the ECIOPROF interposer

a proof-of-concept study for
l/0-profiling on AIX

Oliver Treiber
HPC group, ECMWF

HPC in Meteorology Workshop, ECMWF Nov 2010 Slide 1

goals and approach

® profile I/O on a per-process/task level on AIX OS

= by generating trace events with low performance impact
= post-processing trace data conveniently with perl/python/...

® should be generically applicable and easy-to-use

= no relinking, just set $LIBPATH/$LDR_PRELOAD envvars in tiny wrapper script
= meaningful tracefile naming, e.g., include MPI rank and command profiled

® (standard and generic) approach: wrapping some functions in libc.a

= general: also applicable to other UNICES (one would think...)
= BUT: intercept not only calls into libc.a, but also internal calls internal within libc.a

= example: fprintf() will eventually call write() to flush the buffer
=> would like to intercept both the fprintf() and the resulting write()

= cf., IBM’s proprietary libtkio/libmio, or GNU linker’s “~wrap” option used in NERSC’s IPM
= many other possible applications for such intercepting
= e.g., mirroring I/O for selected paths to “shadow filesystems”

= though, this better be done at application-level if have source code access

Use of HPC in Meteorology Workshop, ECMWF Nov2010 Slide 2 —w‘l.E‘ MWF

and then: some sugar on top ...

® |low-overhead high-resolution timestamps
= simply use mftb instruction on POWER cpus via inline asm

® walk the stack's saved link registers for instruction-
stacktrace to annotate trace events

= can help easily identify from what function a particular event stems
from

® asynchronous /O request completion timing

® some control through environment variables
= e.g., profile child processes, too? any, or only selected binaries?

® ... and whatever else comes to mind

= it is “our source”/’open source”? — so can do whatever we like
» as opposed to vendor’s toolkit shipped as binary modules, etc...
* e.g., maybe chase some AF_UNIX sockets, too?

Use of HPC in Meteorology Workshop, ECMWF Nov2010 Slide 3 —w‘I.E‘ MWF

teaser: let's do some AlO...

void aio_from subfunc(struct aiocb64* cb) {

aio write64(cb); }

int main(int argc, char** argv)
{
[...]
aio fdl = open("aio.l.out"™ , O RDWR|O CREAT, S IWUSR|S IRUSR);

cb a.aio sigevent.sigev notify = SIGEV_NONE; [..]

cb a.aio fildes = aio fdl; cb a.aio buf = obuf;
cb a.aio offset = 0;
cb a.aio nbytes = sizeof(obuf)/3;

cb b.aio fildes = aio fdl; cb b.aio buf = obuf;
cb b.aio offset = sizeof (obuf)/3;
cb b.aio nbytes = sizeof(obuf)/4;

cb c.aio fildes = aio fdl; cb c.aio buf = obuf;
cb c.aio offset = sizeof (obuf);
cb c.aio nbytes = sizeof(obuf)/5;

aio from subfunc(&cb a);
aio write64(&cb b);

for(int i=0; i<100000000; i++) { /* waste time */ }

aio from subfunc(&cb c);

[...]

Use of HPC in Meteorology Workshop, ECMWF Nov2010 Slide 4 —w‘I.E‘ MWF

and, for a fistful of keystrokes:
get a post-processed 1/0 profile

INFO: read 18 symbols from hello aio
INFO: cooked trace data from 'ECIOPROF.hello aio.913758.1288734339'

'/slt_gpfs/slt home/filesets/slt home systems/syg/work/iowrap/aio.l.out': 3285537 bytes

'MaxAIOWait ms' => 56,

'OpenDuration us' => '224"',

'AIOWriteBytes' => 3285537,

'MinimumAIOWait ms' => 20,

'AIOOpsChronological' => |
'2ms:aiow:0x100000474=.aio_from subfunc()+0x14:1398101 B at offset 0, request 110400af0Q’,
'Zms:aiow:0x1000006cc=.main () +0x18c:1048576 B at offset 1398101, request 110400b70"',
'38ms:aio_done:aiowreq 110400af0, 36ms after issue',
'56ms:aio_done:aiowreq 110400b70, 5S56ms after issue',
'729ms:aiow:0x100000474=.aio_from subfunc()+0x14:838860 B at offset 4194304, req 110400bf0'’
'749ms:aio_done:aiowreq 110400bf0, 20ms after issue']

'ATOWriteRequests' => 3,

'AIOWriteMainFunction' => {

'0x100000474 = .aio from subfunc()+0x14' => 2,
'0x1000006cc = .main()+0x18c' => 1 },
'CloseDuration us' => '20148"',
'OpenMainFunction' => { '0x10000062c = .main()+0xec' => 1},
'MaxATIOQueueDepth' => 2,
'OpenTimeInProcess ms' => 0,

'OpenTime' => '0.000:1288734339.119:Tue Nov 2 21:45:39 2010",
'"OpenFor ms' => 729,

'"CloseTime' => '0.729:1288734339.848:Tue Nov 2 21:45:39 2010"',
'BytesWritten' => 3285537,

'MaxAIOWriteSize' => 1398101,

'"MinAIOWriteSize' => 838860

Use of HPC in Meteorology Workshop, ECMWF Nov2010 Slide 5 —w‘l.E‘ MWF

side remarks:
truss as poor man’s /O profile

® on AlX, intercept syscalls with truss (="strace")

= use something like
truss —o <tracefile> —f —t open,close,kwrite,kread,... <binary>“
In wrapper script

= if using shell wrappers with poe, make sure to use ksh93!
(look for ksh93 in PE manuals... encounter puzzling problems otherwise)

= gets you started quick and easy, but noticeable performance impact
= not so great for selecting which files/paths to profile

= not so great for profiling libc buffered streams, e.q., fprintf(), ...

= no real support for aio

® put: gets you started within less than a minute ;-)

Use of HPC in Meteorology Workshop, ECMWF Nov2010 Slide 6 —w‘l.E‘ MWF

ECIOPROF: status and DISCLAIMER

® currently, this is merely proof-of-concept exploration

= so far: simple, “hobby” interest/private background noise activity
= 5o far: only drafty implementation, code not nicely refactored/documented
= very few lines of code so far with some inessential limitations

= one wants to be aware of these before using

» but no principal limitations — could easily be fixed by more robust implementation (e.qg.,
currently fixed array used to track process’ file descriptors)

= e.g., more compact trace format easy to implement (but tedious)

® but, it appears to work quite nicely...

* have already uncovered “suboptimalities” in ECMWF production codes like
operational model or 4d-VAR

» unnecessary file 1/0, setvbuf omission or bugs in tuning streams to GPFS blocksizes
= how long does the operational model's asynchronous field database 1/O take?

= or: e.g., profile frequently called perl scripts using many imports

= how much time sourcing modules until we actually start "real work" in the process?

Use of HPC in Meteorology Workshop, ECMWF Nov2010 Slide 7 —w‘l.E‘ MWF

ECIOPROF implementation: a few technical teasers

® build an alternative profiling libc.a instrumented with wrappers

= wrappers write events into buffered stream using fprintf()

= stitch into this new libc.a wrappers for descriptors and definitions for read(),
fread() etc after renaming originals using —brename AIX linker gymnastics

= this is key to break up and wrap libc-internal calls to write() “from” streams, e.g.!

= for calling into original “pass-through” symbols like open(), close(), ...
exported from kernel, in their wrappers find references through disym() on a
handle obtained from dlopen(“/usr/lib/libc.a”)

= system’s libc.a is thus mapped as well

= walk the stack quickly with inline assembler for cheap stacktraces
= cf. POWER ABI subroutine linkage conventions

= can internally make use of such stacktrace info for some “hacking”

» e.g., for tracing “nasty varg” fprintf(), profile the “backend” fixed signature _doprnt() service
instead— but do not profile _doprnt when it has been called from sprintf()

= add hidden SIGEV_SIGNAL to AIO control blocks and register bespoke
signal handler to capture timing info for "aioserver kproc done"

* in using this, need be aware re interruptible system calls

Use of HPC in Meteorology Workshop, ECMWF Nov2010 Slide 8 —w‘l.E‘ MWF

a slightly more comprehensive
“hello_world” example

® “simple” source with
» aio_write64()
= “Posix” I/O: open(), write(), ...
= libc buffered stream I/O: fopen(), fread(), fprintf(), fgets(), ...

= also: fork to a Fortran binary

= to demo it works with Fortran runtime
= to demo it follows kids

Use of HPC in Meteorology Workshop, ECMWF Nov2010 Slide 9 —w‘I.ECMWF

source of “hello_c” demo, part 1

[include some standard C header files...]
8: char obuf[4096*1024], ibuf[4096], stream buffer[4096*256];
9: int aio fd, posix io fd; FILE* buffered stream;

10:

11: void write posix io(int fd) {

12: write(fd, obuf, sizeof(obuf)); }

13:

14: void my fwrite(FILE* stream)

15: fwrite (obuf, sizeof(obuf), 1, stream); }

16:

17: int main () {

18: /* initialise output buffer */

19: memset (obuf, 'x', sizeof (obuf)); obuf[sizeof (obuf)-1]= 0;
20:

21: /* do some async i/o */

22: struct aiocb64 cb; const struct aiocb64 *aio req list[l] = { &cb };
23: memset (&cb, 0, sizeof(cb));

24 : aio fd = open("aio.out"™ , O RDWR|O CREAT, S IWUSR|S IRUSR);
25: cb.aio fildes = aio fd;

26: cb.aio buf = obuf;

27 : cb.aio nbytes = sizeof (obuf);

28: cb.aio _sigevent.sigev notify = SIGEV_NONE;

29: aio_write64(&cb);

30:

31: /* do some posix io */

32: posix io fd = open("posix io.out" , O RDWR|O CREAT, S IWUSR|S IRUSR);
33: write(posix io fd, obuf, sizeof (obuf));

34: write posix io(posix io fd);

35: close(posix io fd);

36: [...]

Use of HPC in Meteorology Workshop, ECMWF Nov2010 Slide 10 —w‘l.ECMWF

source of “hello_c” demo, part 2

[

v
37:
38:
39:
40:
41:
42
43
44 .
45:
46:
47 :
48:
49:
50:
51:
52:
53:
54:
55:
56:
57:
58:
59:
60:
6l:
62:
63:
64:
65:

/* do some buffered io */

buffered stream = fopen("buffered stream.out",
setvbuf (buffered stream, stream buffer, IOFBF,
mundo ! \n"
fputs("hello fputs...!\n", buffered stream);

my fwrite(buffered stream);
fseek(buffered stream, 0, O)f\‘\\\\\\\\\\\\\\\\
fgets(ibuf, 1024, buffered stream);

fprintf(buffered stream, "%s",

fprintf (stderr, "read string:

"ciao,

%s\n",

fread(ibuf, 32, 1, buffered stream);

ibuf[32] = 0;

fprintf (stderr, "read from stream:

fclose (buffered stream);

/* more posix 10, second round on same path */

ibuf

$s\n",

) ;

ibuf

"]f‘l‘")’.

sizeof (stream buffer));

) ;
1MB buffer

fwrite() of 4MB buffer

) 7

posix io fd = open("posix io.out" , O RDWR|O CREAT, S IWUSR|S IRUSR);
write(posix io fd, obuf, sizeof (obuf)

write posix io(posix io fd);
close(posix io fd);

) ;

/* fork a fortran "hello world" */

if (! fork()) { execl("hello fortran",
else { wait(0); }

/* walit for aio to finish */
aio suspend64 (aio req list, 1, 0);

close(aio fd);

exit(0); }

"hello fortran", 0); }

Use of HPC in Meteorology Workshop, ECMWF Nov2010 Slide 11 —w‘I.E‘ MWF

source of “hello fortran” demo

1l: program hello fortran
2
3: call ciaomundo ()
4
5: open(unit=10, file="'fortran.output')
6: write (10,*) "fortranout"
7: close(10)
8: end
9:
10: subroutine ciaomundo ()
11: print *, "clao, mundo"
12: open (unit=11, file='fortran.output.ciao mundo')
13: write (11,*) "howdy"
14: close(11)
15: return
16: end
17:

Use of HPC in Meteorology Workshop, ECMWF Nov2010 Slide 12 —w‘l.ECMWF

ease-of-use: perform the actual profiling of “hello_c”
(and its child “hello_fortran”)...

invoke binary with ECIOPROF wrapper, asking also that lowlevel stacktraces
be produced for paths matching “buffered” or “fortran”

#> export ECIOPROF LLTRACE PATHS="buffered|fortran"

#> ECIOPROF.64 hello c

-> /home/systems/syg/bin/ECIOPROF.64 traces in /home/systems/syg/tests/iowrap
[... output ...]

check real output files have actually been generated ;-)

#> 1s *out*

aio.out fortran.output posix io.out
buffered stream.out fortran.output.ciao mundo

list tracefile generated
#> 1ls -1ltr ECIOPROF.hello*

—Irw-r—-r—- 1 syg systems 523 Oct 27 13:43
ECIOPROF.hello fortran.540710.1288186990
—Irw-r—-r—- 1 syg systems 1329 Oct 27 13:43

ECIOPROF.hello ¢.472036.1288186990

Use of HPC in Meteorology Workshop, ECMWF Nov2010 Slide 13 —w‘l.ECMWF

contents of “raw” tracefile for the “hello_fortran” process

#> cat ECIOPROF.hello fortran.217532.1288187550

#ECIOPROF!compiled: Jul 22 2010 17:17:08 “environment”prolog
#timebase!1288187550.503187!Wed Oct 27 13:52:30 2010

#cwd!/slb gpfs/slb home systems/syg/tests/iowrap

#ancestry!217532-hello_fortran:176586-hello c:

36028797018962!62!'13!'w!1!131100000660

212216!'0!/slb _gpfs/slb _home systems/syg/tests/iowrap/fortran.output.ciao mundo!67108866!438!1000006d0

#trcbk open!/slb_gpfs/slb_home systems/syg/tests/iowrap/fortran.output.ciao _mundo!:
0x900000000a38£40:0x900000000d40e£f4:0x900000000d4055¢c:0x900000000d44e24:0x900000000d7bd60:

0x1000006d0:0x10000049c:0x100000320 . c
\ full link-register low-level traceback through
2121799 7!'w!6!71100000740 . .
libc.a, Fortran runtime and executable

241169!0!c!6!100000740

24120!'6!0!/slb gpfs/slb home systems/syg/tests/iowrap/fortran.output!67108866!438!100000508
#trcbk open!/slb gpfs/slb home systems/syg/tests/iowrap/fortran.output!:
0x900000000a38£40:0x900000000d40e£4:0x900000000d4055¢c:0x900000000d44e24:0x900000000d7bd60:
0x100000508:0x100000320

241171161121w161121100000578 <« | writing 12 bytes to fd 6 from 0x100000578
41111010%c161100000578 in executable, 24ms into execution, call took 17116us

Use of HPC in Meteorology Workshop, ECMWF Nov2010 Slide 14 —w‘l.E‘ MWF

just FYI: the stacktrace from previous slide in dbx...

#> dbx -E LIBPATH=/home/systems/syg/tests/iowrap.64
-E LDR_PRELOAD="/home/systems/syg/tests/iowrap.64/libc.a(shr 64.0) :\
/home/systems/syg/tests/iowrap.64/libc.a(posix aio 64.0)" hello fortran
#> stopi in open
[...]
(dbx) t
lowrappers.open (path = "fortran.output.ciao mundo", flags = 67108866, mode = 438),
line 419 in "iowrappers.c"
opentd.openbd (Oxfffffffffffafal, 0x200000002, Oxlb6, Oxfffffffffffaeal, Ox2, Oxl, O0x0, 0x1100278f0)
at 0x900000000a38£40

TryOpen () at 0x900000000d40ef4

0

DoOpen () at 0x900000000d4055¢ leruntirne

OpenCmd () at 0x900000000d44e24
_x1fIOCmd () at 0x900000000d7bd60
ciaomundo (), line 12 in "hello.f"

hello fortran(), line 3 in "hello.f"

Use of HPC in Meteorology Workshop, ECMWF Nov2010 Slide 15 —w‘I.E‘ MWF

cooked: buffered stream events, part1: some summary info (excerpt)

'/slt gpfs/[...]/buffered stream.out': 5242906 bytes (5.000MB) total
'OpenDuration us' => '36"',

'ReadDuration us' => 2596, _
'"NumberWrites' => 5,
'WriteDuration us' => 4717,

'NumberSeeks' => 1,

'FwriteDuration us' => 5380,
'FreadDuration us' => 3751, 'NumberFSeeks' => 1,
'CloseDuration us' => '12', 'NumberFputs' => 1,

'NumberReads' => 1,
'MaximumFwriteSize' => 4194304, 'NumberFgets' => 1
- 14

'MaximumReadSize' => 1048576,
'NumberFprintf' => 1,
'"MaximumWriteSize' => 1048576,

'MaximumFreadSize' => 32, '‘NumberFwrites' => 3,
'NumberFreads' => 2

'MinimumWriteSize' => 26,

'MinimumFreadSize' => 13, 'BytesRead' => 1048576,

'"MinimumFwriteSize' => 13,

'BytesFread' => 45,

'MinimumReadSize' => 10485760,

'BytesFwritten' => 4194330,

'BytesWritten' => 4194330,

Use of HPC in Meteorology Workshop, ECMWF Nov2010 Slide 16 —w‘l.E‘ MWF

cooked: buffered stream events, part1: some detail info (excerpt)

'/slt gpfs/[...]/buffered stream.out': 5242906 bytes (5.000MB) total

'BufferedOpsChronological' => [

'léms:
'léms:
'léms:
'21ms:
'23ms:
'27ms:

'PosixOpsChronological’

fprintf:13 B written',

fputs:16 B written',

fwrite:4194304 B written',

fseek:fseek(.,0,0)"',

fgets:13 B read',

fread:32 B read'],

'loms:w:0x100000500

'18ms
'19ms

'20ms:
'21lms:
'23ms:

'24ms:

W

W

0x100000500
0x100000500

:0x100000500
:0x100000710
:0x100000710
:0x100000728

g /

.my fwrite()+0x20:1048576 written',

.my fwrite()+0x20:1048576

B

.my fwrite()+0x20:1048576 B written',
B written',
B

.my fwrite()+0x20:1048576 written',
.main()+0x170:26 B written',
.main()+0x170:seek(.,0,0)",

.main()+0x188:1048576 B read'],

“this” buffered I/O causes
“that” Posix I/O
[recall: setvbuf(1IMB)]

Use of HPC in Meteorology Workshop, ECMWF Nov2010 Slide 17 —w"‘E‘ :MWF

questions...

Use of HPC in Meteorology Workshop, ECMWF Nov2010 Slide 18 —w‘l.E‘ MWF

