xa)] are direct by-products of an en-

semble of perturbed assimilations, as it is implemented operationally at Météo-France.

4 Observation space diagnostics

Other diagnostics of the consistency of an analysis scheme are available. It can be simply shown
(Desroziers et al 2005) that the covariance between theda

b analysis-minus-backgrounddifferences in
observation space and the innovationsd should be equal to

E[da
bdT ] = HBHT , (4)
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Figure 2: Λ spectra for background (left panels) and observation errors (right panels). Lengthscales
for background and observation errors are Lb = 300 km and Lo = 0 km respectively. (Red curves)
exact spectra, (Blue curves) (erroneous) spectra specifiedin the analysis, (Green curves) retrieved
spectra after 1 iteration (top panels) or convergence (bottom panels). Exact values of error standard-
deviations are sigmabt = 1 and sigmaot = 2. Originally specified values in the analysis are sigmab0
= 2 and sigmao0 = 1. Retrieved values sigmabn/sigmaon after 1iteration or convergence are
displayed in the titles of the figures.

if matrix HK = HBHT(HBHT + R)−1 is in agreement with the true covariances for background and
observation errors.

This is a first additional diagnostic to the diagnostic on innovations. It provides a separate consistency
check on background error covariances in observation space.

Similarly, the covariance between thedo
a observation-minus-analysisdifferences and the innovationd

should correspond to
E[do

adT ] = R. (5)

Finally, the cross-product between theda
b analysis-minus-backgrounddifferences in observation space

and thedo
a observation-minus-analysisdifferences can also be derived:

E[da
bdo

a
T ] = HAHT . (6)

Expressions (4) and (5) can be used in turn, as in Desroziers and Ivanov (2001), to tune background or
observation error variances but also correlations. It has been shown in Desroziers et al (2005), relying on
a toy analysis problem on a circular domain, that the following fixed-point iteration converges towards
the exact values of background and observation error variancesvot andvbt (assumed to be homogeneous
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Figure 3: Same as Fig.2, but with Lb = 300 km and Lo = 100 km.

over the domain), under the condition that background and observation correlations are well specified
and sufficiently different:

{

vb = Tr(E[da
bdT ]

vo = Tr(E[do
adT ].

As in Desroziers et al (2005), and Menard et al (2009), if a uniform data density is assumed over the
domain, with one observation at each grid point, a spectral version of the previous iteration can be
written:































Λb = vbλ b

Λo = voλ o

Λb = Λb(Λbt + Λot)./(Λb + Λo)

Λo = Λo(Λbt + Λot)./(Λb + Λo)
vb = ∑k=1,p Λb

k = F(vb)
vo = ∑k=1,p Λo

k = G(vo),

whereΛb, Λo respectively stand for the eigenvalues of matricesB andR, λ b, λ o their counterparts for
the corresponding correlation matrices andp the number of eigenvalues. It is easy to check thatΛb, Λo

are such asΛb+ Λo = Λbt+Λot, whereΛbt, Λot are the exact eigenvalues ofB andR. Observation and
background error variances are also linked byvb +vo = F(vb)+G(vo) = vbt +vot.

Fig. 2 shows the convergence of the iteration onvb and vo (and accordingly ofΛb, Λo), in the toy
analysis problem treated in Desroziers et al (2005), with a background error lengthscaleLb = 300 km
and no correlation in observation errors (Lo = 0 km). In this case, the fixed point iteration converges
towards the right values. The plot ofG(vo) explains why the convergence towards the exact values is
so fast for this case. Note that there are two undesirable fixed points when applying the iteration, which
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Figure 4: Function G(vo), with Lb = 300 km and Lo = 0 km, and true value of observation error
variance vo = 4.

also are the boundary values of the possible interval forvo: vo = 1 andvo = vbt + vot and which can be
easily eliminated.

The convergence of the algorithm is still guaranteed but slower if the lengthscales of background and
observation errors become closer (Fig.5) (see also Chapnik 2009 for a discussion of the convergence
of the algorithm). It could even fail if the two correlation lengthscales are too close and in this case the
sum of background and observation variances is equal to the right innovation variance (vbt + vot), but
the ratio betweenvb andvo will stay equal to the ratio specified at the beginning of the iteration. This
case is equivalent to the scalar case mentioned in Menard et al (2009), where no scale separation allows
to distinguish background error variance from observationerror variance.

Fig. 6 shows that even if the lengthscale of observation error is not perfectly represented in matrixR
(exact valueLot = 100 km, but specified valueLo = 0 km), the algorithm converges towards a reasonable
value ofvo. However, it has to be noted that the retrieved value overestimates the exact value, as a larger
value ofvo would be, on the contrary, required to compensate for the lack of representation of error
correlation inR.

As shown in Desroziers et al (2005), there is also a scope for using such diagnostics for the estimation
of correlation between observation errors. Nevertheless,it is clear that the application of the diagnostics
has still to be better understood from theoretical and practical points of view.

5 Observation impact and optimality

5.1 Degree of Freedom for Signal

The analysis sensitivity to a particular subseti of observations can be given by its Degree of Freedom
for Signal (DFS) introduced by Rodgers (2000). This quantity is defined by

DFSi = Tr(
∂Hi(xa)

∂yo
i

). (7)
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Figure 5: Same as Fig.4, but with Lb = 300 km and Lo = 200 km.

It measures the sensitivity of the analysis to a perturbation of a particular subset of observations and then
the weights of these observations in the analysis. Cardinalet al (2004) have used the DFS to measure
the analysis sensitivity to observations in a real size assimilation system. Rabier et al (2002) have also
shown how to use such a diagnostic to select IASI channels in order to extract the useful information
from the very large amount of data provided by this instrument.

Fisher (2003) has investigated the possibility to compute the total DFS brought by the complete set of
observations in a real size data assimilation. He has compared different methods to compute such a
quantity. One of them is based on the estimation of the so called influence matrixHK by a randomiza-
tion procedure, as proposed by Girard (1987). Such a randomization procedure has also been used by
Wahba et al (1995) to compute the Generalized Cross Validation criterion and inspired the randomized
estimation of theE[Jo

i (xa)] proposed by Desroziers and Ivanov (2001).

Again, since an ensemble of perturbed analyses is based on explicit perturbations of observations and
implicit perturbations of the background, it can provide estimations of theDFSi , with nearly no addi-
tional computational cost (Desroziers et al 2009).

Hence, it can be shown (Chapnik et al 2006) that the previous expression of the partial DFS can be
re-written

DFSi = Tr(ΓiAΓT
i Si

−1), (8)

wherei is a subset of observations.

One can recognize a part of the expression (2) of the expectation of a sub-part of the cost function.
Talagrand (1999) has interpreted this expression as a measure of the contribution of the subset of obser-
vationsi to the overall precision. TheDFSi can thus be computed by the Monte Carlo procedure used
in expression (3), corresponding also to the implementation of an ensemble of perturbed assimilations.

Fig. 7shows the computation of DFS associated with the different sets of observations used in the French
ARPEGE 4D-Var. The computation relies on the use of the ensemble assimilation run operationally at
Météo-France.
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Figure 6: Same as Fig.3 (Lb = 300 km and Lo = 100 km), but with mis-specified correlation in
matrix R (Lo = 0 km in R).

5.2 Other measures of the impact of observations

It is easy to check, that if the gain matrixK is optimal in an analysis system, then the following relation
stands:

A−1 = B−1+∑
i

HT
i R−1

i H i , (9)

whereH and Ri correspond to subsets of observations with independent errors (also independent of
background errors). If the inverse of an error covariance matrix is associated with a measure of the
precision of the corresponding observations, the previousrelation says that the precision of the analysis
is equal to the sum of the precision of the different sources of independent observations (including
background). Multiplying expression (9) by matrixA, it follows that

In = AB−1 +∑
i

AHT
i R−1

i H i (10)

= (In−KH)+∑
i

KiH i , (11)

whereKi is the restriction ofK to the independent subset of observationsi. The last equation makes
appear the weights associated to the background and to the different subsets of observationsi. This leads
to

n = Tr(In−KH)+∑
i

Tr(K iH i), (12)
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Figure 7: DFS of observations in the French ARPEGE 4D-Var.

which expresses, in turn, that the total number of degrees offreedomn for the analysis is given by
Tr(In −KH), which measures the degrees of freedom for the analysis coming from the background
andTr(K iH i), which are the degrees of freedom for the analysis coming from each source of proper
observations. Finally, multiplying equation (9) by matrixB, it follows that

B = A+∑
i

AHT
i R−1

i H i (13)

= A+∑
i

KiH iB. (14)

Using linear regression terminology, this last expressionsays that the covariance matrix of the predicted
vectorεb (the background error vector) is equal to covariance of the residual error vectorεa plus the
sum of the explained covariances by the different subsets ofobservationsi.

5.3 Forecast sensitivity to observations

An increased amount of research has been done recently in numerical weather prediction to assess the
observation impact on short-range forecasts. Langland andBaker (2004) have for example proposed a
procedure for estimating the impact of observations on a measure of short-range forecast error, using
adjoint versions of the forecast model and the data assimilation procedure. A similar approach was
followed by Zhu and Gelaro (2008). Desroziers et al (2005) have proposed a randomization procedure
for evaluating the error variance reduction brought by observations on analyses and forecasts. Trémolet
(2008) has also recently introduced a way of computing the adjoint of the assimilation scheme in an
incremental variational formalism.

Following Langland and Baker (2004 ), the measure of the quality of a forecastx f = M(x) can be
evaluated by the following cost-function:

J(x) = (M(x)−xv)TC(M(x)−xv),

whereC is, for example, the energy norm, andxv a verifying analysis at final timet f .

If the errorε = x−xt at initial timet i is not too large,M(x)−xv can be approximated by the evolution
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of this initial errorε by the tangent-linear modelM, andJ(x) can be re-written

J(ε) = (Mε)TC(Mε).

The impact of observations on the forecast can be obtained asthe difference betweenJ(εb) andJ(εa).
This difference can be derived by a Taylor expansion atεa (Cardinali 2008):

J(εb) = J(εa)+ (εb− εa)TJ′(εa)+1/2 (εb− εa)TJ′′(εa)(εb− εa)

= J(εa)+2 (εb− εa)TMTCMεa+(εb− εa)TMTCM(εb− εa)

= J(εa)+2 dTKTMTCMεa +dTKTMTCM(εb− εa),

whereJ′(εa) andJ′′(εa) respectively are the gradient and the Jacobian matrix ofJ at εa.

The key issue that must be pointed out here is that the first order term should be equal to zero in an
optimal analysis because of the orthogonality property between the innovation vectord and the analysis
errorεa.

Alternatively a Taylor expansion atεb can also be written:

J(εa) = J(εb)+2 (εa− εb)TMTCMεb +(εa− εb)TMTCM(εa− εb)

= J(εb)+2 dTKTMTCMεb+dTKTMTCM(εa− εb).

It is easy to check that, in this case, the statistical expectation of the first order term is equal to−2Tr(MTCMKHB),
which is twice the optimal value of the error reduction by observations.

Thus, it appears that, in both cases, the truncation of the Taylor expansion at first order is not valid (see
also Errico 2007). A second order expansion is then needed. Alternatively, the formula used in Langland
and Baker leads to the same correct expression and can be interpreted as the application of a trapezoidal
rule, as pointed out by Daescu (2008):

J(εa)−J(εb) = 1/2 (εa− εb)T(J′(εb)+J′(εa)).

6 Conclusion

Relying on statistical linear estimation theory, a set of a posteriori diagnostics of the data assimilation
system can be defined. Diagnostics of internal consistency of the assumed covariances of background
or observation error covariances have in particular been presented. It is clear that those diagnostics do
not suffice in determining all these covariances. The tuningthey may allow rely on implicit additional
assumptions, but they can help greatly in determining a partof unknown statistics such as observation
error variances.

Different approaches to measure the impact of observationson analyses or subsequent forecasts have
been proposed. The last section showed that they must be implemented and interpreted with care.
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