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Global Non-Hydrostatic Modeling Using Voronoi1 Meshes:
The MPAS Model

Applications
- NWP, Regional Climate, and Climate

Equations

- Fully compressible nonhydrostatic
vector invariant form

C-grid centroidal Voronoi mesh

- Erroneous non-stationary geostrophic modes:
our solution

- Accuracy and efficiency of transport schemes:
higher accuracy second-order schemes

Test results
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Global Non-Hydrostatic Modeling Using Voronoi1 Meshes:
The MPAS Model

Variables:
(U3V793®>Qj) = pd ) (u7v7ﬁa 67q,1)

Vertical coordinate:
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Equation set points of interest

» Prognostic equations for coupled
variables.

» Generalized height coordinate.

» Horizontally vector invariant eqn set.

» Continuity equation for dry air mass.

» Thermodynamic equation for coupled
potential temperature.

Integration scheme

As in Advanced Research WRF -
Split-explicit Runge-Kutta (3rd order)



Hexagonal C-Grid Problem:
Non-Stationary Geostrophic Mode

Traditional Coriolis velocity evaluation
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Hexagonal C-Grid Problem:
Non-Stationary Geostrophic Mode

New Coriolis velocity evaluation (Thuburn, 2008 JCP)
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Thuburn (2008) Tangential Velocity
Reconstruction

In the discrete analogue of vorticity equation
(§,=-fd,), the divergence J, on the Delaunay

triangulation is identical to the divergence 0, on
the Voronoi hexagons used in the height equation

(h=-H9,) integrated over the triangle.

_ Apds+ Ao + Acoc

Agdg 5

Divergence 0, in hexagon A:
6
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Generalization for Irregular Hexagons

Construct tangential velocities from weighted
sum of (10) normal velocities on edges of
adjacent hexagons.

Careful choice of additional constraints leads
to a solution for the weights w, that depend
only on the triangle/polygon area ratios local
to the shared polygon.

The general tangential velocity
reconstruction produces a consistent
divergence on the primal and dual grids, and
allows for PV, enstrophy and energy*
conservation in the nonlinear SW solver.




Generalization for Irregular Hexagons

Our tangential velocity reconstruction is valid for any Voronoi grid
(3,4,5,6,7... nsided cells)

General formulation should be regarded as an extension of
Sadourny (JAS, 1975) and Arakawa and Lamb (MWR, 1981)



Runge-Kutta Based Transport

MPAS uses a Runge-Kutta time-integration scheme.

0
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Computing the flux - consider 1D transport (e.g. from WRF)
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Runge-Kutta Based Transport

3rd and 4th-order fluxes:
1 1 .
F(u,)i1/2 = tit1)2 [5 (Vi1 + 2s) T (020i+1 + 62405 + sign(u) % (824hs1 — 620;) ]
where 62; = ;1 — 2; + i1 (Hundsdorfer et al, 1995; Van Leer, 1985)
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where x 1is the direction normal
to the cell edge and i and i+1 are
cell centers. We use the least-
squares-fit polynomial to
compute the second derivatives.



Runge-Kutta Based Transport

Extension to Voronoi (hexagonal) meshes

‘ Edge e, has weights for computing second

Q derivatives at cell centers C, and C,.

‘ The weights for C, apply to cell centers C,
through C, and the weights for C, apply
to cell centers C-C, and C¢-C,,.

At 1 Monotonic or PD limiter is applied
x _ t_ 28 2 N g (pV)En, ot onotonic or imiter is applie
(o) =(py) Z {(PV) ¥ on the final RK substep if desired.



Runge-Kutta Based Transport

Deformational Flow Test Case
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F1G. 8. Blossey and Durran (2008) test problem mapped to the sphere.



Runge-Kutta Based Transport

Deformational Flow Test Case
2nd order scheme 3rd order scheme 4th order scheme

no limiter

monotonic limiter

0 200 400 600 800 1000

Fi1G. 5. Deformational flow test case results at time 7. The thick contours are the exact
solution for ¥ = 100 and 800. The simulations were performed on the 40962-cell grid.
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Runge-Kutta Based Transport

1 1 o2 92

+ sign(u) Mﬁ%} { (%)Hl a (%)H

Blossey and Durran Test Case
3rd order scheme, =1 3rd order scheme, $=0.5 3rd order scheme, $=0.25 4th order scheme, =0

N\

©

0 200 400 600 800 1000

F1G. 7. Deformational flow test case results at time 7" using (11) with different values of
the filter parameter . The simulations were performed on the 40962-cell grid.
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Runge-Kutta Based Transport

Blossey and Durran Test Case
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MPAS nonhydrostatic core

Jablonowski and
Williamson (2006)
baroclinic wave
test case, day 9

~120 km cell
spacing

At =900 s
AT=150s
26 levels

Vertically-
stretched grid.
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Phase Errors for the GME and Nonhydrostatic MPAS Models

phase error (degrees)

Jablonowski and Williamson (2006) Baroclinic Wave Test

(errors computed from 655362 cell reference solution, ~ 30 km dx)
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GME results from Jablonowski and Williamson (2006) QJ vol. 132 (621), figure 12.



MPAS nonhydrostatic core

Global variable-resolution moist baroclinic waves

~ 60 km cell-center spacing Variational Cell

~ 240 km cell-center spacing &

80W 60W 40W 20W 0 20E 40E 60E 80E
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MPAS nonhydrostatic core

2D (y,z) simulations Straka et al (1993) Schar test case

Based on 3D doubly den sity current simulations Vertical velocity c.i. = 0.05 m/s
periodic (x,y) config. Z - e Q \l
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Squall-Line Tests

Low-level shear (0-2.5 km), Weisman-Klemp sounding
Warm-bubble perturbation, results at 3 hours

Line-Relative Horizontal Velocity (m/s) Cloud Water

low-level shear = 0.0024/s c.i. =0.20 g/kg
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Supercell Tests

Low-level shear (0-5 km, 30 m/s), Weisman-Klemp sounding,
Warm-bubble perturbation, Periodic in x and y (Lx, Ly ~ 84 km),
3D (x,y,z) simulations, Ah = 500 m

(a) Hexagonal mesh simulation (b) Rectangular mesh simulation

Vertical velocity contours at 1, 5, and 10 km (c.i. = 3 m/s)

30 m/s vertical velocity surface shaded in red
Rainwater surfaces shaded as transparent shells

Perturbation surface temperature shaded on baseplane
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MPAS - Summary

SW solver for SVCT unstructured C-grid
»  Recovers stationary geostrophic mode.
*  SW solver conserves PV, energy to time truncation.

*  Solutions comparable to existing SW solvers, and no dissipation needed for
standard SW test cases.

3D Solvers

*  Hydrostatic 3D SVCT solver (based on SW solver - parallel).

*  Variable-resolution grid results are encouraging.

*  Nonhydrostatic 3D SVCT solver (based on hydrodstatic solver).

*  Both solvers work on the sphere and 2D and 3D Cartesian domains.
*  Moist tests results confirm viability of Voronoi C-grid discretization.

Test Suites

*  Moist baroclinic-wave tests allow us to quickly access robustness of our solvers
on the sphere, accelerate development.

*  Ability to use nonhydrostatic solver in 2 and 3D Cartesian-domain tests allows
direct comparison with existing established solvers.

Future Development

*  Weather, regional climate and climate physics suites.

*  Further testing of variable resolution meshes, physics development.
*  Further development and testing of higher-order transport schemes.
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