

Fujitsu's Approach to Application Centric Petascale Computing

2nd Nov. 2010

Motoi Okuda Fujitsu Ltd.

Agenda

- Japanese Next-Generation Supercomputer, *K Computer*
 - Project Overview
 - Design Targets
 - System Overview
 - Development Status
- Technologies for Application Centric Petascale Computing
 - CPU
 - VISIMPACT
 - Tofu Interconnect
- Conclusion

Japanese Next-Generation Supercomputer, K Computer

- Project Overview
- Design Targets
- System Overview
- Development Status

Project Schedule

- Facilities construction has finished in May 2010
- System installation was started in Oct. 2010
- Partial system will start test-operation in April 2011
- Full system installation will be completed in middle of 2012
- Official operation will start by the end of 2012

	FY	2006	2007	2008	2009	2010	2011	2012
System		Conceptual de	isign De	etailed design	Prototype a Production	and evaluation, , installation, and a	adjustment	Tuning
Software (Grand Challenge software)	Next-Generation Integrated Nanoscience Simulation	11 -	Development, production, and evaluation				Verification	
	Next-Generation Integrated Simulation of Living Matter	Development, production, and evaluation				Verification		
Buildings	Computer building		Design Construction					
	Research building			Design	Construction			

K Computer

FUJITSU

- Target Performance of Next-Generation Supercomputer
 - 10 PFlops = 10^{16} Flops = " $\hat{\mathbf{r}}(\text{Kei})$ " Flops, " $\hat{\mathbf{r}}$ " means the "Gate".

Full system installation (CG image)

Applications of K computer

FUJITSU

TOP500 Performance Efficiency

(R_{Max} : LINPACK Performance / R_{Peak} : Peak Performance) ♦ : Fujitsu's user sites 500 SUPERCOMPUTER SITES November 2010 100% 90% 80% Performance Efficiency 70% 60% 50% 40% 30% **GPGPU** based system 20% 10% 0% 100 200 300 400 500 0 Rank

FUJITSU

14th Workshop on Use of High Performance Computing in Meteorology

Design Targets

- Toward Application Centric Petascale Computing -

High performance

- High peak performance
- High efficiency / High sustained performance
- High scalability
- Environmental efficiency
 - Low power consumption
 - Small footprint
- High productivity
 - Less burden to application implementation
 - High reliability and availability
 - Flexible and easy operation

K computer Specifications

	Cores/Node	8 cores (@2GHz)		
	Performance	128GFlops		
CPU	Architecture	SPARC V9 + HPC extension		
(SPARC64 VIIIfx)	Cache	L1(I/D) Cache : 32KB/32KB L2 Cache : 6MB		
	Power	58W (typ. 30 C)		
	Mem. bandwidth	64GB/s.		
Node	Configuration	1 CPU / Node		
NUCE	Memory capacity	16GB (2GB/core)		
System board(SB) No. of nodes		4 nodes /SB		
Rack	No. of SB	24 SBs/rack		
System	Nodes/system	> 80,000		

	Topology	6D Mesh/Torus		
	Performance	5GB/s. for each link		
Inter-	No. of link	10 links/ node		
connect	Additional feature	H/W barrier, reduction		
	Architecture	Routing chip structure (no outside switch box)		
Cooling	CPU, ICC*	Direct water cooling		
	Other parts	Air cooling		

System LINPACK 10 PFlops 1PB mem. 800 racks 80,000 CPUs 640,000 cores

* ICC : Interconnect Chip

64GB/s Memory band width

Kobe Facilities

FUjitsu

Exterior of buildings

Seismic isolation structure

<u>Air Handling Units</u> (Computer building 2F)

Cooling towers

On Oct. 1st, First 8 racks were installed at Kobe site, RIKEN Courtesy of RIKEN

14th Workshop on Use of High Performance Computing in Meteorology

Technologies for Application Centric Petascale Computing

- CPU
- VISIMPACT
- Interconnect

Technologies for Application Centric Petascale Computing

SPARC64[™] VIIIfx Processor

- Extended SPARC64TM VII architecture for HPC
 - HPC extension for HPC : HPC-ACE
 - •8 cores with 6MB Shared L2 cache
 - SIMD extension
 - 256 Floating point registers per core
 - Application access to cache management
 - •
 - Inter-core hardware synchronisation (barrier) for high efficient threading between core
- High performance per watt
 - 2 GHz clock, 128 GFlops
 - ◆ 58 Watts peak as design target
- Water cooling
 - Low current leakage of the CPU
 - Low power consumption and low failure rate of CPUs
- High reliable design
 - ◆ SPARC64[™] VIIIfx integrates specific logic circuits to detect and correct errors

Direct water cooling System Board

SIMD Extension (1)

- Performance improvement on Fujitsu test code set*
- We expect further performance improvement by compiler optimization

SIMD Extension (2)

- Performance improvement on NPB (class C) and HIMENO-BMT*
- We expect further NPB performance improvement by compiler optimization

equation solution using Jacobi iteration method. In this measurement, Grid-size M was used.

Floating Point Registers Extension (1)

- Performance improvement on Fujitsu test code set*
- No. of floating point registers : 32 → 256 /core

* : Fujitsu internal BMT set consist of 138 real application kernels

Floating Point Registers Extension (2)

- Performance improvement on NPB (class C) and HIMENO-BMT*
- We expect further NPB performance improvement by compiler optimization

* : HIMENO-BMT, Benchmark program which measures the speed of major loops to solve Poisson's equation solution using Jacobi iteration method. In this measurement, Grid-size M was used.

Application Access to Cache Management

FUITSU

Concept

- Hybrid execution model (MPI + Threading between core)
 - →Can improve parallel efficiency and reduce memory impact
 - →Can reduce the burden of program implementation over multi and many core CPU

Technologies

- Hardware barriers between cores, shared L2\$ and automatic parallel compiler
 - → High efficient threading : VISIMPCT (Integrated Multi-core Parallel ArChiTecture)

topology Characteristics	Cross bar	Fat-Tree/ Multi stage	Mesh / Torus
Performance	Best	Good	Average
Operability and Availability	Best	Good	Weak
Cost and Power consumption	Weak	Average	Good
Topology uniformity	Best	Average	Good
Scalability	Hundreds nodes Weak	Thousands nodes AveGood	>10,000 nodes Best
Example	Vector Parallel	x86 Cluster	Scalar Massive parallel

Which type of the topology can scale up over 100,000 node?

New Interconnect (1) : Tofu Interconnect

- Design targets
 - Scalabilities toward 100K nodes
 - High operability and usability
 - High performance
- Topology
 - User view/Application view : Logical 3D Torus (X, Y, Z)
 - Physical topology : 6D Torus / Mesh addressed by (x, y, z, a, b, c)
 - 10 links / node, 6 links for 3D torus and 4 redundant links

New Interconnect (2) : Tofu Interconnect

- Technology
 - Fast node to node communication : 5 GB/s x 2 (bi-directional) /link, 100GB/s. throughput /node
 - Integrated MPI support for collective operations and global hardware barrier
 - Switch less implementation

Each link : 5GB/s X 2 Throughput : 100GB/s/node

Conceptual Model

Why 6 dimensions?

- High Performance and Operability
 - ◆ Low hop-count (average hop count is about ½ of conventional 3D torus)
 - The 3D Torus/Mesh view is always provided to an application even when meshes are divided into arbitrary sizes
 - No interference between jobs
- Fault tolerance
 - 12 possible alternate paths are used to bypass faulty nodes
 - Redundant node can be assigned preserving the torus topology

Sustain torus configuration

Low hop-count & keep torus

with job isolation

Multi-core CPU Fujitsu Lab. Europe Interconnect **Fujitsu Japan** *: Fujitsu Labs Europe, located in London 27

Open Petascale Libraries Network

- How to reduce the burden to application implementation over multi/many core system, i.e. How to reduce the burden of the two stage parallelization?
- Collaborative R&D project for Mathematical Libraries just started
 - Target system
 - Multi-core CPU based MPP type system
 - Hybrid execution model (MPI + threading by OpenMP/automatic parallelization)
 - Cooperation and collaboration with computer science, application and computational engineering communities on a global basis, coordinate by FLE*

Open-source implementation

- Sharing information and software
- Results of this activity will be open to HPC society

Open Petascale Libraries Hybrid Programming Model National Labs. Universities (MPI + Threading) **Open Petascale Libraries Network ISVs**

FUÏTSU

openpetas

Research

Projects

Conclusion

Toward Application Centric Petascale Computing

- Installation of RIKEN's K Computer has started and the system is targeting
 - High performance
 - Environmental efficiency
 - High productivity
- Leading edge technologies are applied to K computer
 - New CPU
 - Innovative interconnect
 - Advanced packaging
 - Open Petascale Libraries
- Those technologies shall be enhanced and applied to Fujitsu's future commercial supercomputer

FUITSU

FUJTSU

shaping tomorrow with you