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Monitoring the performance of the assimilation system and 

the short range forecast 

Workshop on assimilating satellite observations of clouds and precipitation, June 2010 

ECMWF 4D-Var system handles a large variety of space and surface-based 

observations. It combines observations and atmospheric state a priori information 

by using a linearized and non-linear forecast model

Effective monitoring of a such a complex system with  108 degrees of freedom and 

107 observations is a necessity. Not just a few indicators but a more complex set of 

measures to answer questions like is needed:

How much influent are the observations in the analysis?

How much influence is given to the a priori information?

How much does the estimate depend on one single influential observation?

Observation Contribution to the forecast

Did observations improve the forecast?

How much is the observation impact on the forecast?
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Enhanced “all-sky” system at ECMWF

 Direct assimilation of SSMI (F13 & F15) and AMSR-E radiances in 
4DVAR:

- Observations super-obbed to T255

- Observation errors assumed to depend on cloudiness (symmetric 
model, see Alan’s talk)

- Observations assimilated over sea within ± 60º latitude

 Presented diagnostics based on T799 experiments for June/July 2009:

- Separation between clear/cloudy based on threshold for liquid 
water path (0.05 kg/m2)

- LWP derived from observations and First Guess → 4 categories

Workshop on assimilating satellite observations of clouds and precipitation, June 2010 
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Monitoring the performance of the assimilation system and 

the short range forecast 
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Forecast sensitivity to observation: Equations
from a Roger Daley idea
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Analysis and 24h Forecast error Contribution of SSM/I and AMSR-E

Workshop on assimilating satellite observations of clouds and precipitation, June 2010 
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Analysis           and           24h FcE Contribution per Channels

Workshop on assimilating satellite observations of clouds and precipitation, June 2010 
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SSM/I Impact

Workshop on assimilating satellite observations of clouds and precipitation, June 2010 
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Workshop on assimilating satellite observations of clouds and precipitation, June 2010 
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Diagnosing observation error covariances

Workshop on assimilating satellite observations of clouds and precipitation, June 2010 

 Several methods to estimate observation error covariances 
from Obs-FG departures, e.g.:

- Hollingsworth/Lönnberg

- Background error method

- Desroziers et al. (2005) diagnostic:                            
(with da and db the analysis and background departure, respectively)

 All rely on (questionable) assumptions.

 Recently, results from these methods have been 
intercompared for clear-sky sounder radiances     
(Bormann and Bauer 2010, Bormann et al. 2010, QJ).

 Here: Study extended to MW imager “allsky” radiances, 
but with Desroziers diagnostic only.
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Diagnosing observation error covariances:
Some caveats

AMSU-A, Ch 11,

Clear-sky

MHS, Ch 5,

Clear-sky

 Departure-based estimation of observation errors more difficult 
for humidity-sensitive radiances:

• Background error relatively larger, with smaller spatial correlations.
 Background and observation error characteristics more difficult to separate.
 Behaviour of Desroziers diagnostic less clear.

 E.g., background departure covariances for AMSU-A and MHS:

Workshop on assimilating satellite observations of clouds and precipitation, June 2010 
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Workshop on assimilating satellite observations of clouds and precipitation, June 2010 

F-13 SSMI, July 2009:

Mean assumed observation errors (dashed): 
Clear obs/clear FG
Cloudy obs/cloudy FG

Observation errors from Desroziers 
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Workshop on assimilating satellite observations of clouds and precipitation, June 2010 

19V (ch 1) 37V (ch 4)

85V (ch 6)

F-13 SSMI, July 2009:

Number of pairs

Spatial observation error correlations from 
Desroziers diagnostic
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F-13 SSMI:
Clear observation/
clear First Guess

19V    19H    22V    37V    85V

Channel

Workshop on assimilating satellite observations of clouds and precipitation, June 2010 
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Workshop on assimilating satellite observations of clouds and precipitation, June 2010 

Stdev(o-b) for SSMI ch 1, clear obs/clear FG:

Situation-dependence of inter-channel 
observation error correlations?
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Workshop on assimilating satellite observations of clouds and precipitation, June 2010 

Sqrt(ev) gives the error inflation factor for each eigenvector structure relative to a 
diagonal correlation matrix.

F-13 SSMI, Cloudy observation/cloudy First Guess:

Eigenvectors of inter-channel error 
correlation matrix
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 Assimilate only a single SSMI FOV in 4DVAR – no other 
observations.

 Two experiments: With and without taking inter-channel 
observation error correlations into account;                   
σO unchanged.

 Cases shown have cloudy observation and cloudy FG.

Assimilation experiments with a single 
SSMI FOV

Workshop on assimilating satellite observations of clouds and precipitation, June 2010 
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Single SSMI FOV  
assimilation experiments:

Case 1

Obs – FG departure

Humidity increment [g/Kg]                 
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Workshop on assimilating satellite observations of clouds and precipitation, June 2010 
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Humidity increment [g/Kg]                 
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Status

 Recent advanced diagnostic tools are used to monitor the 
assimilation system performance.

 The microwave “allsky” data are influential in the analysis and 
improve the forecast .

 Observation error correlation is investigated.

 Estimates for inter-channel and spatial observation error correlations 
are becoming available.

 Main indication of strong inter-channel and some spatial observation 
error correlations for humidity channels, esp. for MW imager 
radiances in cloudy/rainy regions.

Workshop on assimilating satellite observations of clouds and precipitation, June 2010 
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Recommendations

 Need further characterisation/development of methods to estimate
observation errors and their correlations in real NWP systems

 Need further research into refining assumed observation errors, e.g.:

 Effect of taking observation error correlations into account in the 
assimilation.

 Forecast model error contributes significantly to observation 
operator error for humidity-sensitive observations in strong-
constraint 4DVAR. How to deal with this?

Workshop on assimilating satellite observations of clouds and precipitation, June 2010 
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