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3D Variational Assimilation (3D-Var)

Algorithm

Minimize

J(x(ti)) = Jb + Jo

=
1
2
(x(ti)− xb(ti))

TB−1
0 (x(ti)− xb(ti))

+
1
2
(H(x(ti))− yo

i )
TR−1(H(x(ti))− yo

i ),

Antti Solonen, Idrissa S. Amour, Harri Auvinen, John Bardsley, Heikki Haario and Tuomo KauranneData Assimilation as Parallel Minimization



Data Assimilation Methods
A Variational Ensemble Kalman Filter

Computational Results
Cost functions and parallelism

Conclusions

3D Variational Assimilation (3D-Var)
4D Variational Assimilation (4D-Var)
The Extended Kalman Filter (EKF)
The Variational Kalman Filter (VKF)

3D Variational Assimilation (3D-Var)

Where

x(ti) is the analysis at time ti
xb(ti) is the background at time ti
yo

i is the vector of observations at time ti
B0 is the background error covariance matrix

R is the observation error covariance matrix

H is the nonlinear observation operator
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3D Variational Assimilation (3D-Var)

Properties

3D-Var is computed at a snapshot in time where all
observations are assumed contemporaneous

3D-Var does not take into account atmospheric dynamics,
by which

It does not depend on the weather model
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4D Variational Assimilation (4D-Var)

Algorithm

Minimize

J(x(t0)) = Jb + Jo

=
1
2
(x(t0)− xb(t0))

TB−1
0 (x(t0)− xb(t0))

+
1
2

n
∑

i=0

(H(M(ti , t0)(x(t0)))− yo
i )

TR−1(H(M(ti , t0)(x(t0)))− yo
i )
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4D Variational Assimilation (4D-Var)

Where

x(t0) is the analysis at the beginning of the assimilation
window

xb(t0) is the background at the beginning of the
assimilation window

B0 is the background error covariance matrix

R is the observation error covariance matrix

H is the nonlinear observation operator

M is the nonlinear weather model
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4D Variational Assimilation (4D-Var)

Properties

The model is assumed to be perfect

Model integrations are carried out forward in time with the
nonlinear model and the tangent linear model, and
backward in time with the corresponding adjoint model

Minimization is sequential

The weather model can run in parallel
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The Extended Kalman Filter (EKF)

Algorithm

Iterate in time

xf (ti) = M(ti , ti−1)(xa(ti−1))

Pf
i = MiPa(ti−1)MT

i + Q

K i = Pf (ti)HT
i (HiPf (ti)HT

i + R)−1

xa(ti) = xf (ti) + K i(yo
i − H(xf (ti)))

Pa(ti) = Pf (ti)− K iHiPf (ti)
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The Extended Kalman Filter (EKF)

Where

xf (ti) is the prediction at time ti
xa(ti) is the analysis at time ti
Pf (ti) is the prediction error covariance matrix at time ti
Pa(ti) is the analysis error covariance matrix at time ti
Q is the model error covariance matrix

K i is the Kalman gain matrix at time ti
R is the observation error covariance matrix

H is the nonlinear observation operator

Hi is the linearized observation operator at time ti
Mi is the linearized weather model at time ti
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The Extended Kalman Filter (EKF)

Properties

The model is not assumed to be perfect

Model integrations are carried out forward in time with the
nonlinear model for the state estimate and

Forward and backward in time with the tangent linear
model and the adjoint model, respectively, for updating the
prediction error covariance matrix

There is no minimization, just matrix products and
inversions

Computational cost of EKF is prohibitive, because Pf (ti)
and Pa(ti) are huge full matrices
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The Variational Kalman Filter (VKF)

Algorithm

Iterate in time

Step 0: Select an initial guess xa(t0) and
a covariance Pa(t0), and set i = 1.

Step 1: Compute the evolution model state estimate and the
prior covariance estimate:
(i) Compute xf (ti) = M(ti , ti−1)(xa(ti−1));
(ii) Minimize

(Pf (ti))−1 = (MiPa(ti−1)MT
i + Q)−1

by the LBFGS method - or CG, as in incremental 4DVar;
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The Variational Kalman Filter (VKF)

Algorithm

Step 2: Compute the Variational Kalman filter state estimate
and the posterior covariance estimate:
(i) Minimize
λ(xa(ti)|yo

i )

=(yo
i −Hixa(ti))TR−1(yo

i −Hixa(ti))
+(xf (ti)−xa(ti))T(Pf (ti))−1(xf (ti)−xa(ti))
by the LBFGS method - or CG, as in incremental 3DVar;
(ii) Store the result of the minimization as a VKF
estimate xa(ti);
(iii) Store the limited memory approximation to Pa(ti);

Step 3: Update t := t + 1 and return to Step 1.
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The Variational Kalman Filter (VKF)

Where

Step 1(ii) is carried out with an auxiliary minimization that
has a trivial solution but a random initial guess, and
thereby generates a non-trivial minimization sequence

Pf (ti) and Pa(ti) are kept in vector format, as a weighted
sum of a diagonal or sparse background B0, a diagonal
model error variance matrix Q and a low rank dynamical
component –Pf (ti) that

Is obtained from the Hessian update formula of the Limited
Memory BFGS iteration

The Kalman gain matrix is not needed
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The Variational Kalman Filter (VKF)

Properties

The model is not assumed to be perfect

Model integrations are carried out forward in time with the
nonlinear model for the state estimate and

Forward and backward in time for updating the prediction
error covariance matrix

There are no matrix inversions, just matrix products and
minimizations

Computational cost of VKF is similar to 4D-Var

Minimizations are sequantial

Accuracy of analyses similar to EKF
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Ensemble Kalman Filters (EnKF)

Properties

Ensemble Kalman Filters are generally simpler to program
than variational assimilation methods or EKF, because

EnKF codes are based on just the non-linear model and do
not require tangent linear or adjoint codes, but they

Tend to suffer from slow convergence and therefore
inaccurate analyses

Often underestimate analysis error covariance
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Ensemble Kalman Filters (EnKF)

Properties

Ensemble Kalman filters often base analysis error
covariance on bred vectors , i.e. the difference between
ensemble members and the background, or the ensemble
mean

One family of EnKF methods is based on perturbed
observations, while

Another family uses explicit linear transforms to build up
the ensemble
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EnKF Cost functions

Algorithm

Minimize

(Pf (ti))
−1 = (βB0 + (1 − β)

1
N

Xf (ti)Xf (ti)
T)−1

Algorithm

Minimize

ℓ(xa(ti)|yo
i )

= (yo
i −H(xa(ti)))

TR−1(yo
i −H(xa(ti)))

+
1
N

N
∑

j=1

(xf
j (ti)−xa(ti))

T(Pf (ti))
−1(xf

j (ti)−xa(ti))
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Ensemble 4DVar Data Assimilation (EDA)

Algorithm

Step 0: Select an initial guess xa(t0) and a covariance B0 and
set i = 1

Step 1: Compute perturbed observations and physics:
(i) Create an ensemble of observations by δkyo

i ∼ N(yo
i ,Ri);

Step 2: (i) Minimize , for each k
J(x(ti−1)) = Jb + Jo

= 1
2(x(t0)− xb(t0))TB−1

0 (x(t0)− xb(t0))
+1

2

∑n
i=0(H(M(ti , t0)(x(t0)))− (yo

j + δkyo
j ))

TR−1

×(H(M(ti , t0)(x(t0)))− (yo
j + δkyo

j )),
to obtain an ensemble of analyses from Xf (ti−1) to Xf (ti)
by the LBFGS method;

Antti Solonen, Idrissa S. Amour, Harri Auvinen, John Bardsley, Heikki Haario and Tuomo KauranneData Assimilation as Parallel Minimization



Data Assimilation Methods
A Variational Ensemble Kalman Filter

Computational Results
Cost functions and parallelism

Conclusions

Ensemble Kalman Filters (EnKF)
Ensemble 4DVar Data Assimilation (EDA)
The Variational Ensemble Kalman Filter (VEnKF)
The modified Local Ensemble Transform Kalman Filter (mLETKF)

Ensemble 4DVar Data Assimilation (EDA)

Algorithm

(ii) Compute the updated error covariance for
each time step in the assimilation window
(Pa(tj))−1 = (B0 + Xf (tj)Xf (tj)T)−1, j = ti−1 . . . ti
by the LBFGS method;

Step 3: (i) Minimize:
J(x(ti−1), . . . , x(ti)) = Jb + Jo + JM

= 1
2

∑ti
j=ti−1

(x(tj)− xb(tj))T(Pa(tj))−1(x(tj)− xb(tj))

+1
2

∑n
i=0(H(x(tj))− yo

j )
TR−1(H(x(tj))− yo

j )

+1
2

∑ti
j=ti−1

(x(tj)− M(tj , tj−1)(x(tj−1)))
TQ−1

×(x(tj)− M(tj , tj−1)(x(tj−1))),
Store the result as the EDA estimate xa(ti−1), . . . , xa(ti);
(ii) Update i := i + 1 and return to Step 1.
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The Variational Ensemble Kalman Filter (VEnKF)

Algorithm

Iterate in time

Step 0: Select a state xa(t0) and a covariance Pa(t0) and
set i = 1

Step 1: Evolve the state and the prior covariance estimate:
(i) Compute xf (ti) = M(ti , ti−1)(xa(ti−1));
(ii) Compute the ensemble forecast
Xf (ti) = M(ti , ti−1)(Xa(ti−1));
(iii) Minimize from a random initial guess
(Pf (ti))−1 = (βB0 + (1 − β) 1

N Xf (ti)Xf (ti)T + Qi)
−1

by the LBFGS method;
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The Variational Ensemble Kalman Filter (VEnKF)

Algorithm

Step 2: Compute the Variational Ensemble Kalman Filter
posterior state and covariance estimates:
(i) Minimize
ℓ(xa(ti)|yo

i )

= (yo
i −H(xa(ti)))TR−1(yo

i −H(xa(ti)))
+(xf (ti)−xa(ti))T(Pf (ti))−1(xf (ti)−xa(ti))
by the LBFGS method;

(ii) Store the result of the minimization as xa(ti);
(iii) Store the limited memory approximation to Pa(ti);
(iv) Generate a new ensemble Xa(ti) ∼ N(xa(ti),Pa(ti));

Step 3: Update i := i + 1 and return to Step 1.
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The Variational Ensemble Kalman Filter (VEnKF)

Properties

Follows the algorithmic structure of VKF

Bred vectors are centered on the mode , not the mean, of
the ensemble, as in Bayesian estimation

Like in VKF, a new ensemble and a new error covariance
matrix is generated at every observation time

No covariance leakage

No tangent linear or adjoint code

Asymptotically equivalent to VKF and therefore EKF when
ensemble size increases
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The modified Local Ensemble Transform Kalman Filter
(mLETKF)

Properties

The goal of mLETKF is to produce an Ensemble Kalman
filter that

Will not require a tangent linear or adjoint code

But will converge faster and thereby produce more
accurate analyses than EnKF methods in general

mLETKF is based on the 4D-LETKF method by Hunt,
Kostelic and Szunyogh

It incorporates certain features from VKF, in particular

It uses an analysis produced by a 3D-Var minimization with
LBFGS as the vector to base bred vectors on
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The modified Local Ensemble Transform Kalman Filter
(mLETKF)

Properties

The cost function to be minimized is a "dual 3D-Var" cost
function that optimizes the weight of each ensemble member in
the analysis, using the LBFGS method:

J(w) = β(n − 1)wTw + (1 − β)×

(yf − H(xa
k (ti))− wTY )TR−1(yf − H(xa

k (ti))− wTY )
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The modified Local Ensemble Transform Kalman Filter
(mLETKF)

Where

yf is the synthetic observation vector of the prior
yf = H(xf (ti))

w is the vector of the weights wk of each ensemble
member xa

k (ti)

Y is the matrix of synthetic observations of each ensemble
member yf

k = H(xa
k (ti))

N is the ensemble size

β is an empirical weight factor between 0 and 1

Antti Solonen, Idrissa S. Amour, Harri Auvinen, John Bardsley, Heikki Haario and Tuomo KauranneData Assimilation as Parallel Minimization



Data Assimilation Methods
A Variational Ensemble Kalman Filter

Computational Results
Cost functions and parallelism

Conclusions

Ensemble Kalman Filters (EnKF)
Ensemble 4DVar Data Assimilation (EDA)
The Variational Ensemble Kalman Filter (VEnKF)
The modified Local Ensemble Transform Kalman Filter (mLETKF)

The modified Local Ensemble Transform Kalman Filter
(mLETKF)

Algorithm

Iterate in time

Step 0: Initialize the background state xa(t0) and
the ensemble members xa

k (t0) for k = 1, . . . ,N
Step 1: Compute xf

k (ti) = M(xa
k (ti−1)) and

xf (ti) = M(xa(ti−1));
Step 2: Perturb the members xf

k (ti) and assemble them
in matrix Ψ;

Step 3: Compute the matrix X f (ti) : xf
k (ti) = xf (ti)−Ψk ;

Step 4: Compute the matrix
Y f (ti) : yf

k (ti) = H(xf
k (ti))− H(xf (ti));
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The modified Local Ensemble Transform Kalman Filter
(mLETKF)

Algorithm

Step 5: Minimize the dual 3D-Var cost function J(w)
using the LBFGS method.

Step 6: Compute the analysis xa(ti) = xf (ti) + wTX f (ti)
Step 7: Compute the background ensemble

X a(ti) : xa
k (ti) = xf

k (ti) + wTX f (ti)
Step 8: Update i := i + 1 and return to Step 1.
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The Lorenz ’95 Model

Properties

The Lorenz ’95 model is computationally light and
represents an analogue of mid-latitude atmospheric
dynamics.

The variables of the model can be thought of as
representing some atmospheric quantity on a single
latitude circle.

The model consists of a system of coupled ordinary
differential equations

∂ci

∂t
= ci−2ci−1 + ci−1ci+1 − ci + F ,

Grid points range between i = 1, 2, ..., k and F is a
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The Lorenz ’95 Model

Where
The domain is set to be cyclic, so that c−1 = ck−1, c0 = ck

and ck+1 = c1.

The parameter values used in the simulation of the system
were selected as follows:

the number of grid points k = 40,

the climatological standard deviation of the model state,
σclim ≈ 3.64,

the observation noise matrix R = 0.15σclimI and

prediction error covariance B0 = 0.5σclimI.
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The Lorenz ’95 Model

Properties

The system was assimilated using each of EKF, VKF and
VEnKF.

In order to compare the quality of analyses produced by all
three methods, we compute the following forecast statistics
at every 8th observation.

Take j ∈ I := {8i | i = 1, 2, . . . , 100} and define

[forcast _error j ]i =
1

40
‖M4i(xest

j )− xtrue
j+4i‖

2, i = 1, . . . , 20,
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Where

Mn denotes a forward integration of the model by n time
steps with the RK4 method.

This vector gives a measure of forecast accuracy given by
the respective filter estimate up to 80 time steps, or 10
days out.

This allows us to define the forecast skill vector

[forecast _skill ]i =
1

σclim

√

√

√

√

1
100

∑

j∈I

[forecast _error j ]i ,

i=1,. . . ,20,
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VEnKF, N = 5, ... , 300
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Skills of several VEnKF analyses, N=10
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mLETKF (N=150) vs. EKF
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3D-Var Cost function

Algorithm

Minimize

J(x(ti)) = Jb + Jo

=
1
2
(x(ti)− xb(ti))

TB−1
0 (x(ti)− xb(ti))

+
1
2
(H(x(ti))− yo

i )
TR−1(H(x(ti))− yo

i )
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4D-Var Cost function

Algorithm

Minimize

J(x(t0)) = Jb + Jo

=
1
2
(x(t0)− xb(t0))

TB−1
0 (x(t0)− xb(t0))

+
1
2

n
∑

i=0

(H(M(ti , t0)(x(t0)))− yo
i )

TR−1(H(M(ti , t0)(x(t0)))− yo
i )
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EnKF Cost functions

Algorithm

Minimize

(Pf (ti))
−1 = (βB0 + (1 − β)

1
N

Xf (ti)Xf (ti)
T)−1

Minimize

ℓ(xa(ti)|yo
i )

= (yo
i −H(xa(ti)))

TR−1(yo
i −H(xa(ti)))

+
1
N

N
∑

j=1

(xf
j (ti)−xa(ti))

T(Pf (ti))
−1(xf

j (ti)−xa(ti))
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EDA Cost functions - 1

Algorithm

Minimize, for each perturbation δkyo
j

J(x(ti−1)) = Jb + Jo

=
1
2
(x(t0)− xb(t0))

TB−1
0 (x(t0)− xb(t0))

+
1
2

n
∑

i=0

(H(M(ti , t0)(x(t0)))− (yo
j + δkyo

j ))
TR−1

× (H(M(ti , t0)(x(t0)))− (yo
j + δkyo

j ))
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EDA Cost functions - 2

Algorithm

Minimize

(Pa(tj))
−1 = (βB0 + (1 − β)

1
N

Xf (tj)Xf (tj)
T)−1, j = ti−1 . . . ti
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EDA Cost functions - 3

Algorithm

Minimize

J(x(ti−1)) = Jb + Jo + JM

=
1
2

ti
∑

j=ti−1

(x(tj)− xb(tj))
T(Pa(tj))

−1(x(tj)− xb(tj))

+
1
2

n
∑

i=0

(H(x(tj))− yo
j )

TR−1(H(x(tj))− yo
j )

+
1
2

ti
∑

j=ti−1

(x(tj)− M(tj , tj−1)(x(tj−1)))
TQ−1(x(t j)− M(t j , t j−1)(x(t j−1))),
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VEnKF Cost functions

Algorithm

Minimize

(Pf (ti))
−1 = (βB0 + (1 − β)

1
N

Xf (ti)Xf (ti)
T + Q)−1

Minimize

ℓ(xa(ti)|yo
i )

= (yo
i −H(xa(ti)))

TR−1(yo
i −H(xa(ti)))

+ (xf (ti)−xa(ti))
T(Pf (ti))

−1(xf (ti)−xa(ti))
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VKF Cost functions

Algorithm

Minimize

(Pf (ti))
−1 = (MiPa(ti−1)MT

i + Q)−1

Minimize

λ(xa(ti)|yo
i )

= (yo
i −Hixa(ti))

TR−1(yo
i −Hixa(ti))

+ (xf (ti)−xa(ti))
T(Pf (ti))

−1(xf (ti)−xa(ti))
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mLETKF Cost function

Algorithm

Minimize

J(w) = β(n − 1)wTw + (1 − β)×

(yf − H(xa
k (ti))− wTY )TR−1(yf − H(xa

k (ti))− wTY )
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Parallelism - 1

Ensemble methods generally use their ensemble as a
sample to approximate error covariance

But the most accurate methods, such as 3DVar, 4DVar and
VKF, are based on Krylov space approximation of the
covariance

Krylov space approximation is inherently serial, since a
Krylov space is defined by iterative application of an
operator on a vector:

Kk (A, b) = Span(b,Ab,A2b, . . . ,Akb)
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Parallelism

Parallelism - 2

EnKF variants can be embarrassingly parallel and evolve
its ensemble in parallel

But the most accurate of them, such as VEnKF and EDA,
still use a Krylov space method to approximate covariance:
LBFGS, CG or Lanczos

These methods are therefore inherently sequential, too

The best accuracy of analysis in L95 tests follows from
frequent and smooth updating of both the ensemble and
the error covariance estimate
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Updates to Ensemble and Error Covariance
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Conclusions - 1

VKF performs as well as EKF, with a computational cost
comparable to 4D-Var, on Lorentz ’95

VEnKF is asymptotically as good as EKF or VKF in
forecast skill, but can be run without an adjoint code

VEnKF attains equal quality to EKF only on large
ensemble sizes, but

VEnKF performs better than EnKF especially with small
ensemble size
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Conclusions - 2

The more frequent the inter-linked updates of the
ensemble and the error covariance estimate, the more
accurate the analysis

There appears to be a trade-off between the accuracy of
an assimilation method and its parallelism that needs to be
decided by experiments
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Thank You

Thank You!
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