

HPC at the Canadian Meteorological Centre

Luc Corbeil

Chief, Supercomputer, Systems and Storage

Bertrand Denis

Chief, Numerical Weather Prediction Section

Fourteenth Workshop on Use of High Performance Computing in Meteorology 1 – 5 November 2010, ECMWF, Reading, UK

Outline

- Part one (Luc)
 - CMC introduction
 - Facility fun
 - IT resources
 - Front-ends
 - Supercomputer
 - Storage
- Part two (Bertrand)
 - Historical HPC evolution and forecast quality
 - Current modeling systems
 - HPC utilization
 - Future modeling systems

Canadian Meteorological Centre

Meteorological Research Division: Data Assimilation, Modeling, Cloud Physics

CMC Development Division: Data Assimilation, Numerical Weather Prediction, Weather Elements, Scientific Applications

IT Infrastructure (CIOB): Supercomputer, National Telecommunications, Network, User support

CMC Operations: Analysis &Prognosis, Env. Emergency Response, Air Quality, Implementation and Operational Services

Simulating Earthquake

- The work involves:
 - Removing existing asphalt, gravel and insulation
 - Drill thousands of small holes in the top concrete slab
 - Build new rod structure using the holes
 - Add concrete slab on top of the existing
 - Insulation, gravel and asphalt
- Lots of limitations for the contractor
 - Type and weight of equipment
 - Threshold for vibration
 - Testing prior to key phases

Simulating Earthquake (2)

Mitigation

- Lots and lots of discussions
 - With Vendors
 - With other sites
 - With Facilities/Contractor.
- Close monitoring, installation of seismic detectors
- Pray for RAID arrays, tape drives and everything else!!!

Simulating Earthquake (3)

Outcome

- Vibration not an issue at all
 - Many HD failures in a single cabinet, but after drilling was over.
- Drilling in cracked concrete can lead to water leaks

Front-end renewal

- O3000 SGI servers retired
- Replaced by commodity clusters and storage
- Found good/green usage for legacy hardware

CNFS: Sitewide Storage

- CNFS (Clustered NFS)
 - scale-out HA NFS built on top of Linux GPFS servers
 - SLES support from Novell, then transferred to IBM
 - IP failover
 - Can have both GPFS and NFS clients
 - Performance: up to 500MB/s for reads and writes
 - 10GigE network, DCS9900 SATA storage, 8Gb FC
 - Acts like a scalable NAS

CNFS: Sitewide Storage

Supercomputer: IBM eServer pSeries p5 575 1.9GHz Saiph/Zeta

- IBM p575+
 - Two clusters of 131 and 133 compute nodes
 - 8 dual-core Power5+ 1.9 GHz/node
 - 16 physical processors + SMT enable
 - 64 GB RAM
 - Total 4224 PEs, 17 TB/RAM
 - 2 head nodes, 6 I/O nodes/cluster (NSD)
 - 64 TB shared disk (raw), 55 TB accessible
 - Federation Switch
 - Electricity: ~600 kW
 - One of the last mission critical p5+ operational cluster
 - Until February 29 2012.

Supercomputer Usage

Environnement Canada

CFS: Archiving

Outline (recall)

- Part one (Luc)
 - CMC introduction
- v, let's see how Facility fun
 - IT resources
- Front-en We take advantage
 Supercor dry) IT resources
 - - Storage
- Part two (Bertrand)
 - Historical HPC evolution and forecast quality
 - Current modeling systems
 - HPC utilization
 - Future modeling systems

Historical HPC evolution and forecast quality at CMC

Spatial and time scales covered by the NWP models run on the CMC HPC system

CMC-MRD unified multi-scale model : GEM

GEM= Global Environmental Model

- Global constant resolution (regular lat-lon grid) (GEM-Global)
 - Medium-range deterministic forecasts (33 km)
 - Seasonal forecasts / Climate simulations (100 -200 km)
 - Medium-range EPS (100 km)

CMC-MRD unified multi-scale model : GEM

GEM= Global Environmental Model

- Global constant resolution (regular lat-lon grid) (GEM-Global)
 - Medium-range deterministic forecasts (33 km)
 - Seasonal forecasts / Climate simulations (100 200 km)
 - Medium-range EPS (100 km)

- Global variable resolution (stretched grid)
 - Regional climate simulations (55 km)
 - Short-range deterministic forecasts (GEM-Regional 15 km)
 NB: Replaced by a LAM 15 km 10 days ago

CMC-MRD unified multi-scale model: GEM

GEM= Global Environmental Model

- Global constant resolution (regular lat-lon grid) (GEM-Global)
 - Medium-range deterministic forecasts (33 km)
 - Seasonal forecasts / Climate simulations (100 200 km)
 - Medium-range EPS (100 km)

- Global variable resolution (stretched grid)
 - Regional climate simulations (55 km)
 - Short-range deterministic forecasts (GEM-Regional 15 km)
 NB: Replaced by a LAM 15 km two weeks ago

- Limited-area (LAM) constant resolution lat-lon grid
 - Regional Weather & AQ forecasts (15 km)
 - Short-range high-res. deterministic forecasts (GEM-LAM 2.5/1.0 km)

'ana

- Urban emergency response (250 m)
- Regional climate simulations (15-55 km)
- Short-range regional EPS (33 km)

Weather & Seasonal Forecasting:

- Medium range (5-day) forecast Global 33 km resolution grid
- 48/54-hour forecast Regional 15 km resolution grid
- 24-hour forecast
 - 4 Limited-Area 2.5 km resolution grids
 - + 1 km resolution grid over the 2010 winter Olympics
- Extended-range (16-day) ensemble forecast

20 members 100 km resolution

- Seasonal (4-month) ensemble forecast 40 members 200-500 km resolution

Global forecast

Weather & Seasonal Forecasting:

- Medium range (5-day) forecast Global 33 km resolution grid
- 48/54-hour forecast Regional LAM-15 km resolution grid
- 24-hour forecast
 - 4 Limited-Area 2.5 km resolution grids
 - + 1 km resolution grid over the 2010 winter Olympics
- Extended-range (16-day) ensemble forecast

20 members 100 km resolution

- Seasonal (4-month) ensemble forecast 40 members 200-500 km resolution

15 km resolution forecast of cloud fraction

Weather & Seasonal Forecasting:

- Medium range (5-day) forecast Global 33 km resolution grid
- 48/54-hour forecast Regional LAM-15 km resolution grid
- 24-hour forecast 4 Limited-Area 2.5 km resolution grids
 - + 1 km resolution grid over the 2010 winter Olympics
- Extended-range (16-day) ensemble forecast

20 members 100 km resolution

- Seasonal (4-month) ensemble forecast 40 members 200-500 km resolution

Four grids with 2.5 km resolution

Environ Canada Environnement Canada

Weather & Seasonal Forecasting:

- Medium range (5-day) forecast Global 33 km resolution grid
- 48/54-hour forecast Regional LAM-15 km resolution grid
- 24-hour forecast
 - 4 Limited-Area 2.5 km resolution grids
 - + 1 km resolution grid over the 2010 winter Olympics
- Extended-range (16-day) ensemble forecast

20 members 100 km resolution

- Seasonal (4-month) ensemble forecast 40 members 200-500 km resolution

Special demand: 2010 Vancouver Winter Olympics

A 1-km resolution LAM prediction system was run twice daily to support Olympics Forecaster Team

Special demand: 2010 Vancouver Winter Olympics

Our 1-km LAM was really appreciated by the Olympic Forecasters

- > thanks to our strong numerical model and to the available HPC power

"... help build our conceptual model for strong outflow and gave us a heads up to look for gravity wave turbulence"

"GEM-LAM-1km is able to resolve flow around the Whistler Mt"

Weather & Seasonal Forecasting:

- Medium range (7-day) forecast Global 33 km resolution grid
- 48/54-hour forecast Regional LAM-15 km resolution grid
- 24-hour forecast
 - 4 Limited-Area 2.5 km resolution grids
 - + 1 km resolution grid over the 2010 winter Olympics
- Extended-range (16-day) ensemble forecast (twice daily) 20 members 100 km resolution
- Seasonal (4-month) ensemble forecast 40 members 200-500 km resolution

Ensemble forecast

Weather & Seasonal Forecasting:

- Medium range (7-day) forecast Global 33 km resolution grid
- 48/54-hour forecast Regional LAM-15 km resolution grid
- 24-hour forecast
 - 4 Limited-Area 2.5 km resolution grids
 - + 1 km resolution grid over the 2010 winter Olympics
- Extended-range (16-day) ensemble forecast

20 members 100 km resolution

- Seasonal (4-month) ensemble forecast 40 members 200-500 km resolution

Seasonal Forecast

- Wave Forecasting:

 Spectral Wave Model (WAM) 48-h regional / 120-global forecasts of wave height and period, swell height and period, and wave and swell directions;

> Regions: Pacific, Atlantic and Canadiar Great Lakes

- Air Quality Forecasting
 - GEM-MACH : in-line chemical and weather model

48-hour forecasts of tropospheric ozone, NO₂, PM2.5 and PM10 for North America

Global WAM – Atlantic domain

- Wave Forecasting:

 Spectral Wave Model (WAM)
 48-hour forecasts of wave height and period, swell height and period, and wave and swell directions;

3 Regions: Pacific, Atlantic and Canadian Great Lakes

Air Quality Forecasting

 GEM-MACH : in-line chemical and weather model

48-hour forecasts of tropospheric ozone, NO₂, PM2.5 and PM10 for North America

GEM-MACH

- Environmental Emergency applications – dispersion modeling
 - Nuclear and volcanic ash
 - Release of hazardous chemical
 - National security issues

CMC NWP systems – computational load -

Canada

t Environnement Canada

CMC NWP systems – computational load -

CMC NWP systems – computational load -

A few words about Climate Modeling..

- Coupled Global Climate Model
 - Spectral T63L35, dynamics 192x96, physics 128x64, top 1mb
 - soon T127L35, dynamics 384x192, physics 256x128
- Canadian Centre for Climate modeling and analysis (CCCma)
 - R&D group based in Victoria (BC), 5 000 km away from CMC
- Currently running IPCC runs:
 - 30 concurrent runs
 - ~ 50% of the available HPC at CMC (last 6 months)
 - 3 Petabytes on tapes (last 12 months)

Near future

- Experimental systems becoming operational
 - Gulf of St-Lawrence coupled forecast system (late 2010)
 - Regional EPS (21 mem; 33 km) (2011)
 - At least one high-res LAM 2.5 km window
- Regional (continental) 15 km -> 10 km (2011) => 1440 proc cores
- Global EPS 100 km -> 66 km (2011) ; possibly extended to 30 days
- Global 33 km
 - 2 x more assimilated data (2011)
 - 33 km -> 25 km (2012)
- Atmos-Ocean coupled seasonal forecast system (2011)

Future

- Yin-Yang grid
 - Good scaling expected (many 10,000 proc cores)
 - See Vivian Lee's talk later today

- Icosahedral grid
 - Scaling even better than Yin-Yang grid

Thank you !

For more info:

Bertrand.Denis@ec.gc.ca

Luc.Corbeil@ec.gc.ca

Environnement Canada

coment

