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Ensembles is a five-year EU FP6 project concerned with ensemble-based predictions of climate changes 
and their impacts. The project has more than 60 European partners. It came to an end in December 
2009. One of its main objectives was to develop an ensemble prediction system based on global models 
developed in Europe to produce probabilistic estimates of uncertainty in future climate at the seasonal 
to decadal and longer timescales. This article describes some of the results obtained from the ensemble 
prediction system on seasonal to decadal time scales where ECMWF contributed with a set of coupled 
hindcast experiments and diagnostics of these simulations.

The key question that we were trying to address is how to best account for model uncertainty in 
dynamical forecasts of the climate from a few seasons to a decade ahead. Can new approaches, 
like perturbing physical model parameters or stochastically modifying physical parametrizations, be 
considered powerful alternatives to the well-established but somewhat pragmatic and ad hoc multi-model 
ensemble? To this end, a coordinated set of experiments exploring three methodologies was run and the 
relative merits of these approaches were assessed (the methodologies are described later). We find that, 
overall the multi-model ensemble gives the best forecast scores on seasonal to annual time scales, in 
agreement with preliminary findings (Doblas-Reyes et al., 2009). The perturbed parameter and stochastic 
parametrization techniques are competitive new physical approaches to the traditional but intrinsically 
ad hoc assembling of single-model ensembles. These two new techniques provide promising indications 
that a similar level of performance to the multi-model ensemble can potentially be achieved through  
the application of systematic techniques for the sampling of uncertainties in a single-model system.  
The optimal strategy for decadal forecast production in the presence of model biases remains an  
open question for future work.

Ensemble techniques and methodology
The non-linear chaotic nature of the climate system makes dynamical climate model forecasts sensitive to 
small perturbations introduced to both the initial state of forecasts and parts of the model (e.g. changes to 
the structure or parameter values in a parametrization scheme). Individual forecasts with one fixed model 
are thus of limited value and ensembles of forecasts are used to assess the range of possible evolutions of 
future climate for different timescales. In the ENSEMBLES project, three different techniques to represent 
model uncertainties and generate ensembles for seasonal-to-decadal forecasting have been explored.

•	 Multi-model	ensemble	(MME). This combines five single-model ensembles from quasi-independent 
forecasting models to sample uncertainty due to differences in model formulations and in errors between 
the individual models (see Box A). An overview of the models contributing to the MME is given in Table 1.

•	 Perturbed	physical	parameter	ensemble	(PPE). This uses perturbations to numerical parameter values 
in physical parametrization schemes and accounts for some aspects of physical model uncertainty (see 
Box B). The forecasts were generated using the UK Met Office Decadal Prediction System.

•	 Stochastic	physical	parametrization	ensemble	(SPE).	This is based on the idea of a stochastic 
representation of the equations of motion at the computational level and as such focuses on uncertainty 
related to unresolved processes (see Box C). ECMWF’s Integrated Forecast System  
(IFS) coupled to the HOPE ocean model was used.

Each of these three approaches is combined with a single-model ensemble of perturbed initial  
conditions to address uncertainty in the initial state of the system.
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Retrospective forecasts (re-forecasts or hindcasts) that emulate real-time seasonal to decadal forecast 
situations for the past were performed in a coordinated experiment using the MME, PPE and SPE. The full 
hindcast period (called Stream 2) covers the 46 years 1960–2005. For each year, 7-month-long seasonal 
forecasts starting on 1st of February, May, August and November have been issued. Additionally, the 
November forecasts from all single-model ensembles (except for those from INGV) were extended to  
provide a 14-month-long annual forecast. Decadal 10-year long hindcasts were initalised every five years  
on 1 November, that is they were started in November 1960, November 1965, November 1970 etc.  
The last decadal forecast was started for November 2005 and will partly be a ‘real’ forecast (as is the 
November 2000 start date). By the time of writing, the SPE has completed a subset of the Stream 2 
simulations consisting of seasonal hindcasts over the 15-year hindcast period 1991–2005 with start  
dates in May and November.

Each of the individual model ensembles contributing to the MME was run with 9 initial condition ensemble 
members. Thus, the MME uses 45 members for the seasonal hindcasts and 36 for the annual-range 
hindcasts. The PPE and SPE were run with 9 ensemble members each.

Partner
Atmospheric 
model and 
resolution

Ocean 
model and 
resolution

Initialization Additional 
components 

and commentsAtmosphere and land Ocean

ECMWF IFS Cy31r1 
T159/L62

HOPE 
0.3°–1.4°/L29

ERA-40/ operational 
analysis, atmospheric 

singular vectors

Wind stress 
perturbations to 

generate ensemble  
of ocean reanalyses; 
SST perturbations  

at initial time

Indentical to  
the operational 

seasonal 
forecasting 
system S3

UK Met Office HadGEM2-A 
N96/L38

HadGEM2-O 
0.33°–1°/L20

ERA-40/ operational 
analysis, anomaly 

assimilation 
for soil moisture

Wind stress 
perturbations to 

generate ensemble  
of ocean reanalyses; 
SST perturbations  

at initial time

Fully interactive 
sea ice module

Météo-France ARPEGE4.6 
T63

OPA8.2 
2˚/L31

ERA-40/ operational 
analysis

Wind stress, SST  
and water flux 

perturbations to 
generate ensemble  
of ocean reanalyses

GELATO  
sea ice model

Leibniz Institute  
of Marine 

Sciences at 
Kiel University 

(IFM)

ECHAM5 
T63/L31

MPI-OM1 
1.5°/L40

Initial condition permutations of three coupled 
climate simulations from 1950 to 2005 with SSTs 

restored to observations

Euro-
Mediterranean 

Centre for 
Climate 

Change (INGV)  
in Bologna

ECHAM5 
T63/L19

OPA8.2 
2˚/L31

AMIP-type simulations 
with forced SSTs

Wind stress 
perturbations to 

generate ensemble  
of ocean reanalyses; 
SST perturbations  

at initial time

Dynamical 
snow-sea ice 

model and 
land-surface 

model

Table 1 Overview of models contributing to the new ENSEMBLES multi-model ensemble.
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The MME for seasonal forecasts comprises global 
coupled atmosphere-ocean climate models from 
the UK Met Office, Météo-France, European 
Centre for Medium-Range Weather Forecasts 
(ECMWF), Leibniz Institute of Marine Sciences at 
Kiel University (IFM) and the Euro-Mediterranean 
Centre for Climate Change (INGV) in Bologna. All 
models include major radiative forcings. None of 
the coupled models has flux adjustments. The 
atmosphere and ocean were initialized using 
realistic estimates of their observed states. 

Table 1 summarises the main model components 
and their initialization strategies. Additional details 
on the initial condition perturbations can be found 
in Weisheimer et al. (2009).
We have applied the simplest approach to 
constructing an MME by combining individual 
models using equal weights to all contributing 
models and ensemble members. On the annual-
range, forecasts from UK Met Office, Météo-
France, ECMWF and IFM contributed to the MME.

AThe ENSEMBLES multi-model ensemble (MME)

The PPE samples model uncertainty in poorly 
constrained cloud physics and surface parameters. 
It was generated with the UK Met Office Decadal 
Prediction System (DePreSys) which is based 
on the HadCM3 climate model. The model uses 
flux adjustments to restrict the development of 
regional biases in SST and salinity. Eight versions 
of the model with simultaneous perturbations to 29 
parameters were used in addition to the unperturbed 

version so that each member of the PPE samples  
a different set of parameter values (Doblas-Reyes  
et al., 2009).

In order to generate initial conditions for the 
hindcasts, each model version was run in 
assimilation mode with atmospheric and oceanic 
anomalies assimilated. The assimilation integration 
was itself started with an initial state taken from a 
simulation of the 20th century climate.

BThe perturbed parameter ensemble (PPE)

Conventional physical parametrization schemes 
describe the effects of subgrid-scale processes 
in models of weather and climate by deterministic 
bulk formulae which depend on local resolved-scale 
variables. However, through the upscale cascade 
of energy, the neglected unresolved subgrid-scale 
variability can have an impact on the larger scales 
in the model and thus contributes to model errors 
on different spatial and temporal scales. Stochastic 
physical parametrization ensembles provide a 
methodology for representing model uncertainty due 
to variability of the unresolved scales.

ECMWF has recently revised its stochastically 
perturbed parametrization tendency (SPPT) scheme 
and developed the stochastic backscatter scheme 
(SPBS) (see Palmer et al., 2009). For the SPE,  
both these schemes have been included in the 

preliminary set of seasonal hindcasts based on  
the IFS Cy35r2 coupled to the HOPE ocean model.
• The SPPT scheme applies univariate Gaussian 

perturbations to the total parameterised tendency 
of physical processes in the form of multiplicative 
noise with a smoothly varying pattern in space and 
time. A two-scale version of the perturbations with 
a shorter characteristic spatio-temporal scale on 
the order of 6 hours and 500 km together with a 
longer characteristic spatio-temporal scale of 30 
days and 2500 km has been used.

• The SPBS scheme is based on the idea of 
backscatter of kinetic energy from unresolved 
scales. It is formulated in terms of a spectral 
streamfunction forcing field estimated from  
the total dissipation rate and uses vertical  
phase correlations.

CThe stochastic physical parametrization ensemble (SPE)
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Hindcast skill on seasonal time scales
The scientific basis for seasonal predictability lies in the slowly evolving components of the climate system, 
like the ocean or land surface, that act as boundary conditions for the atmosphere with its shorter intrinsic 
time scales. A prime example of a coupled atmospheric and oceanic phenomenon is the ENSO (El Niño/
Southern Oscillation) event in the tropical Pacific, which is the dominant mode of seasonal and interannual 
climate variability. Because ENSO has, via its well-known teleconnection patterns, remote effects on the 
weather and climate, assessing the skill of forecasting the sea surface temperatures (SSTs) in the tropical 
Pacific is essential also for the predictability on seasonal time scale in other parts of the world.

Model drift
Although initialized using observations, seasonal forecast models develop, over the forecast time, 
systematic errors that lead the models to drift away from the observed state. Figure 1a shows the mean 
model drift for SST, estimated from all ensemble members and hindcasts, in the Niño3 region (5°S–5°N, 
150°W–90°W) for the individual models contributing to the MME for each of the four start months. For 
comparison, Figure 1b shows the SST drift for a set of previous-generation models from the DEMETER 
project (an EU-funded project for the development of a European multi-model ensemble system for 
seasonal to interannual prediction).

It is clear that considerable progress has been made since DEMETER in reducing the systematic SST 
errors, in particular on longer lead-times. While the SST drift in DEMETER varied between +2° C and  
–7° C for a lead time of up to 6 months, the ENSEMBLES models have a much reduced drift with  
overall value of less than ±1.5° C, see also Weisheimer et al. (2009).

Results not shown here indicate that the individual model versions/ensemble members of PPE have only 
a small drift, which is not surprising as its initialization uses observed anomalies rather than full fields. 
SPE develops a slightly warm drift during the first couple of months and a weak cold drift thereafter.  
The drift does not exceed ±0.5° C for the 7-month forecast range.
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Figure 1 Systematic model errors in  
Niño3 SST indicated by the drift from the 
verification over the 7-month forecast time 
for the individual seasonal forecast models 
contributing to (a) the ENSEMBLES MME 
and (b) the DEMETER MME. Results for  
all four start dates are shown. The drift 
has been estimated from all available 
ensemble members for each start date 
separately over the hindcast periods 
1960–2005 (ENSEMBLES) and 1980–2001 
(DEMETER). The colour codes are red – 
Météo-France, dark blue – ECMWF, green 
– UK Met Office, orange – IFM, light blue – 
INGV, grey – LODYC and pink – CERFACS 
(the latter two only used for DEMETER). 
The abbreviations for the forecasting 
centres are defined in Table 1. Figure  
from Weisheimer et al. (2009).



A. Weisheimer et al. Model uncertainty in seasonal to decadal forecasting – insight from the ENSEMBLES project

6 doi:10.21957/5hayrg0p

Forecast skill – tropical Pacific perspective
The systematic errors have been corrected for computing forecast anomalies by linearly removing  
the long-term mean over the hindcast period for a given start date and lead-time. The corrections were 
applied in cross-validation mode (by leaving one out) in order to emulate real-time forecast conditions  
as closely as possible. Figure 2 shows the temporal evolution of ensemble-mean root-mean square error 
(RMSE) and ensemble spread for the SST hindcast anomalies over the tropics and over the Niño3 region 
for MME, PPE and SPE. For a well calibrated (or reliable) system there should be a close match between 
forecast error and ensemble spread.

As can be seen in Figure 2, the MME has the smallest forecast errors over all lead times. It is also the 
best calibrated ensemble in terms of the match between forecast error and ensemble spread. While PPE 
is systematically under-dispersive for all forecast times (i.e. there is not enough spread in the ensemble), 
SPE has a good match between the errors and ensemble spread throughout the forecast range. The main 
improvement of SPE over the corresponding control version of the IFS/HOPE system without stochastic 
physics consists of a significant increase in spread to an otherwise considerably under-dispersive forecasting 
system. This increase in spread leads to more reliable forecasts and thus better probabilistic skill scores.

The results from the ENSEMBLES MME confirm earlier findings from the DEMETER project (Hagedorn  
et al., 2005) that the MME, compared to the single-model ensembles, effectively reduces the RMSE  
while the ensemble spread is increased leading to overall improved forecast skill.
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Figure 2 Seasonal-range RMS forecast error and ensemble spread as a function of lead time for (a) MME, (b) PPE 
and (c) SPE based on all available start dates. Scores are shown for SSTs averaged over the whole tropics (top 
row) and over the Niño3 region in the tropical Pacific (bottom row). Results are shown for the ensemble-mean 
RMSE (red), ensemble spread (green) and RMS error based on a simple statistical model of anomaly persistence 
(black). Scores for MME and PPE have been estimated from the Stream 2 hindcast period 1960–2005 whereas  
for SPE the reduced period 1991–2005 was used. The bottom panel of (a) is from Weisheimer et al. (2009).
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Forecast skill – global perspective
As a measure of probabilistic forecast skill Figure 3 shows global maps of the Brier Skill Score (BSS) 
for near-surface temperature and two lead times. Because the BSS estimate is affected by the different 
ensemble sizes of the three forecasting systems (it has a negative bias for small ensemble sizes), an 
analytical expression that extrapolates the score to a hypothetical infinite ensemble size, BSS(∞), will 
be used in the following (Ferro et al., 2008). As with the standard Brier Skill Scores, BSS(∞)=1 indicates 
perfect forecasts, BSS(∞)=0 for forecasts that have as much skill as the reference, and BSS(∞)<0 
indicates forecasts that are less skilful than the reference. We use the climatological forecast from  
a reanalysis as the reference.

It can be seen that the MME has, on average, the highest skill, in particular in the tropics at shorter 
lead times (Figure 3a). The tropical Pacific is an area of very high skill for all three systems during the 
December, January and February season. While the pattern of positive skill in PPE for lead times of 2–4 
months (Figure 3b) has a large-scale structure, the hindcasts based on SPE (Figure 3c) show regions 
of higher skill than PPE but over somewhat smaller areas. However, the skill estimates for MME, PPE 
and SPE are based on different hindcast periods (see the figure caption), which implies larger sampling 
uncertainty for SPE. The general drop of skill in the tropical Pacific at lead time 5–7 months during the 
boreal spring season of March, April and May (Figures 3d to 3f) cannot only be attributed to the generic 
loss of prediction skill at longer forecasting ranges, but is also related to the spring barrier, a seasonal 
dependence of ENSO forecast skill with substantially lower skill during and after the spring months.

A more detailed analysis of the skill in PPE versus SPE over their common hindcast period revealed that, 
while in general the performance of the two systems is comparable in absolute terms, forecasts based  
on SPE tend to be more reliable and have slightly better resolution than forecasts issued by PPE.

-10 -1 -0.6 -0.4 -0.2 -0.1 -0.05 0.05 0.1 0.15 0.3 0.4 0.6 1

a MME – DJF (2–4 months) b PPE – DJF (2–4 months) c SPE – DJF (2–4 months)

d MME – MAM (5–7 months) e PPE – MAM (5–7 months) f SPE – MAM (5–7 months)

Figure 3 Brier Skill Score (BSS) for an infinite-sized ensemble of near-surface temperature anomalies falling  
in the upper tercile for (a) MME, (b) PPE and (c) SPE based on hindcasts initialised on 1 November for the 
December, January and February (DJF) season (lead time 2–4 months). (d), (e), (f). As (a), (b), (c) but for the 
March, April and May (MAM) season (lead time 5–7 months). As a reference forecast to compute the skill score 
the climatological forecast from a reanalysis (ERA-40) was used. Scores for MME and PPE have been estimated 
from the Stream 2 hindcast period 1960–2005 whereas for SPE the reduced period 1991–2005 was used.
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Forecast skill – European perspective
As Figure 3 gives a global perspective of the level of skill in the three systems, one might also be 
interested in the actual seasonal forecast skill for the region we live in, that is Europe. As an example of 
two standard European regions, Figure 4 has a comparison of the Brier Skill Scores for an infinite-sized 
ensemble for near-surface temperature and precipitation over Southern Europe. Here, only land points 
over the region 30° N to 48° N and 10° W to 40° E have been used.

Figure 4a show BSS(∞) for the lower tercile (left panel) and upper tercile (right panel) temperature events, 
while Figure 4b shows the corresponding scores for precipitation. As can be seen, temperature is, on 
the whole, more predictable than precipitation with more skill than a simple climatological forecast in 
summer. The significant skill in forecasting summer temperature in all three systems can be partially 
explained by the long-term warming trend in the observations that is well captured in the seasonal 
hindcasts (not shown). For the winter temperature forecasts, PPE has a lower skill relative to MME  
and SPE. The level of skill for predicting precipitation over Europe is similar to a climatological forecast  
for all three systems.

Northern Europe is a less predictable region than Southern Europe with skill scores that are often 
not much better than a climatological forecast (not shown). The lower skill in predicting temperature 
compared to Southern Europe is partly due to the fact that temperature in Northern Europe, in contrast  
to Southern Europe, does not show any obvious long-term trend over the hindcast period.
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Figure 4 Brier Skill Score for an infinite-sized ensemble of (a) temperature and (b) precipitation over Southern 
Europe land points for MME (blue), PPE (red) and SPE (green). Scores for the event ‘anomalies in the lower 
tercile’ are in the left boxes and scores for ‘anomalies in the upper tercile’ are in the right boxes. Two start 
dates (May and November) and lead times of 2–4 months have been used over the common hindcast period 
1991–2005. The error bars (95%) have been computed using a bootstrapping method with replacement. 
ERA-40/operational analysis has been used for the verification of temperature and GPCP for the verification  
of precipitation.
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Figure 5 Decadal hindcasts in the coupled 
IFS/HOPE system. (a) The global mean of 
2-metre temperature (filtered with a two-year 
running mean) in each of the ten-year long 
hindcast simulations with three ensemble 
members. The continuous black line shows 
the corresponding values from reanalyses 
(ERA-40/ERA-Interim). (b) 2-metre tempera-
ture bias (K) with respect to the reanalyses 
for the forecast range 2–5 years estimated 
from the 1960–2000 hindcasts.

Annual-range forecasts
Hindcasts of the MME and PPE starting in November have been extended to 14 months to explore 
predictability on annual time scales. Corresponding runs with the SPE are not available as of now. 
Some positive skill has been found on these long lead-times for Niño3 SSTs. The anomaly correlation 
drops to 0.5 and 0.4 at month 9 for MME and PPE, respectively, and remains nearly constant thereafter. 
Remarkably, the above-mentioned good match between the RMSE and spread of the ensemble in the 
MME is further sustained over the extended forecast lead-time with an approximately linear error and 
spread growth. The PPE becomes under-dispersive after about month 6.

Prospects for decadal predictions
As part of the ENSEMBLES activities to explore the potential of decadal predictions using coupled 
atmosphere-ocean model initialised from observed states, we have been, for the first time at ECMWF, 
testing the IFS/HOPE coupled model in ten-year long integrations. Our model does not use any 
techniques (e.g. anomaly initialisation, nudging or flux corrections) to avoid the coupled system drifting 
away from the observed state. It is based on the atmospheric IFS cycle 33r1 and also includes new 
monthly evolving two-dimensional climatologies for green house gases like carbone dioxide, ozone, 
methane, and for sulphate aerosols.

Figure 5a shows the global mean 2-metre temperature for the ten start dates of the Stream 2 hindcast 
period. During the first years of the simulations, the model develops a global mean cold bias of 
approximately 1° C. The spatial structure of the bias averaged over the forecast years 2–5 and  
estimated from all available start dates is displayed in Figure 5b. It can be seen that while the tropical  
and subtropical oceans undergo a strong cooling, the system builds up a substantial warm bias over  
the northern hemisphere extra-tropical continents.

In decadal forecasting, the forecast signals are often much smaller than the biases we currently have 
in our system. At this stage it is not clear how these relatively large biases can be accounted for. The 
approach used in seasonal forecasting, where a posteriori corrections to remove the bias are applied to 
the raw model output, relies on the assumption of a quasi-linear behaviour of the atmosphere and ocean 
anomalies. This is clearly not the case for our decadal forecasts. Reducing the model biases by testing 
the system in coupled long-term mode and continuing to improve the physics of the coupled model  
will have to be the ways forward in the future.
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Public data dissemination
A common set of hindcast data provided by all ENSEMBLES partners has been archived and is available 
for public download without charge for use in research, education and commercial work. Both daily  
and monthly data are available for the atmospheric variables. The ocean output includes monthly  
means of ocean analyses and forecasts. Further details can be found in Weisheimer et al. (2009).

The ECMWF Meteorological Archival and Retrieval System (MARS) and a system based on the  
Open-source Project for a Network Data Access Protocol (OPeNDAP) provide users with access  
to the ENSEMBLES data in the most efficient way for their specific requirements, see  
http://www.ecmwf.int/research/EU_projects/ENSEMBLES/data/data_dissemination.html.

The ENSEMBLES data is also available through the KNMI Climate Explorer, an interactive tool to analyze 
climate data.

We hope that making the data publically available will enable the international community to explore  
the full scientific potential of the ENSEMBLES data.
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