
Arabian Sea

doi:10.21957/8coxgk2q

COMPUTING

from Newsletter Number 125 – Autumn 2010

Metview Macro – A powerful
meteorological batch language

S. Siemen et al. Metview Macro – A powerful meteorological batch language

2 doi:10.21957/8coxgk2q

Parallel to its graphical user interface (GUI), Metview offers a high-level meteorological scripting language
to describe the retrieval, processing and visualisation of meteorological data. A scripting language was
part of the first design specification of Metview and has always been an integral part. A language is
the best ‘user interface’ to describe complex sequences of actions, particularly if the flow of action is
conditional; this includes the expression of mathematical formulae and other forms of data manipulation.

The philosophy behind Metview Macro is that it is easy to get started, but powerful and flexible enough
for advanced needs. The user does not need to declare variables – their types are assigned automatically
according to the data they store. The language also supports flow control, user-defined functions, I/O
and error control. Functions can be called from other macros; this feature enables users to build their
own libraries of Macro functions that can then be used by a larger user group.

This article outlines the key features and versatility of Metview Macro.

Overview of Metview Macro
The Metview Macro language provides an easy, powerful and comprehensive way for an analyst
or researcher to manipulate and display meteorological data. It extends the use of Metview into an
operational environment as it enables a user to write complex scripts that may be run with any desired
periodicity. Metview has few runtime dependencies, thus making it ideal for running in an operational
environment. This and the integrated access to MARS (Meteorological Archival and Retrieval System)
archives makes Metview the ideal tool to run operational tasks for internal and external users of ECMWF’s
operational data. As described later, users can create and customise their visualisation interactively and
then save it as a macro that can be executed in batch.

There are various ways to run a macro. It can be executed through the right-click menu of its icon on the
GUI or executed within the Macro editor. Outside the GUI a script can be executed through the command
metview –b followed by the name of the macro file and the macro’s parameters. The latter is the way to
run scripts in batch operationally, for example within SMS or as cron jobs.

To demonstrate the power of Metview Macro, consider the following example in Listing 1. To calculate
and plot the difference between some point observations and an analysis field needs just four lines of
code. The user does not need to worry about the conversion between formats and the interpolation of
data values. If required, Metview directs such calculations to its support packages, such as Emoslib
and Grib_API. The resulting plot is shown in Figure 1.

This article appeared in the Computing section of ECMWF Newsletter No. 125 – Autumn 2010, pp. 30–32.

Metview Macro – A powerful
meteorological batch language
Stephan Siemen, Fernando Ii, Iain Russell

t2m_points = read(“temperature_towns.gpt”)

t2m_analysis = read(“t2m_an.grib”)

t2m_diff = t2m_points – t2m_analysis

plot(t2m_diff)

Listing 1 Example Macro visualising the difference between point observations and analysis field. Here
‘grib’ and ‘gpt’ are used as file extensions for the GRIB and Metview’s Geopoints data formats respectively.

S. Siemen et al. Metview Macro – A powerful meteorological batch language

doi:10.21957/8coxgk2q 3

Key Macro features
Macro syntax and functions
Metview Macro offers all the facilities of a modern scripting language, for instance loops, if and case
statements, and functions. As well as simple variable types (e.g. numbers, strings and lists), Macro has native
variable types for commonly used meteorological data formats such as GRIB, BUFR, netCDF and ODB.
When used with the GUI, most interaction with Metview is performed via a rich set of icons that enable data
retrieval, manipulation and plotting. For every icon, a corresponding Macro function exists; parameters are
supplied via a set of parameter-value pairs whose syntax is based on the MARS language. Executing a
MARS Retrieval icon and running the function retrieve() result in the same outcome.
In addition Metview Macro contains a large set of built-in functions that can be used for meteorological data
processing. Macro also contains functionality to cache results, reducing the need to recalculate parts of the
computation if the input data does not change. This can improve performance on repeated execution over
the same data set. The time period of how long data is cached can be set in the Metview preferences.

Writing Macro code
The Metview user interface provides a Macro editor which not only offers syntax highlighting, but also
the running and debugging of scripts interactively. While the editor in Metview 3 required the help of
an additional external editor to offer extended functionality, the new Macro editor in Metview 4 is more
powerful and supports all features expected from a modern code editor.
To allow users to quickly write Macro code, the Metview GUI offers features to generate code from the
interactive user interface in two ways:
• Users who have generated their desired plot in the interactive plot window can use the ‘Generate Macro’

button (red punch card) to generate the corresponding macro code. In some cases of complex displays
the resulting script may need some adjustments.

• Thanks to the direct mapping between desktop icons and macro icon-functions the user can drop an icon
inside a macro editor. The result is the textual translation of the icon contents into a macro icon-function.

Figure 2 gives a snapshot of the Metview 4 macro editor.

40°E20°E0°E

Difference of 2m temperature observation and analysis for 10 October 2010
-5 -3 -2 -1 -0.5 0.5 1 2 3 5

Figure 1 Plot resulting from Macro code in Listing
1. Additional to the listing, the differences between
analysis and observation are coloured according to
whether they are positive or negative.

Figure 2 Snapshot of the Metview 4 Macro editor,
showing syntax highlighting and debug output
(bottom).

S. Siemen et al. Metview Macro – A powerful meteorological batch language

4 doi:10.21957/8coxgk2q

Inlining Fortran and C/C++
The Macro language can be extended by the user with Fortran and C/C++ code. This ability extends
immensely the scope of the macro language and enables the programmer to make efficient use of existing
Fortran and C codes.

These programs are used in tasks that cannot be easily achieved by means of a Macro language function
or combination of functions. Also, suitable code might already exist and the writing and testing of the same
task in Macro language would simply consume precious time.

Building a Macro User Interface
Metview allows developers to build their own user interfaces to their scripts. These are useful to provide
generality, meaning that the same Macro program used for a given task will be able to accept a variety of
input parameters which will be provided via an icon editor window-like interface (in batch, parameters may be
supplied on the command line). Listing 2 shows some sample code, and Figure 3 the resulting user interface.

c = slider (name : “days”,

 min : 1,

 max : 10,

 default : 5)

Listing 2 Macro code to generate a slider
in a customised user interface.

Figure 3 Snapshot of a user-defined user interface
generated by a macro (see Listing 2 for a partial
code listing).

Defining outputs
One major highlight of Metview 4 is the introduction of many more graphical output formats, due to the use
of Magics++. Scripts run on the interactive GUI can make use of Metview 4’s new interactive plot window
or plot in new formats such as PDF, EPS, SVG and KML. These new options required a change in the way
graphical output formats are defined in comparison to previous Metview versions. However, Metview 4
largely retains backwards compatibility with Metview 3’s macro functions to export plots to files (output()
and setoutput() functions). For more details see Box A.

S. Siemen et al. Metview Macro – A powerful meteorological batch language

doi:10.21957/8coxgk2q 5

Changes introduced in version 4.0
The new options to define outputs in Metview 4 are only the beginning of improvements to come for the
Macro language (see Figure 4). Parameters are being cleaned up to remove those specific to MAGICS 6
and new ones added to access features in Magics++. Many issues in version 3 regarding performance
and temporary files are being improved.

From version 4.0 onwards Metview’s macro language handles missing values in its data in a more
consistent and useful way. Previously, functions such as integrate() returned a ‘missing value
indicator’ if all its input values were missing. This was not easy to test, and computations could use
the result incorrectly without realising it. From now on all such functions return a nil variable when
their inputs are invalid. Macros that do not test for this condition will fail if they try to use a nil variable
in a computation. The following is an example code extract:

a = integrate(data)

if (a = nil) then

 fail (‘Integration failed’)

end if

The much improved installation scripts of Metview 4 will also allow for a batch only installation to
reduce dependencies resulting from the GUI. This version is aimed for usage on operational servers.

Extensions to defining output formats in Metview 4

The following syntax is used to define a PostScript format in Metview 3:

ps = output(format : “postscript”,

 file_name : “plotfile.ps”)

Metview 4 has a new set of functions, for example:

ps = ps_output (output_name : “plotfile”)

kml = kml_output(output_name : “plotfile”)

svg = svg_output(output_name : “plotfile”)

Both syntaxes are valid in Metview 4. An extension is that setoutput() can take a list of several output
definitions – in this case, Metview will generate its plot for all outputs. This can be significantly faster
than running a macro multiple times (once for each output format). For instance:

setoutput([ps, kml, svg])

An alternative way to select which output formats will be generated is to give them directly
to the plot() command:

plot([ps, kml, svg],…)

Any output formats given to the plot() command will override those given to setoutput().
Optionally, within a macro the user can define specific output formats depending on the environment
in which it is run:

sets output destination according to run-mode

if mode = “batch” then

 setoutput(ps_file)

else if mode = “visualise” then

 setoutput(screen)

end if

A

S. Siemen et al. Metview Macro – A powerful meteorological batch language

6 doi:10.21957/8coxgk2q

Documentation, training and future developments
For users interested to find out more about Metview Macro there is full documentation of the language
and available functions at:

• http://www.ecmwf.int/publications/manuals/metview/documentation.html

The page also contains the training material from the annual Metview training course held at ECMWF,
including tutorials and presentations.

The evolution of Metview’s macro language will continue beyond the release of Metview 4.0. More built-
in functions will be provided to support ECMWF tasks of observation handling and model developments.
Metview’s GUI and Macro editor will be extended to provide facilities to search for available macro functions
and libraries.

User requests will of course continue to play an important role in improving the performance and reliability
of Metview.

Figure 4 The user has all the functionality of the interactive graphical user interface plus a lot more.

© Copyright 2016

European Centre for Medium-Range Weather Forecasts, Shinfi eld Park, Reading, RG2 9AX, England

The content of this Newsletter article is available for use under a Creative Commons Attribution-Non-Commercial-
No-Derivatives-4.0-Unported Licence. See the terms at https://creativecommons.org/licenses/by-nc-nd/4.0/.

The information within this publication is given in good faith and considered to be true, but ECMWF accepts no liability
for error or omission or for loss or damage arising from its use.

