Using GPUs to Run Weather
Prediction Models

Mark Govett
Tom Henderson, Jacques Middlecoff,
Paul Madden, Jim Rosinski

v November 2010

GPU / Multi-core Technology

e NVIDIA: Fermi chip first to support HPC
— Formed partnerships with Cray, IBM on HPC systems
— #1, #3 systems on TOP500 (Fermi, China)

e AMD/ATI: Primarily graphics currently
— #7 system on TOP500 (AMD-Radeon, China)
— Fusion chip in 2011 (5 TeraFlops)

GPU: 2008
933Gflops
150w

< 1.2 TeraFlops 250 1. GPU

i@l < 8xincrease in

200 4

150 4

W < 2x increase in
El memory bandwidth
" .~., <~ Error correcting
5 memory

CPU:2008
~45 Gflops
oey 160W

Performance [Gilops]

100 +

T = 'l'l o T T T T T T T T
1998 1999 2000 2001 2002 2003 2004 2008 20086

V November 2010

CPU — GPU Comparison

CHIP CPU GPU GPU
TYPE NELEE NVIDIA Tesla NVIDIA Fermi

Cores
Parallelism Medium Grain Fine Grain Fine Grain
Performance
Single Precision 85 GFlops 933 GFlops 1040 GFlops
Double 60 GFlops 500 GFlops
Precision
Power 90-130W 150W 220W

Consumption

Transistors 730 million 1.4 bilion 3.0 billion

v November 2010

CPU — GPU Comparison

e CPUs focus on per-core performance

— Chip real estate devoted to cache, speculative
logic

— 4 cores

e GPUs focus on parallel execution
— Fermi: 512 cores, 16 SM GPU: Fermi (2010)

CPU: Nahalem (2009)

Memory_Controlle_[gHoral

November 2010

Next Generation Weather Models

Models being designed for global cloud resolving scales (3-4km)

Requires PetaFlop Computers

DOE Jaguar System
2.3 PetaFlops | —
250,000 CPUs

284 cabinets

7-10 MW power

~ $100 million
Reliability in hours

Equivalent GPU System

- 2.3 PetaFlop

- 2000 Fermi GPUs

- 20 cabinets

- 1.0 MW power

- ~S10 million

- Reliability in weeks

Large CPU systems (>100 thousand cores) are unrealistic for

operational weather forecasting
* Power, cooling, reliability, cost
e Application scaling

V November 2010

e -\-r"!

Valmont
Power Plant
~200 MegaWatts
Boulder, CO

Application Performance

GPU Multi-layer Memory

GPU Device

e 20-50x is possible on highly
scalable codes

. . . oy s Block (0, 0 Block (1, 0
e Efficient use of memory is critical ock(0,0) ock(%,0)

to good performance

— 1-2 cycles to access shared memory
— Hundreds of cycles to access global * * * *

memo ry Thread (0,0) | Thread (1, 0) Thread (0, 0) | Thread (1, 0)

Shared 16K 64K CPU Host
Constant 16K 64K
Global 1-2GB 4-6GB

v November 2010

Programming GPUs

e Challenging
* Languages
— CUDA-C: available from NVIDIA

— OpenCL: industry standard (NVIDIA, AMD, Apple, etc)
— Fortran: PGI, CAPS, F2C-ACC compilers

* Fine grain (loop level) parallelism
— Code modifications needed to get good performance
— Code restructuring may also be required

V November 2010

Execution Flow-control
(Accelerator Approach)

_— - -

— Copy between CPU and GPU is non- = L
. . |
trIVIal rl r2 r3 14

routine
e Performance benefits can be overshadowed

by the copy

e WRF demonstrated ~6x for one subroutine
including data transfers (Michalakes, 2009)

. — ~10x without data transfers

v November 2010

Execution Flow-control
(run everything on GPUs)

” T _)M cPu
—-)W I GPU

— Eliminates copy every model time step

— CPU-GPU copies only needed for input /output, inter-
process communications

— JMA: ASUCA model, reported a 70x performance
improvement
e Rewrote the code in CUDA

v November 2010

Non-hydrostatic Icosahedral Model (NIM)
(Lee, MacDonald)

— Global Weather Forecast Model

— Under development at NOAA Ear,
Research Laboratory

e Dynamics complete, physics int
— Non-hydrostatic
— Uniform, hexagonal-based, icd
— Plan to run tests at 3.5km glob

e Cloud resolving scale
e Model validation using AquaPlanet

G OB AINSYSTE M SOV 516N

V November 2010

Code Parallelization (2009)

 Developed the Fortran-to-CUDA compiler (F2C-ACC)

— Commercial compilers were not available in 2008

— Converts Fortran 90 into C or CUDA-C
— Some hand tuning was necessary

e Parallelized NIM model dynamics

e Tesla Chip, Intel Harpertown (2008)
e Result for a single GPU

Input

Single GPU
communications

Output

e Communications only needed for I/0O

NIM Dynamics (version 160)

Resolution | Horapts | Harpertown | Tesle

G4-480km 2562 2.13 0.079 (26.9) 1.45
G5-240km 10242 8.81 0.262 (33.5) 5.38

0.054 (26.7)
0.205 (26.2)

V November 2010

Model Parallelization (2010)

Updated NIM Model Parallelization

— Active model development GPU to GPU

communications

— Code optimizations on-going

Run with Fermi

Evaluate Fortran GPU compilers

— Use F2C results as benchmark

Run on Multiple GPUs

— Modified F2C-ACC GPU compiler

— Uses MPI-based Scalable Modeling System (SMS)
— Testing on 10 Tesla GPUs

V November 2010

Fortran GPU Compilers

e General Features
— Do not support all Fortran language constructs
— Converts Fortran into CUDA for further compilation

 CAPS—HMPP

— Extensive set of parallelization directives to guide compiler analysis
and optimization

— Optionally generates OpenCL

e PGl
— ACCELERATOR - directive-based accelerator

— CUDA Fortran — Fortran + language extensions to support Kernel calls,
GPU memory, etc

e F2C-ACC

— Developed at NOAA for our models
— Requires hand tuning for optimal performance

V November 2010

CAPS-HMPP Compiler

* Multi-core Fortran Shmpp o

=32 15 gnucore
. . o portable programming
e Extensive set of directives
E:neﬁfrfgom . Rgpidly develop GPU accelerated applications
_ P a ra | | e I | Z at | 0 n Syif:%‘:ieh:?;e“ with a source fo source tool

reducing your

development efforts

— Optimization
e A minimal set of directives to
get a working code

— Compiler will do what it safely can
and provide diagnostic
information

e OQOur evaluation began ~4
months ago

— Good documentation & support

V November 2010

PGI Directives

e Directives are placed directly in the code body

— Define an accelerated region
 I1Sacc region([copy | copyout | copyin]) begin
 ISacc region end

— User defines loop level parallelism

e ISacc do [vector | parallel | unroll]

vector = thread, parallel =threadblock

— Define data resident on the GPU
* 1Sacc data region (copy | copyin | copyout)

V November 2010

F2C-ACC Compiler

 Developed at NOAA to support our Fortran codes
e Parsing

— All standard language features for Fortran 77, 90, 95
e Code Translation (added as needed)

— if, do, assignments, declarations, modules, include files

* Does not support I/O, common blocks, derived types

— Handles 98% of code translations (serial & parallel)

» Support for thread optimizations and GPU memory types needed

F2C-ACC ERROR: “fctprs.f90” line 23:10” Language construct not
currently supported

V November 2010

Code Generation

e Uses Macros to resolve array references

real deldp (nvl, npp,npn) : __device__ float deldp [nvI*npp*npn];

deldp (ivl,isn,ipn) = 1.0 deldp[FTNREF3D(ivl,isn,ipn,nvl,npp,1,1,2)] = 1.0;

e Generates Fortran-to-C driver routine

— cudaMemcpy for each variable (intent IN, OUT, INOUT)
— Block and grid declarations

— Call to GPU kernel routines

e Generates Kernel Routines for each ACCSREGION BEGIN / END
pair
— Declares each variable used in the kernel

@— Consistency checks between kernels (proper intent)

V November 2010

>4

F2C-ACC Directives

e Directives are required for kernel generation
— Supports multiple kernels in a routine

e Define Accelerated regions

ACCSREGION (< Threads>, < Blocks >) BEGIN
ACCSREGION END

e Define loop level parallelism

ACCsDO VECTOR(dim) - thread level parallelism
ACCsDO PARALLEL (dim) - block level parallelism

e Data movement
ACCSREGION (<Threads>, <Blocks>I[,<DATA>]) BEGIN

V November 2010

Achieving High Performance
#1 Optimize the CPU code

— Modifications often help the GPU performance too

e Performance Profiling identified a matrix solver that accounted for
40 percent of the runtime
— Called 150,000 per timestep (G4), 3.6 million for 3.5KM

— Replaced BLAS routine with hand-coded solution resulting in a 3x
performance increase for the entire model

— Loop unrolling improved overall performance by another 40 percent
» Developed test kernels to study CPU & GPU performance

— Organize arrays so the inner dimension will be used for
thread calculations

* Improve loads & stores from GPU global memory

— Re-order calculations to improve data reuse

V November 2010

Achieving High Performance

#2 Optimize GPU Kernels (major issues)

— Use the performance profiler to identify
bottlenecks

* Occupancy

— Largely determined by registers and shared memory usage

e Coalesced Loads and Stores

— Data alignment with adjacent threads can yield big
performance gains

» Eg. Threading on “k”, for” a(k,l,j)”
e Use Shared Memory where there is data reuse

— Must be at least > 3 to have benefit (2 loads & stores are
needed to move data from global to local memory

V November 2010

Run Times for Single GPU vs. Single
Nehalem CPU Core (2562 points)

Results for F2C-ACC generated code, no optimizations
Harpertown F2C-ACC CUDA-C Nahalem CPU F2C-ACC CUDA-C

CPU Time Tesla GPU Time Time Fermi GPU Time
Total 190.5 - 106.6 --
vdmints 89.2 4.28 (20.8) 50.6 2.66 (19.0)
vdmintv 38.8 2.48 (15.6) 23.3 1.02 (22.8)
flux 16.0 0.75(21.3) 10.4 0.35(29.7)
vdn 12.6 0.56 (22.5) 4.6 0.56 (8.2)
diag 4.0 0.09 (44.4) 4.0 0.09 (44.4)
force 5.3 0.11 (48.2) 3.4 0.11 (30.9)
trisol 8.6 1.45 (5.8) 2.0 1.28 (1.5)
input/init 1.0 1.0 1.0 1.0
output 0.2 0.2 0.2

v November 2010

GPU Compilers

e Reliance on NVIDIA, AMD compilers

— Register allocation inefficient
 Fermi Cache helps offload register pressure

— data re-use limiting performance
— “normal” optimizations not done
— Requires code changes to achieve good results

NVIDIA

v November 2010

e A doubling of model resolution implies:
* 4xincrease in horizontal points
e 2xincrease in model time step
* 4xincrease in memory

e GPU memory is the limiting factor
e Number of horizontal points per GPU is 10K currently.

I I A O I N

resolution 480KM 240KM 120KM 60KM 30 KM 15 KM 7 KM 3.5KM
horizontal 2.5K 10K 40K 160K 640K 2560K 10,000K 40,000K
points

memory .25GB 1GB 4GB 16GB 64GB

tesla 26x 33x

fermi 26x 26x ??

GPUs 1 1 4 16 64 256 1000 4000

November 2010 (ERL

Communication Bottleneck

e Application scaling will be limited by the fraction of time
spent doing inter-process communications

CPU . Input / output time GPU time . Inter-process communications

i

e CPU communications time is about 5% of compute time

e Using GPUs, if we get a ~20x speedup in computation time,
communications now becomes 50 percent of the runtime.

- I H H B B B

e Will need to reduce communications time

— Minimize data volume and frequency

— Overlap communications with computations

* Move inter-process communications from just before needed to just after
data is computed

V November 2010

Conclusion

 HPC transitions about every decade
— Vector -> MPP -> COTS Clusters -> GPUs
e 20-50x cost savings: hardware, power, infrastructure

* Tools and compilers are not mature

— CUDA register allocation policies can restrict performance

— Commercial Fortran compilers need to do more analysis

e Similar to early vector compilers, which required lots of user Fermi
involvement Tesla —

* GPU Roadmaps look strong

e Focus on power, performance

 Ready for operations?

Periormance (Gflops]

e Useful for research?
@ N ber 2010

	Using GPUs to Run Weather Prediction Models
	GPU / Multi-core Technology
	CPU – GPU Comparison
	CPU – GPU Comparison
	Next Generation Weather Models
	Application Performance
	Programming GPUs
	Execution Flow-control�(Accelerator Approach)
	Execution Flow-control�(run everything on GPUs)
	Non-hydrostatic Icosahedral Model (NIM)�(Lee, MacDonald)
	Code Parallelization (2009)
	Model Parallelization (2010)
	Fortran GPU Compilers
	CAPS-HMPP Compiler
	PGI Directives
	F2C-ACC Compiler
	Code Generation
	F2C-ACC Directives
	Achieving High Performance
	Achieving High Performance
	Run Times for Single GPU vs. Single Nehalem CPU Core (2562 points)
	GPU Compilers
	Parallel Performance
	Communication Bottleneck
	Conclusion

