Re-analyses as predictability tools

Kiyotoshi Takahashi Climate Prediction Division JMA

kiyotoshi.takahashi-a@met.kishou.go.jp

Outline

- Introduction
- Overview of JRA-25 Re-analysis
- Applications using reanalysis data and its benefit
 - Monthly to Decadal Forecasting
 - One-month forecasts
 - El Niño & seasonal outlook
 - Decadal forecasts
 - Climate system monitoring
 - Climate information based on reanalysis
- Reanalysis as a tool for research and studies
- Status of JRA-55
- Summary

2

Outline

Introduction

- Overview of JRA-25 Re-analysis
- Applications using reanalysis data and its benefit
 - Monthly to Decadal Forecasting
 - One-month forecasts
 - El Niño & seasonal outlook
 - Decadal forecasts
 - Climate system monitoring
 - Climate information based on reanalysis
- Reanalysis as a tool for research and studies
- Status of JRA-55
- Summary

What is Re-analysis?

History of Re-analyses

Reanalysis	Producer	Period	Resolution	Assimilation
NASA/DAO	NASA/DAO	1980-1995	2x2.5L20	3D-OI +IAU
ERA-15	ECMWF	1979-1993	T106L31	3D-OI
NCEP-NCAR	NCEP-NCAR	1948-present	T62L28	3D-Var SSI
NCEP-DOE	NCEP-DOE	1979-present	T62L28	3D-Var SSI
ERA-40	ECMWF	1957.9-2002.8	T _L 159L60	3D-Var
JRA-25/JCDAS	JMA-CRIEPI	1979-present	T106L40	3D-Var
ERA-Interim	ECMWF	1989-present	T _L 255L60	4D-Var
CFSR	NCEP	1979-present	T382L64	3D-Var GSI
MERRA	NASA	1979-2010	1/2x1/2deg	3D-Var GSI
20th Century Reanalysis	NOAA-CIRES	1871-2008	T62L28	EnKF
JRA-55 (ongoing)	JMA	1957.12-2012	T _L 319L60	4D-Var
ERA-??? (planned)	ECMWF	Extending back at least to 1938	T _L 511	Weak-constraint 4D-Var

ECMWF Annual Seminar 2010: Predictability in the European and Atlantic regions from days to years 9 September 2010, Reading UK

Re-analysis: an essential tool to know predictability and to assess long-range weather forecast

- Predictability
 - How much skill do our forecast systems have?
 - How predictable are certain phenomena?
- Predictability-tools
 - Measure the **real predictability** (forecast verification)
 - We need to know the truth (or best estimate) to assess the forecasts: Observational data or Re-analysis data
 - Provide a tool to investigate the potential predictability under a perfect model assumption with homogeneous datasets.

The re-analyses are essential products for operational weather centres.

Outline

- Introduction
- Overview of JRA-25 Re-analysis
- Applications using reanalysis data and its benefit
 - Monthly to Decadal Forecasting
 - One-month forecasts
 - El Niño & seasonal outlook
 - Decadal forecasts
 - Climate system monitoring
 - Climate information based on reanalysis
- Reanalysis as a tool for research and studies
- Status of JRA-55
- Summary

7

Status of JMA Reanalysis

JRA-25 (1979-2004)

- completed in 2006
- jointly conducted by JMA and Central Research Institute of Electric Power Industry (CRIEPI)
- based on JMA forecast system as of 2004
- freely available for research purposes
 - http://jra.kishou.go.jp/JRA-25/index_en.html
- A full copy of the JRA-25 data also available from the NCAR data archive: http://dss.ucar.edu/datasets/ds625.0/
- Over 1,700 registered users and 100 cited references as of Aug 2010
 - The JRA-25 description paper (Onogi et al., 2007, JMSJ)

JCDAS (2005-present)

Near real-time operational climate analysis with the JRA-25 system.

• JRA-55 (1958-2012)

New JMA reanalysis project is on-going (2008-2012).

JRA-25 overview

- Assimilation system : JMA operational system as of April 2004
- Global model resolution : T106L40 (model top: 0.4hPa)
- Data assimilation : 3D-Var
- Assimilated satellite data:
 - ✓ SSM/I precipitable water retrievals
 - ✓ TOVS/ATOVS radiances (level 1d: HIRS/MSU, level 1c: SSU/AMSU-A/AMSU-B)
- JRA-25 original boundary/forcing data:
 - ✓ Daily COBE SST and sea ice (Ishii et al. 2005, Int. J. Clim.)
 - ✓ daily 3D-ozone profile

 JRA-25 was the first reanalysis using the observational data outlined below.

- ✓ Wind profile retrievals surrounding tropical cyclones
- ✓ SSM/I snow coverage

- ✓ digitized Chinese snow depth data
- ✓ reprocessed GMS-AMV

ECMWF Annual Seminar 2010: Predictability in the European and Atlantic regions from days to years 9 September 2010, Reading UK

Observation data used for JRA-25

Datasets written in red are used for the first time in reanalyses.

Outline

- Introduction
- Overview of JRA-25 Re-analyses
- Applications using reanalysis data and its benefit
 - Monthly to Decadal Forecasting
 - One-month forecasts
 - El Niño & seasonal outlook
 - Decadal forecasts
 - Climate system monitoring
 - Climate information based on reanalysis
- Reanalysis as a tool for research and studies
- Status of JRA-55
- Summary

11

Overview of JMA monthly to seasonal forecast systems

Forecast systems	periods	descriptions	
1-month ensemble forecast	34 days	JMA-GSM (AGCM), T _L 159L60, BGM+LAF (50 mem), Prescribed SST anomaly, Land surface analysis	
3-month, seasonal ensemble forecast	max. 210 days	JMA/MRI-CGCM (2008.03- present for ENSO outlook, 2010,02-present for seansonal forecasts)	
ENSO forecast	7 months	AGCM: T _L 95L40, LAF+BGM (trop)+prtb. Ocean analysis (51 mem/1 month)	
		OGCM: 0.3-1 deg x 1 deg	
		51 vertical levels	

Monthly to Seasonal Forecasting

Roles of re-analyses

- Long-term (>20 yrs) analyses for re-forecasts
- Atmospheric analysis (initial conditions)
- Ocean analysis (initial conditions)
- Land surface analysis (initial conditions)
- Needs of high quality (homogeneity, more data, advanced quality control, state-of-the-art assimilation system) analysis data for re-forecasts (hindcasts)

JMA Monthly Forecast System

White boxes and arrows show the routine forecast system.

14

Benefit of Reanalysis in Land surface analysis

ECMWF Annual Seminar 2010: Predictability in the European and Atlantic regions from days to years 9 September 2010, Reading UK

Global Land Surface Analysis System in JMA for initial conditions of land surface parameters

JMA/CRIEPI

Benefit of Reanalysis in Land surface analysis Impact for soil wetness

Flow-dependent predictability in monthly forecast system 'spread'

ECMWF Annual Seminar 2010: Predictability in the European and Atlantic regions from days to years 9 September 2010, Reading UK

Interannual variability of the inherent predictability in general circulation

- Forecasts in reanalysis may give information about the timedependent predictability.
- The year-to-year variability of the inherent predictability in the general circulation can be seen in the forecast scores.

Predictability with Ensemble Kalman Filter technique AFES-LETKF experimental ensemble reanalysis ALERA

ALERA: Collaboration among JMA, JAMSTEC and Chiba Institute of Science http://www.jamstec.go.jp/esc/afes/alera/

Uncertainty (predictability) seen in some weather extreme events with experimental (short-term) reanalysis Stratospheric sudden warming

Temperature at 10-hPa (65N-90N) 20050601-20061017

Enomoto et al. (2010), GRL

Uncertainty (Predictability) seen in some extreme events. Monsoon onset in Vietnam

U 850-hPa (contour) and its analysis ensemble spread (shade) 30-day running mean (10-15N, 107.5-110E)

Increase of ensemble spread prior to monsoon westerly

2.6

2.4

2.2

2

Summer (10-15N, 107.5-110E

M. Hattori

Enomoto et al. (2010), GRL

Seasonal Forecast System with JRA-25/JCDAS

El Niño monitoring and forecasting with JRA-25/JCDAS

Ocean Data Assimilation (MOVE/MRI.COM-G)

9 September 2010, Reading UK

Benefit of Reanalysis in Ocean Data Assimilation

Zonal wind stress anomalies along the equator (5S-5N) with (a) JRA-25, (b) JMA realtime operational analysis, (c) difference btw (a) and (b).

Dashed green lines indicate major change of physics/assimilation in JMA realtime systems.

ECMWF Annual Seminar 2010: Predictability in the European and Atlantic regions from days to years 9 September 2010, Reading UK

Benefit of Reanalysis in Ocean Data Assimilation

Net heat flux (heat and radiation) anomalies along the equator (5S-5N) with (a) JRA-25, (b) JMA old operational analysis, (c) difference btw (a) and (b) .

Dashed green lines indicate major change of physics/assimilation in JMA realtime

systems.

Benefit of Reanalysis in Ocean Data Assimilation

Ocean Heat Content (averaged subsurface temperature) anomalies along the equator (5S-5N) analysed with (a) JRA-25, (b) JMA operational analysis, (c) difference btw (a) and (b).

Dashed green lines indicate major change of physics/assimilation in JMA realtime

systems.

For ENSO prediction

Assessment of potential predictability with long period re-analysis and hindcast

ECMWF Annual Seminar 2010: Predictability in the European and Atlantic regions from days to years 9 September 2010, Reading UK

Reanalysis for Decadal predictability

Long-period reanalysis is necessary for research of the decadal variability.

ECMWF Annual Seminar 2010: Predictability in the European and Atlantic regions from days to years 9 September 2010, Reading UK

Outline

- Introduction
- Overview of JRA-25 Re-analysis
- Applications using reanalysis data and its benefit
 - Monthly to Decadal Forecasting
 - One-month forecasts
 - El Niño & seasonal outlook
 - Decadal forecasts
 - Climate system monitoring
 - Climate information based on reanalysis
- Reanalysis as a tool for research and studies
- Status of JRA-55
- Summary

Reanalysis for climate system monitoring

- JMA operational climate monitoring utilizes JRA-25/JCDAS, JMA sea surface temperature analysis data (COBE-SST), OLR data (provided by courtesy of NOAA)...
- JMA as well as CPC/NOAA etc. routinely issue climate monitoring reports focusing on global atmospheric circulation, Asian monsoon, ENSO, AO, teleconnections...

MONTHLY MEAN WAVE ACTIVITY FLUX AT 300hPa IN THE NORTHERN HEMISPHERE (Feb. 2010) Arrows show horizontal component of wave activity flux. (Takaya and Nakamura 2001, J.Atmos.Sei., 58, 608-627) Contours show stream function anomalies in an interval of 4×10**6m²/s. Negative anomaly area is shaded. Base period for normal is 1979-2004.

Benefit of Reanalysis for Climate Monitoring

Benefit of Reanalysis for Climate Monitoring

- Homogeneous long-period dataset enable us to monitor climate system with high quality.
- Statistics of long-period data from JRA-25/JCDAS help our understanding of the atmospheric variability.

DISTRIBUTION OF EIGEN VECTOR CALCULATED FROM EOF ANALYSIS OF SEASONAL MEAN 500HPA HEIGHT IN THE NORTHERN HEMISPHERE (WINTER) The left and right panel show eigen vector, multiplied by root of its eigen value, of the first and second component, respectively. EOF analysis is conducted with covariance matrix for 47 samples of seasonal mean 500-hPa height from 1958 to 2004. Original data before 1979 are provided by courtesy of ECMWF.

Global warming and Re-analysis

Surface Temperature Trends

The JRA-25 surface analysis employs a two-dimensional optimum interpolation scheme where various surface observations are assimilated with first-guess fields that are diagnostically obtained from upper-air first-guess fields.

Global Temperature Anomaly Distribution of tendency (K/decade) 36Top: monthry mean, Buttom. Spear moving accepting to the European and Atlantic regions from days to years 9 September 2010, Reading UK

See also, Simmons et al. 2004, *JGR* Onogi et al. 2007, *JMSJ*

ENSO Monitoring

Red shades indicate El Niño periods, and blue shades indicate La Niña periods.

For Ocean Monitoring

Surface heat flux data from JRA-25/JCDAS are used to estimate the change rate (upper right panel) of ocean mixed layer temperature due to heat exchange at the ocean surface. This estimate can be of help to assess the attribution of factors causing SST variations.

Climate monitoring service with Re-analysis data - Advisory Panel on Extreme Climate Events -

Advisory Panel on Extreme Climate Events

Discussion at Advisory Panel on Extreme Climate Events

Press release on extreme events

General public Policy maker

Briefing for press about AO in 2009/10 winter (broadcast news)

Outline

- Introduction
- Overview of JRA-25 Re-analysis
- Applications using reanalysis data and its benefit
 - Monthly to Decadal Forecasting
 - One-month forecasts
 - El Niño & seasonal outlook
 - Decadal forecasts
 - Climate system monitoring
 - Climate information based on reanalysis
- Reanalysis as a tool for research and studies
- Status of JRA-55
- Summary

Reanalysis as a tool for researches and studies

- Understanding of mechanisms of the climate variability is the first step of predictions.
- Countless studies of the meteorology and climatology used reanalysis data and reveal the mechanisms.

 These are certainly great help for the operational forecast community.

Challenges in future reanalyses

Extended reanalysis period

• Data recovery, Quality Control, High quality boundary conditions, ...

Better handling of changing observing system

- Adaptive tuning of error statistics
- Reanalysis using a fixed observing system as an alternative approach
- Identification of key observing system for climate monitoring

Better representation of interactions with climate subsystems (land, ocean, cryosphere)

• Coupled system reanalysis

Reliable uncertainty estimates

43

- Ensemble-based data assimilation system (EnDA, EnKF, ...)
- Comparison between available reanalysis datasets

20th century reanalysis (NOAA-CIRES)

http://www.esrl.noaa.gov/psd/data/gridded/data.20thC_Rean.html

ECMWF Annual Seminar 2010: Predictability in the European and Atlantic regions from days to years 9 September 2010, Reading UK

Outline

- Introduction
- Overview of JRA-25 Re-analysis
- Applications using reanalysis data and its benefit
 - Monthly to Decadal Forecasting
 - One-month forecasts
 - El Niño & seasonal outlook
 - Decadal forecasts
 - Climate system monitoring
 - Climate information based on reanalysis
- Reanalysis as a tool for research and studies
- Status of JRA-55
- Summary

Status of JRA-55 (1)

<u>Global analysis</u>

Compared with JRA-25

- Longer Period (1958-2012)Higher resolution
- Latest assimilation system with the latest model
- Enhanced QC
- More conventional data
- Adjustment of background error for a gap between satellite and no-satellite eras.

providing a fundamental data set for

- researches on climate change and decadal variability in the last half century
 Global Warming
- real-time climate monitoring
- verification of seasonal forecast and climate models
- atmospheric forcing fields for ocean data assimilation
- chemical transport simulations
- carbon cycle simulations
- water resource management
- estimation of renewable energy resources
- severe weather risk assessment

47

Status of JRA-55(2)

	JRA-25 (1979-2004)	JRA-55 (1958-2012)
Resolution	<mark>T106L40</mark> (~120km) (top layer at 0.4 hPa)	<mark>TL319L60</mark> (~60km) (top layer at 0.1 hPa)
Time integration	Eularian	Semi-Lagrangian
Assimilation scheme	3D-Var	<mark>4D-Var</mark> (with T106 inner model)
B matrix	Constant	Different B matrices for pre-satellite and satellite eras
Bias correction (radiosonde)	Radiation bias only (Andrae <i>et al.,</i> 2004)	RAOBCORE v1.4 (Haimberger, 2007, <i>J. Climate</i>)
Bias correction (radiances) For satellite	Offline	Variational Bias Correction
Long-wave radiation	Line absorption Statistical band model Water vapor continuum e-type	Line absorption Table lookup + K-distributio Water vapor continuum e-type + p-type

MA/CRIEPI

Tuning of background error covariance matrix

JRA-55 project schedule

ECMWF Annual Seminar 2010: Predictability in the European and Atlantic regions from days to years

9 September 2010, Reading UK

۲

•

Re-examination of extreme event : Typhoon Vera (Isewan tyhpoon) (1959) forecasts

and decision making in case of disasters.

Re-analysis of Typhoon Vera 1959

JRA-55 high resolution

would improve

- representations
- (intensity) of typhoons in
- ^{17.5} reanalysis products.

Surface pressure and wind fields in (upper) ERA-40 and (lower) JRA-55 test experiment with JRA-55 resolution. 1.25 deg data are plotted in both figures.

ECMWF Annual Seminar 2010: Predictability in the European and Atlantic regions from days to years 9 September 2010, Reading UK

51

Typhoon Vera 1959 forecast with JMA non-hydrostatic model Accumulated 24-hr Rainfall (1959.09.26,00UTC-1959.09.27,00UTC)

Summary

- Reanalysis
- based on maximally available observation data with enhanced QC
- continuously produced analysis data for a long period with the latest analysis system
- Best estimates or proxies of the truth with homogenous constant quality

Applications of reanalysis

- Reanalysis is widely used with forecasting system.
- Initials for long-range predictions and for hindcasts
- Forcing data in ocean data assimilation
- Verification in extended and long-range forecasts predictability
- Inherent changes of predictability
- Climate monitoring
- Extreme events
- Decadal variations and global warming

Summary -continued-

As tools for research

 Interactions between production and utilization of reanalysis promote further improvements in reanalysis and research activity.

Future subjects

- Flow dependency analysis
- EnKF --- combination of reanalysis and predictability
- Reanalysis for decadal-scale variation
- JRA-55 in JMA
- Successor of JRA-25
- Development of predictability

assessment of predictability for extreme event , Isewan-typhoon

- Reanalysis needs to follow the advancement of forecast system
- Need to producing reanalysis data repeatedly

END

Thank you for your kind attention.

And thanks to Mr. Y. Takaya Mr. S. Kobayashi for preparing this material

ECMWF Annual Seminar 2010: Predictability in the European and Atlantic regions from days to years 9 September 2010, Reading UK

