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Spaceborne radar, lidar and radiometers

The A-Train
– CloudSat 94-GHz radar (launch 2006)
– Calipso 532/1064-nm depol. lidar
– MODIS multi-wavelength radiometer
– CERES broad-band radiometer
– 700-km orbit
– NASA

EarthCARE (launch 2013)
– 94-GHz Doppler radar
– 355-nm HSRL/depol. lidar
– Multispectral imager
– Broad-band radiometer
– 400-km orbit (more sensitive)
– ESA+JAXA

EarthCare



Towards assimilation of cloud radar and lidar

• Before we assimilate radar and lidar into NWP models it is helpful to 
first develop variational cloud retrievals
– Need to develop forward models and their adjoints: used by both
– Refine microphysical and a-priori assumptions
– Get an understanding of information content from observations

• Progress in our development of synergistic radar-lidar-radiometer 
retrievals of clouds:
– Variational retrieval of ice clouds applied to ground-based radar-lidar 

and the SEVIRI radiometer (Delanoe and Hogan 2008)
– Applied to >2 years of A-Train data (Delanoe and Hogan 2010)
– Fast forward models for radar and lidar subject to multiple scattering 

(Hogan 2008, 2009; Hogan and Battaglia 2009)
– With ESA & NERC funding, currently developing a “unified” algorithm 

for retrieving cloud, aerosol and precipitation properties from the 
EarthCARE radar, lidar and radiometers; will apply to other platforms



Overview
• Retrieval framework
• Minimization techniques: Gauss-Newton vs. Gradient Descent
• Results from CloudSat-Calipso ice-cloud retrieval
• Components of unified retrieval: state variables and forward models
• Multiple scattering radar and lidar forward model
• Multiple field-of-view lidar retrieval 
• First results from prototype unified retrieval



Retrieval 
framework
Ingredients developed before

In progress
Not yet developed

1. New ray of data: define state vector
Use classification to specify variables describing each species at each gate
Ice: extinction coefficient , N0’, lidar extinction-to-backscatter ratio
Liquid: extinction coefficient and number concentration
Rain: rain rate and mean drop diameter
Aerosol: extinction coefficient, particle size and lidar ratio

3a. Radar model
Including surface return 
and multiple scattering

3b. Lidar model
Including HSRL channels 
and multiple scattering

3c. Radiance model
Solar and IR channels

4. Compare to observations
Check for convergence

6. Iteration method
Derive a new state vector
Either Gauss-Newton or 
quasi-Newton scheme

3. Forward model

Not converged

Converged

Proceed to next ray of data

2. Convert state vector to radar-lidar resolution
Often the state vector will contain a low resolution description of the profile

5. Convert Jacobian/adjoint to state-vector resolution
Initially will be at the radar-lidar resolution

7. Calculate retrieval error
Error covariances and averaging kernel



and 2nd derivative (the Hessian matrix):

Gradient Descent methods

– Fast adjoint method to calculate ∇xJ
means don’t need to calculate Jacobian

– Disadvantage: more iterations needed 
since we don’t know curvature of J(x)

– Quasi-Newton method to get the search 
direction (e.g. L-BFGS used by ECMWF): 
builds up an approximate inverse Hessian 
A for improved convergence 

– Scales well for large x
– Poorer estimate of the error at the end

Minimizing the cost function

Gradient of cost function (a vector)

Gauss-Newton method

– Rapid convergence (instant for linear 
problems)

– Get solution error covariance “for 
free” at the end

– Levenberg-Marquardt is a small 
modification to ensure convergence

– Need the Jacobian matrix H of every 
forward model: can be expensive for 
larger problems as forward model may 
need to be rerun with each element of 
the state vector perturbed
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Combining radar and lidar…

Cloudsat radar

CALIPSO lidar

Target classification
Insects
Aerosol
Rain
Supercooled liquid cloud
Warm liquid cloud
Ice and supercooled liquid
Ice
Clear
No ice/rain but possibly liquid
Ground

Radar and lidar
Radar only
Lidar only

Global-mean cloud fraction

Radar 
misses a 

significant 
amount of 

ice

Delanoe and Hogan (2008, 2010)

• Variational ice cloud retrieval using 
Gauss-Newton method



Example of mid-Pacific convection

CloudSat radar

CALIPSO lidar

MODIS 11 micron channel

Time since start of orbit (s)

H
ei

g
h
t 

(k
m

)
H

ei
g
h
t 

(k
m

)

Cirrus detected only by lidar

Mid-level 
liquid 
clouds

Deep convection penetrated only by radar

Retrieved extinction (m-1)



Evaluation using CERES longwave flux

Bias 0.3 W m-2

RMS 14 W m-2

• Retrieved profiles containing only ice are used with 
Edwards-Slingo radiation code to predict outgoing 
longwave radiation, and compared to CERES

Bias 10 W m-2

RMS 47 W m-2

CloudSat-Calipso retrieval 
(Delanoe & Hogan 2010)

CloudSat-only retrieval 
(Hogan et al. 2006)

Nicky Chalmers



Evaluation of models

• Comparison of the IWC distribution versus temperature for July 2006
• Met Office model has too little spread
• ECMWF model lacks high IWC values due to snow threshold
• New ECMWF model version remedies this problem

Delanoe et al. (2010)



Unified algorithm: state variables

State variable Representation with height / constraint A-priori

Ice clouds and snow

Visible extinction coefficient One variable per pixel with smoothness constraint None

Number conc. parameter Cubic spline basis functions with vertical correlation Temperature dependent

Lidar extinction-to-backscatter ratio Cubic spline basis functions 20 sr

Riming factor Likely a single value per profile 1

Liquid clouds

Liquid water content One variable per pixel but with gradient constraint None

Droplet number concentration One value per liquid layer Temperature dependent

Rain

Rain rate Cubic spline basis functions with flatness constraint None

Normalized number conc. Nw One value per profile Dependent on whether from 
melting ice or coallescence

Melting-layer thickness scaling factor One value per profile 1

Aerosols

Extinction coefficient One variable per pixel with smoothness constraint None

Lidar extinction-to-backscatter ratio One value per aerosol layer identified Climatological type 
depending on region

Ice clouds follows 
Delanoe & Hogan 
(2008); Snow & 
riming in 
convective clouds 
needs to be added

Liquid clouds 
currently being 
tackled

Basic rain to be 
added shortly; Full 
representation later

Basic aerosols to 
be added shortly; 
Full representation 
via collaboration?

• Proposed list of retrieved variables held in the state vector x



Forward model components
• From state vector x to forward modelled observations H(x)...

Ice & snow Liquid cloud Rain Aerosol

Ice/radar

Liquid/radar

Rain/radar

Ice/lidar

Liquid/lidar

Rain/lidar

Aerosol/lidar

Ice/radiometer

Liquid/radiometer

Rain/radiometer

Aerosol/radiometer

Radar scattering 
profile

Lidar scattering 
profile

Radiometer 
scattering profile

Lookup tables to obtain profiles of extinction, scattering 
& backscatter coefficients, asymmetry factor

Sum the contributions from each constituent

x

Radar forward 
modelled obs

Lidar forward 
modelled obs

Radiometer forward 
modelled obs

H(x)
Radiative transfer models

Adjoint of radar 
model (vector)

Adjoint of lidar 
model (vector)

Adjoint of radiometer 
model

Gradient of cost function (vector)
∇xJ=HTR-1[y–H(x)]

Vector-matrix multiplications: around 
the same cost as the original forward 

operations

Adjoint of radiative transfer models

∇yJ=R-1[y–H(x)]



• First part of a forward model is the scattering and fall-speed model
– Same methods typically used for all radiometer and lidar channels
– Radar and Doppler model uses another set of methods

• Graupel and melting ice still uncertain

Scattering models

Particle type Radar (3.2 mm) Radar Doppler Thermal IR, Solar, UV
Aerosol Aerosol not 

detected by radar
Aerosol not 
detected by radar

Mie theory, Highwood 
refractive index

Liquid droplets Mie theory Beard (1976) Mie theory
Rain drops T-matrix: Brandes 

et al. (2002) 
shapes

Beard (1976) Mie theory

Ice cloud 
particles

T-matrix (Hogan et 
al. 2010)

Westbrook & 
Heymsfield

Baran (2004)

Graupel and hail Mie theory TBD Mie theory
Melting ice Wu & Wang 

(1991)
TBD Mie theory



• Computational cost can scale with number of points describing vertical profile 
N; we can cope with an N2 dependence but not N3

Radiative transfer forward models

Radar/lidar model Applications Speed Jacobian Adjoint

Single scattering: β’=β exp(-2τ) Radar & lidar, no multiple scattering N N2 N

Platt’s approximation β’=β exp(-2ητ) Lidar, ice only, crude multiple scattering N N2 N

Photon Variance-Covariance (PVC) 
method (Hogan 2006, 2008)

Lidar, ice only, small-angle multiple 
scattering

N or N2 N2 N

Time-Dependent Two-Stream (TDTS) 
method (Hogan and Battaglia 2008)

Lidar & radar, wide-angle multiple scattering N2 N3 N2

Depolarization capability for TDTS Lidar & radar depol with multiple scattering N2 N2

Radiometer model Applications Speed Jacobian Adjoint

RTTOV (used at ECMWF & Met Office) Infrared and microwave radiances N N

Two-stream source function technique 
(e.g. Delanoe & Hogan 2008)

Infrared radiances N N2

LIDORT Solar radiances N N2 N

• Infrared will probably use RTTOV, solar radiances will use LIDORT
• Both currently being tested by Julien Delanoe

• Lidar uses PVC+TDTS (N2), radar uses single-scattering+TDTS (N2)
• Jacobian of TDTS is too expensive: N3

• We have recently coded adjoint of multiple scattering models
• Future work: depolarization forward model with multiple scattering



Examples of multiple scattering
LITE lidar (λ<r, footprint~1 km)

CloudSat radar (λ>r)

Stratocumulus

Intense thunderstorm

Surface echoApparent echo from 
below the surface



Fast multiple scattering forward model

CloudSat-like example

• New method uses the time-
dependent two-stream
approximation

• Agrees with Monte Carlo but 
~107 times faster (~3 ms)

• Added to CloudSat simulator

Hogan and Battaglia (J. Atmos. Sci. 2008)

CALIPSO-like example



Multiple field-of-view lidar retrieval
• To test multiple scattering model in a 

retrieval, and its adjoint, consider a 
multiple field-of-view lidar observing  
a liquid cloud

• Wide fields of view provide 
information deeper into the cloud

• The NASA airborne “THOR” lidar is an 
example with 8 fields of view

• Simple retrieval implemented with 
state vector consisting of profile of 
extinction coefficient

• Different solution methods 
implemented, e.g. Gauss-Newton, 
Levenberg-Marquardt and Quasi-
Newton (L-BFGS)  

lidar

Cloud top

600 m
100 m

10 m



Results for a sine profile

• Simulated test 
with 200-m 
sinusoidal 
structure in 
extinction

• With one FOV, only 
retrieve first 2 
optical depths

• With three FOVs, 
retrieve structure 
of extinction profile 
down to 6 optical 
depths

• Beyond that the 
information is 
smeared out

Nicola Pounder



Optical depth from multiple FOV lidar

• Despite vertical 
smearing of 
information, the 
total optical depth 
can be retrieved to 
~30 optical depths

• Limit is closer to 3 
for one narrow 
field-of-view lidar

Nicola Pounder



Comparison of convergence rates

• Solution is identical
• Gauss-Newton method converges in < 10 iterations
• L-BFGS Gradient Descent method converges in < 100 iterations
• Conjugate Gradient method converges a little slower than L-BFGS
• Each L-BFGS iteration >> 10x faster than each Gauss-Newton one!
• Gauss-Newton method requires the Jacobian matrix, which must be 

calculated by rerunning multiple scattering model multiple times 



Unified algorithm: first results for ice+liquid
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But lidar noise 
degrades retrieval

Truth
Retrieval

First guess
Iterations

Observations
Forward modelled retrieval
Forward modelled first guess

Convergence! 



Add smoothness constraint
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Truth
Retrieval

First guess
Iterations

Observations
Forward modelled retrieval
Forward modelled first guess

Smoother retrieval 
but slower 
convergence



Unified algorithm: progress
• Done:

– Functioning algorithm framework exists
– C++: object orientation allows code to be completely flexible: 

observations can be added and removed without needing to keep track 
of indices to matrices, so same code can be applied to different 
observing systems

– Code to generate particle scattering libraries in NetCDF files
– Adjoint of radar and lidar forward models with multiple scattering and 

HSRL/Raman support
– Interface to L-BFGS algorithm in GNU Scientific Library

• In progress / future work:
– Debug adjoint code (so far we are using numerical adjoint - slow)
– Implement full ice, liquid, aerosol and rain constituents
– Estimate and report error in solution and averaging kernel 
– Interface to radiance models
– Test on a range of ground-based, airborne and spaceborne instruments, 

particularly the A-Train and EarthCARE satellites
– Assimilation?
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