
Fortran 2008: what’s in it for
high-performance computing

John Reid, ISO Fortran Convener,
JKR Associates and

Rutherford Appleton Laboratory

Fortran 2008 has been completed and
is about to be published.

The biggest change is the addition of
coarrays, summarized at RAPS 2008.

The aim of this talk is to remind you
about coarrays and explain other
additions that have been designed for
enhanced performance.

RAPS Workshop,
ECMWF, Reading,
3 November 2010.

Summary of coarray model

SPMD – Single Program, Multiple Data

Replicated to a number of images (probably as
executables)

Number of images fixed during execution

Each image has its own set of variables

Coarrays are like ordinary variables but have
second set of subscripts in [] for access
between images; have same bounds on all
images

Images mostly execute asynchronously

Programmer responsible for synchronization:
sync all, sync images, critical, lock

Intrinsics: this_image, num_images,
image_index

Full summary: WG5 N1824
(Google WG5 N1824)

Examples of coarray syntax

real :: r[*], s[0:*] ! Scalar coarrays
real,save :: x(n)[*] ! Array coarray
type(u),save :: u2(m,n)[np,*]
! Coarrays always have assumed
! cosize (equal to number of images)

real :: t ! Local
integer p, q, index(n) ! variables

:
t = s[p]
x(:) = x(:)[p]
! Reference without [] is to local object
x(:)[p] = x(:)
u2(i,j)%b(:) = u2(i,j)[p,q]%b(:)

Synchronization

With a few exceptions, the images execute
asynchronously. If syncs are needed, the user
supplies them explicitly.

Barrier on all images
sync all

Wait for others
sync images(image-set)

Limit execution to one image at a time
critical

:
end critical

Limit execution in a more flexible way
lock(lock_var[6])

p[6] = p[6] + 1
unlock(lock_var[6])

These are known as image control statements.

Execution segments

On an image, the sequence of statements
executed before the first image control statement
or between two of them is known as a segment.

The image control statements produce a partial
ordering of the segments: for any two segments,
one may precede the other or they may be
unordered.

Important rule: if a variable is defined in a
segment, it must not be referenced, defined, or
become undefined in a another segment unless
the segments are ordered.

Dynamic coarrays

Only dynamic form: the allocatable coarray.
real, allocatable :: a(:)[:], s[:,:]

:
allocate (a(n)[*], s[-1:p,0:*])

All images synchronize at an allocate or
deallocate statement so that they can all
perform their allocations and deallocations in the
same order. The bounds, cobounds, and length
parameters must not vary between images.

A coarray is not allowed to be a pointer.

Dummy arguments

A coarray may be associated as an actual
argument with a non-coarray dummy argument
(nothing special about this).

A coindexed object (with square brackets) may be
associated as an actual argument with a non-
corray dummy argument. Copy-in copy-out is to
be expected.

A dummy argument may be a coarray. The actual
argument must also be a coarray and there are
rules to ensure that copy-in copy-out is never
needed.

Structure components

A coarray may be of a derived type with
allocatable or pointer components.

Pointers must have targets in their own image:

q => z[i]%p ! Not allowed
allocate(z[i]%p) ! Not allowed

Provides a simple but powerful mechanism for
cases where the size varies from image to image,
avoiding loss of optimization.

Input/output

Default input (*) is available on image 1 only.

Default output (*) and error output are available
on every image. The files are separate, but their
records will be merged into a single stream or one
for the output files and one for the error files.

The open statement connects a file to a unit on
the executing image only.

Whether a file on one image is the same as a file
with the same name on another image is
processor dependent.

Planned extensions

The following features were part of the proposal
but have moved into a planned Technical Report
on ‘Enhanced Parallel Computing Facilities’:

1. The collective intrinsic subroutines.
2. Teams and features that require teams.
3. The notify and query statements.
4. File connected on more than one image,

unless default output or default error.

Advantages of coarrays

Easy to write code – the compiler looks
after the communication

References to local data are obvious as
such.

Easy to maintain code – more concise than
MPI and easy to see what is happening

Integrated with Fortran – type checking,
type conversion on assignment, ...

The compiler can optimize communication

Local optimizations still available

Does not make severe demands on the
compiler, e.g. for coherency.

A subset has been implemented by Cray for some
ten years. Coarrays have been added to the g95
compiler, are being added to gfort, and for Intel
‘are at the top of our development list’.

Enhanced module facilities (TR)

If a huge module is split into several modules:

Internal parts exposed

Any change leads to compilation cascade

Solution:

Submodules contain definitions of
procedures whose interfaces are in the
module itself

Users have access these procedures, but no
recompilation of user code needed if
submodule changes

Submodules have full access by host
association

Submodules can be compiled independently

Enhanced performance

contiguous attribute

Arrays need not be contiguous in Fortran,
e.g. the section a(1:n:2). Can lead to
performance loss for pointer and assumed-
shape arrays. Users can now promise not to
let this happen.

do concurrent
Iterations of the loop are independent.
Allows low-level optimizations such as
vectorization.

References

Reid, John (2010). Coarrays in the next Fortran
Standard. ISO/IEC/JTC1/SC22/ WG5 N1824, see
ftp://ftp.nag.co.uk/sc22wg5/N1801-N1850

Reid, John (2010). The new features of Fortran
2008. ISO/IEC/JTC1/SC22/ WG5 N1828, see
ftp://ftp.nag.co.uk/sc22wg5/N1801-N1850

WG5(2010). FDIS revision of the Fortran
Standard. ISO/IEC/JTC1/SC22/ WG5 N1830, see
ftp://ftp.nag.co.uk/sc22wg5/N1801-N1850

