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Direct 4D-Var assimilation of NCEP Stage IV radar and gaugeipitation data at ECMWF CECMWF

Abstract

Direct four-dimensional variational (4D-Var) data assation of NCEP Stage IV radar and gauge precipita-
tion observations over the Eastern USA have been developkated in ECMWF'’s Integrated Forecasting
System. This is the natural extension of earlier work usihgastep 1D+4D-Var approach. Major aspects
of the implementation are described and discussed in tisrpdn particular, it is found that assimilating
6-hour precipitation accumulations instead of the oribhmairly data substantially improves the behaviour
of 4D-Var, especially as regards the validity of the tangargar assumption.

The comparison of background and analysis precipitatigpadares demonstrate that most of the infor-
mation contained in the new precipitation observationg@perly assimilated. Experiments run over the
periods April-May and September-October 2009 also showldical precipitation forecasts become signif-
icantly better for ranges up to 12 hours, which indicates$ éhgenuine precipitation analysis can now be
obtained over the Eastern USA. Geopotential, temperatwisture and wind forecast scores are generally
neutral or slightly positive for all regions of the globe aatdall ranges, which is consistent with previous
1D+4D-Var results.

The most crucial issue that remains unsolved is the tredtaieon-precipitating model background occur-

rences because of the corresponding absence of sensititfitg linearized moist physics. For the moment,
only points where both model background and observatiomsaany are assimilated. Operational imple-

mentation using American data is planned in 2011 and one@paa that new networks of radars (and maybe
rain-gauges) can be added in the 4D-Var assimilation psdcase future.

1 Introduction

Atmospheric moist processes which govern the life cycldaifids and precipitation and the Earth’s hydrolog-
ical cycle, currently remain one of the most uncertain congms of any numerical weather prediction (NWP)
model. The main reason for this lies in the extreme complediversity, strong natural variability and lack of

predictability of

(1) moist processes themselves (condensation/evapuoydit@erogeneous/homogeneous nucleation, collec-
tion/aggregation, phase changes,...),

(2) the characteristics of particles involved (dropletsvafious sizes, ice aggregates with various shapes,
sizes, densities and fall velocities),

(3) the concentration distributions of hydrometeors.

At the same time, global-scale observations that are relytiavailable from satellite imagers, surface space-
borne radars/lidars, ground-based radars and rain-gatgerks can only provide partial and generally tem-
porally and spatially integrated information about midrggical processes. Besides, our knowledge on clouds
and precipitation from field experiments is restricted tedfic meteorological situations and regions of the
globe. As a result of all these uncertainties, current patarizations of moist processes used in operational
NWP models remain simplified representations of the trudised on the explicit prediction of a few categories
of particles (e.g. cloud liquid water, cloud ice, snow anthyand with a few microphysical processes ac-
counted for. As a consequence, the forecast skill for cl@mds precipitation is often much poorer than the
skill for temperature, wind or water vapour, even after ajlsirday of forecast. This is particularly true and
systematic over certain regions of the globe such as Wegta?diuring the summer monsoon (Agusti-Panareda
et al. 2010) or in specific meteorological situations such as tlohseacterized by unorganized convection or
trade-wind stratocumuli.

Another significant source of inaccuracy in NWP outputs iliethe uncertainty in the three-dimensional (3D)
atmospheric states that are provided as initial condittorferecast models. In the last four decades, various
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data assimilation (DA) techniques were developed and ss@déy used in an operational context to constrain
the initial model state towards a set of reliable observatitat are available within a few hours of the analysis
time. In the variational DA approach (e.g. Le Dimet and Tedagl 1986), this optimal state (analysi$ is
obtained by searching for the model state that best fits albbservations and some a priori fmckgroungl
information from the model, in a least-square sense. Teatyer, wind and surface pressure information from
radiosondes, synoptic stations and satellites which hemebeen operationally assimilated for several decades,
were followed by water vapour measurements and only recbptbbservations affected by clouds and precipi-
tation. The assimilation of observations that are stroafflycted by moist atmospheric processes has turned out
to be extremely challenging for two main reasons. Firstgqadee observation operators had to be developed to
link the observable quantity (e.g. a radiance or a radaratefiy) with the assimilation state vector which typi-
cally consists of temperature, specific humidity and wirafifgs and surface pressure. Such an operator would
usually combine a parameterization of moist processes aadiative transfer model. Secondly, since linear-
ity is one of the main underlying assumptions of the now widead variational DA methods (such as 3D or
4D-Var), the strong non-linearities which often charaeteatmospheric moist processes have to be overcome
through the design of purpose-built sets of moist physiashmeterizations for both convective (subgrid-scale)
and stratiform (large-scale) processes. Indeed, any meaization meant to be employed in the minimization
of the variational cost function has to be differentiablepsth, computationally efficient and at the same time
as realistic as possible (e.g. Mahfouf 1999; Janislahal. 1999), a hard-to-reach compromise.

These issues started to be successfully (but still paftiatidressed during the last decade, so that operational
3D or 4D-Var systems are now able to assimilate polar-orpisatellite all-skies microwave radiances from
SSM/I, AMSR-E and TMI, for instance (see Appendix 1 for abiméons). Baueret al. (2006a, 2006b)
gave an example of such operational implementation at ECMWiRg the two-step 1D+4D-Var approach
originally designed by Marécal and Mahfouf (2003; hereaMO03). The latter was recently replaced by the
direct assimilation of all-sky microwave radiances in 4Br\as described in Bauet al. (2010) and Geeet

al. (2010). On-going work is also aiming at the assimilationnffared radiances from geostationary satellites
in cloudy regions (e.g. Vukiceviet al. 2006).

As far as precipitation-related observations are conckreeme operational weather services already assim-
ilate information from ground-based weather radar net&oMacpherson (2001) implemented a latent heat
nudging technique at the UK Met Office, while Treadeinal. (2002) used NCEP’s 3D-Var and Tsuyu

al. (2002) JMA's 4D-Var. Ducroceet al. (2002) used a diabatic initialization technique based onebkat
infrared imagery and ground-based precipitation radax ttaimprove short-range high-resolution forecasts of
convective storms over France. The Ensemble Kalman Fédhnique was tested by Tong and Xue (2005)
and Cayeet al. (2005) as an alternative to 4D-Var for the assimilation afidated ground-based radar volu-
metric data on the convective scale. More recently, Caurabat. (2010) presented some promising results
from their pre-operational 1D+3D-Var assimilation of gnodbased radar reflectivity profiles at 2.5 km reso-
lution. In their approach, a Bayesian retrieval first yialdiative humidity profiles which are then assimilated
as pseudo-observations in their 3D-Var system. One adyarafthis method is to avoid the problematic
coding of tangent-linear and adjoint versions of their ctammbservation operator which includes detailed
microphysics.

Lopez and Bauer (2007; LBO7 hereafter) employed MMO03's 1D-Mar method to experimentally assimilate
hourly combined radar and gauge surface precipitatiomestis from the NCEP Stage IV archive (Baldwin
and Mitchell 1996; Lin and Mitchell 2005) over the conterois USA. Rain rates were first assimilated
through 1D-Var to produce total column water vapour (TCWafyievals, which were then passed as pseudo-
observations to the 4D-Var system. LBO7 found that the m@ipaict of the additional observations was to
reduce errors in short-range precipitation forecasts ¢up4t hours) over the USA. Short-range forecasts of
temperature, wind and geopotential were also improved, lEsser extent though. A hint of an eastward
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propagation of this positive impact over the North Atlaraitd Europe during the forecast was also identified.
The relatively weak impact of the assimilated precipitatiata was attributed to their competition with other
observation types such as radiosondes and synoptic stiitanand to shortcomings specific to the 1D+4D-
Var approach (e.g. double use of the model background).llfimnial 1D+4D-Var experiments, in which
NCEP Stage IV precipitation estimates were the only soufeeaisture-related information assimilated over
mainland USA, highlighted the strong potential positivepant of these data.

As a natural evolution of LBO7’s indirect 1D+4D-Var apprbathe present paper describes results from new
experiments in which NCEP Stage IV precipitation data haenidirectly assimilated in ECMWF’s 4D-Var
system, which offers more consistency with the way all otieservations are treated in daily operations. Direct
4D-Var assimilation of NCEP Stage |V data is expected to beroperational at ECMWF in 2011.

The NCEP Stage IV observations to be assimilated are desciibsection?2. Section3 introduces the 4D-
Var assimilation method in general terms while secdgrovides details specific to the assimilation of NCEP
Stage IV data as implemented in this study. Results frontdi#®-Var assimilation experiments are presented
in section5, while remaining issues are discussed in sedBioSection7 summarizes the main findings of this
study and gives an outlook on the future assimilation of gtbbased precipitation observations at ECMWF.

2 NCEP Stage IV precipitation data

The new observations to be assimilated in this study are NSt&Be |V precipitation data which combine
precipitation estimates from about 150 Doppler NEXt-gatien RADars (NEXRAD) with about 5,500 hourly
rain-gauge measurements over the conterminous USA (Baldad Mitchell 1996; Lin and Mitchell 2005).
Technically speaking, NEXRAD corresponds to the so-cailé8lR-88D (Weather Surveillance Radar, 1988,
Doppler) (Fultonet al. 1998). Each NCEP Stage IV precipitation analysis is iretiaB5 min after the end of
each hourly collection period and may be updated over agafseveral hours with new data coming from
the twelve USA regional centres. A first inflow of automatigglenerated precipitation data is available within
a few hours after the accumulation time, while a second infibwpdated manually-quality-controlled data
becomes available later (with a delay of up to 12 hours). Tadial coverage of the early release is usually
not far away from its maximum extent. In this work, 4D-Var exments have been performed using manually
quality controlled data obtained from the JOSS/UCAR arhiwebsite: http://www.joss.ucar.edu/codigc/
Even though original precipitation data are available orlardresolution polar-stereographic grid, they are
averaged on the ECMWF model's Gaussian grid prior to asaiioil. Besides, although hourly precipitation
accumulations are obtained from the archive, it will be shamvsection4 that it is preferable to assimilate 6
hourly accumulations. In the following, the observatiosgdiin this study will be referred to as "NEXRAD”
observations for simplicity.

3 The 4D-Var method

The aim of 4D-Var assimilation is to find the optimal initidD&tmospheric state (thanalysig that leads to a
short-range model forecast that best fits a set of obsengatind some a priori information from the model (the
so-calledmodel backgrounar trajectory) over a certain time window (typically up to 12 hours). Foliyyahe
analysis corresponds to the initial model state vesigrwhich minimizes the following cost functiod,

J = %(Xo—XB)TB_l(Xo—XB) + %Z(Ht(xo)_Yt)TR_l(Ht(XO)—yt) +Je (1)

Jp 3;
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where subscript denotes the model time step ax@iis the model background state at initial time. The term
Je corresponds to an additional weak constraint for the comtirdast gravity waves using the digital filter
approach developed by Gauthier and Thépaut (2001). In EEMWD-Var system, the model state consists
of temperature, humidity, vorticity, divergence and scefgoressure.H; is the often non-linear observation
operator used for converting the initial model state inteestied equivalents at tinte All observations avail-
able in the assimilation window are gathered in vegtoR andB are respectively the observation and model
background error covariance matric&sis made flow-dependent through a wavelet formulation (Fig2he4).

In practice at ECMWR] is re-formulated using an incremental approach (Couetied. 1994) as

J = %5x£B—15x0 + %Z(Htéxo—dt)TR‘l(Htéxo—dt) + J )

wheredxg = Xg — xg are increments relative to the model background sthte; y; — Ht(xg) is the so-called
innovation vector an#l is the tangent-linear version b (i.e. the matrix of local derivatives of the observation
operator with respect to each variable of the model stattredst is also essential to note that in each 4D-
Var cycle three successive minimizations are performe®&t@#200 km), T159 £130 km) and finally T255
(=80 km) horizontal resolution. After each minimization, thedel trajectory is recomputed at high resolution
(T512~40 km in this study; T127815 km in current ECMWF operations) to update innovation ees;id;.
Starting with the lowest resolution ensures that largelescare adjusted first, reduces the computational cost
of 4D-Var and permits the inclusion of weak non-linearitgegh as those iH;. The latter advantage allows to
partially overcome the rather constraining underlyingiagstion of linearity inherent in the variational method.

Of particular interest for the assimilation of precipitatiobservations, simplified paramaterizations of convec-
tion (Lopez and Moreau 2005) and large-scale moist prose@s®mpkins and Janiskova 2004) are used in
each minimization. Other processes also representef include radiation (Janiskovét al. 2002), vertical
diffusion and gravity wave drag (Mahfouf 1999).

4 Implementation details of NEXRAD assimilation in 4D-Var

4.1 Change of variable

To better satisfy the requirement of Gaussian distribgtioiobservation errors in 4D-Var and to avoid the sub-
optimality of the 4D-Var analysis (Erricet al. 2000), a logarithmic transform, namely(RR+ 1), is applied

to observed and model equivalent precipitation amouR& éxpressed in mm) before the assimilation.
Such transform was successfully used by Mahfetudl. (2007) to produce precipitation analyses over Canada.
Besides, in order to better satisfy the 4D-Var linearityuaggtion, as discussed in more details in secédh

it was decided to consider 6-hour precipitation accumuoieti@FR5h, hereafter), still expressed in mnth
instead of the original hourly precipitation data. This methat all precipitation departures involvedJj(see

Eqg. )) are expressed in terms of{ RR6h+ 1).

4.2 Screening of observations

As far as screening is concerned, NEXRAD precipitation @atarejected over steep or rugged orography to
account for the possible degradation of radar and rain-@augasurement quality due to ground clutter, radar
beam blocking, local precipitation enhancement or po@prasentativity of rain gauges. In practice, all obser-
vations located west of 109/ are discarded to avoid the Rocky Mountains area. Over timaireng eastern
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half of the USA, NEXRAD observations are also rejected iheitthe orography is higher than 1500 m or if
the standard deviation of the orography is higher than 100mite original NEXRAD 4-km grid). This elim-
inates data over the highest terrain of the Appalachian Mons. NEXRAD observations are also discarded
if snowfall is expected at ground level (namely if model bgrdund 2-meter temperature is belewl°C) to
account for the fact that radar and rain gauge measuremamtsecome less accurate in such situations.

Despite the quality control applied by NCEP when creating dhiginal precipitation dataset, an additional
screening is applied to points that are likely to be affetigthe occurrence of ducting in the lower troposphere.
Ducting corresponds to the anomalous propagation of eleetgnetic waves in the atmosphere, which can lead
to the mis-interpretation as precipitation of ground esh@turned towards ground-based radars receivers. In
this work, ducting is assumed to be present whenever atraaspiefractivity,N, sharply decreases with height
(dN/dz< —0.157 nt). N is diagnosed from model background profiles of temperafiirén K), water
vapour partial pressure,(in Pa), and total atmospheric pressur€in Pa), using

0.776P 373

- T T ®)

Therefore, conditions favourable to ducting require thisterce of either temperature inversions and/or sharp
negative vertical gradients of humidity. Such situations more likely to be encountered in the lower tro-
posphere, during nighttime or over water surfaces muchecdttan the air above or in the outflow region of
thunderstorms. More details on this diagnostic and itsiegiibns can be found in Lopez (2009).

Another major restriction is related to what can be callezl"rain” issue: wherever the model background
has no precipitation while observations have, 4D-Var wéllumable to correct the model towards the observa-
tions because the adjoint sensitivity of model preciptatio the 4D-Var control variables is zero. Conversely,
wherever there is no precipitation in the observationseuiié model background is rainy, 4D-Var can substan-
tially reduce model precipitation but a significant ambiguemains regarding what the actual temperature and
moisture profiles should be, unless actual measurementesé are available in the vicinity (from radioson-
des, for instance). It has therefore seemed wise to retaassimilation of NEXRAD data to locations where
precipitation is simultaneously higher than a small theds§0.001 mm ht) in the model background and in
the observations. This issue will be further discussed dtice6.2

To illustrate the result of the screening process, an examwfpNEXRAD 6-hourly accumulated precipitation
data coverage is displayed in Figfor a single 6-hour period ending at 0300 UTC 3 April 2009. &ibte data-
void area over the Appalachian Mountains after applicatibtine rugged terrain criteria. Also note the limited
number of points affected by surface snowfall and anomajwopagation (black and grey square symbols,
respectively).

4.3 Observation errors

Matrix R in Eq. () is supposed to describe observation errors in terms chvees (diagonal terms) and co-
variances (off-diagonal terms). Theoretically, theseutdhaccount not only for instrumental uncertainties but
also for errors associated to the observation operator tosezhvert the model state into observed equivalent,
to representativity and to the mapping of observations timtomodel grid (spatial averaging for NEXRAD
observations). Since little is known about NEXRAD errottistacs, several assumptions have been made here:
matrix R is supposed to be block-diagonal (i.e. no spatial cormiatimong NEXRAD observations) and a
constant valueg, = 0.18 has been assigned to the error standard deviation of NEX&Aourly accumu-
lated precipitation amounts in(RR6h+ 1) space. This constant value a@f implies that higher precipitation
amounts are deemed to be more reliable than smaller oneslativé sense. Earlier attempts to express

as a function of precipitation itself did not lead to any ilmggEment in experiments scores and sec@ahwill
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Figure 1: Example of NEXRAD 6-hourly accumulated precijita data coverage at 0300 UTC 3 April 2009.

Colour squares show precipitation observations (in mm)tactually used in 4D-Var. Light grey (resp. black)

squares indicate points that are rejected because theyikaly lto be affected by anomalous propagation (resp.
surface snowfall).

provide some a posteriori verification of the above choice.

4.4 Bias-correction

Since 4D-Var relies on the assumption that both observationd model background are unbiased, statistics of
observation minus model background departures expreadedRR6h+ 1) space were computed from two-
month long passive monitoring 4D-Var experiments. Seugiesd correction BC hereafter) formulations were
tested:

(1) BC=constant,

2 :
(2)BC= Zjai In(RRBh + 1)I with aj =constant,

2 .
(3)BC= Z)ori (tobs) IN(RRBN+ 1)I whereaq; is a function of observation local timgys

The quantityin(RR6h+ 1) corresponds to the average between model background aedratisn. Using the
average of model and observation avoids undesirable spuaigymmetries in the BC, as demonstrated in Geer
and Bauer (2010). Preliminary experimentation suggedtatdption (2) leads to the largest improvements
in analyses and forecasts. Therefore, all results predentéhis paper are based on this BC formulation.
Coefficientsa; of the polynomial fit were derived from statistics computegrothe two-month long passive
monitoring experiments mentioned earlier. As an illugtrat Fig. 2 displays observation minus model back-
ground departures in (RR6h+ 1) space as a function &fi(RR6h+ 1) values for the two 2-month periods of
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2009 considered in this study (more details in secidi). The polynomial fit used to define the bias correction
is also shown for both period. To account for the gradual egdn of class populationp, with increasing
precipitation values, a weight equal @dl)g(nmax/n) + 1)_l was assigned to each class in the definition of the
fit, wherenmax is the maximum class population. Figu2edlemonstrates that the curves are similar for both
periods with an overestimation (resp. underestimatiorth@model for 6-hour precipitation accumulations
lower (resp. higher) than 1 mnrh (i.e. In(RRBh+ 1) ~ 0.7). The overall mean bias is rather smal.008
and—0.016 for April-May and September-October 2009, respegtivel

faOe NEXRAD 4D—Var 2009040100—-2009053112 fage NEXRAD 4D—Var 2009090100-2009103112
Mean=—0.008 (196699 pts) Mean=-0.016 (192020 pts)
1.0 L L L T 1.0 L L L T
o,=—0.3888 (a) f F a=-0.2740 (b) g
o= 0.7317 7 r o= 05136 7
«,=—0.2505 ) «,=—0.1757

0.5 - 0.5 -

OB—BG Ln(RR+1) departures
OB—BG Ln(RR+1) departures

-0.5— - -0.5— -

7107‘ S S S S R ‘7 7107‘ S S S R
0.0 0.5 1.0 1.5 2.0 2.5 3.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0
mean(BG,0B) Ln(RR+1) mean(BG,0B) Ln(RR+1)

Figure 2: Average observation minus model background depes inIn(RRéh+ 1) space (solid line) as a
function ofIn(RR6h+ 1) for (a) April-May 2009 and (b) September-October 2009. Tashdine shows the
second degree polynomial fit chosen to define the bias-dmrefor the direct 4D-Var NEXRAD assimilation

2
experiments: BG= Z}ailn(R%th 1)'. Values of fit coefficients;, are also given.
i=

4.5 First-guess check and variational quality control

As already implemented for all other observation types iRVED NEXRAD observations are subjected to an
a-priori first-guess check which rejects measurementsdiyaart too much from the model background. In

the present case, a NEXRAD observation is rejectéy if- Hi(x5)| > 4,/ 02 + 0, whereod, and g, are the
observation and background error standard deviations(lRRBh -+ 1) space, respectively, and are both set
equal to 0.18. In other words, all observations leading thlte values of background departures larger than
1.02 in INRRBh+ 1) space are screened out. This first-guess check for NEXRA®idainly applied in the
first trajectory of each 4D-Var cycle, as for all other obsgion types.

In addition, in the course of each minimization, the vaoia#l quality control (VarQC; Andersson and Jarvinen
1999) already applied to all other observation types is afgaied to NEXRAD data. Any observation which
leads to large departures that are deemed inconsistenneighbouring measurements, has its weight in the
cost function of Eq.Z2) artificially inflated, in the current minimization only.
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5 Experiments

5.1 Set-up

Two 2-month long periods have been selected for runningajlekperiments of direct 4D-Var assimilation
with NEXRAD precipitation observations over the easterifi BUSA. The version of the ECWMF Integrated
Forecasting System (IFS) employed in this study is cycle 3@ahich was used in operations between 10
March and 7 September 2009. The first period runs from 0000 WP®ril 2009 until 1200 UTC 31 May
2009 and the second one from 0000 UTC 1 September 2009 to 12Za@031 October 2009. These two
periods were chosen because they were characterized byausrgecipitating events of both convective and
stratiform nature. For each period, two 4D-Var experimardge performed: a control run (CTRL) that uses all
standard observations available as in ECMWF’s operatiodsaa experiment (NEW) with NEXRAD 6-hourly
precipitation accumulations also included in the 4D-Vairadation process. All experiments were run with 91
vertical levels and with a horizontal spectral resolutibm®11 (=40 km) in the 4D-Var trajectory computations
as well as in the subsequent 10-day forecasts started froWedBnalyses. The coarser resolutions used in the
three successive minimizations of each 4D-Var 12-hourecgiok described in secti@

5.2 Results and validation
5.2.1 Comparison of NEXRAD with PRISM observations

A first verification of precipitation fields is provided in Fig which compares NEXRAD with PRISM obser-
vations over the Eastern USA and over the two periods ApalMnd September-October 2009. The PRISM
dataset consists of monthly precipitation 4-km griddecdgnerated from about 7,000 rain-gauges over main-
land USA by the PRISM Climate Group (Oregon State Universitlyp://www.prismclimate.org). No temporal
resolution better than monthly was available for PRISM datéhe time of this study. More details on the
PRISM dataset can be found in Di Luzéb al. (2008). Note that both NEXRAD and PRISM were averaged
onto the same T511 model reduced Gaussian grid prior to¢beiparison. Even though some rain-gauge ob-
servations are used in the production of NCEP Stage IV pitatign analyses, PRISM data can be considered
as the only nearly-independent high-quality high-resofuprecipitation dataset currently available over the
USA. Figure3 shows that NEXRAD and PRISM are remarkably close to one andtin both selected periods,
even though NEXRAD have a slight tendency to exhibit finetestzatures.

Table 1l summarizes the spatial mean values of NEXRAERISM differences, root-mean-square (RMS) dif-
ferences and correlation between the maps displayed i8Figblel confirms the excellent level of agreement

Apr-May 2009 | Sept-Oct 2009
PRISM Mean 3.18 3.75
Mean NEXRAD-PRISM diff. 0.03 -0.19
RMS NEXRAD—PRISM diff. 0.49 0.56
Correlation NEXRAD/PRISM 0.96 0.97

Table 1: Statistical comparison of two-month averaged ipitation accumulations (in mm day) from
NEXRAD and PRISM in April-May and September-October 20@9 e domain shaded in Fig.

between NEXRAD and PRISM, with very small mean differencasdest RMS values (as compared for in-
stance to those found in Tablevhen comparing model with PRISM) and correlations closenityu
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Figure 3: Comparison of NEXRAD (top) with PRISM (middle)rage precipitation amounts (in mm dab)

over the periods April-May 2009 (left) and September-Oet@®n09 (right). Bottom panels show time-averaged

NEXRAD-PRISM differences. The white stripe over the Mississipieyak due to the presence of a few

missing hourly NEXRAD data which, if not rejected, mightehkad to a spurious mismatch between NEXRAD
and PRISM accumulations.
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5.2.2 Background and analysis precipitation departures

When assimilating a new type of observations such as NEXR&R, dt is essential to check how background
and analysis departures expressed in observation spastatisically distributed. Their probability density
functions (PDF) in IlRRBh+ 1) space are plotted in Figt for each of the two-month periods considered
in this paper. Samples size is 86,135 in April-May 2009 (re88,298 in September-October 2009), which
means that on average 706 (resp. 814) NEXRAD observations assimilated in each 4D-Var 12h cycle.
Panels (a) and (c) show that the distribution of observatiamus background departures after bias correction
(see sectiort.4) is not too far from Gaussian, which is desirable in the 4D-8@ntext. The residual bias is
rather small for both periods-0.037 and-0.024) and reduced compared to that of uncorrected bacdkdrou
departures (red histogram). One should note that thesesb#e of course different from those derived from
the passive monitoring experiments to construct the biagction procedure. Panels (b) and (d) demonstrate
that the observation minus analysis departures PDF becomel narrower than the background departures
PDF. For both periods, the standard deviation of analygiaderes is reduced by a good 33% compared to
background departures (going down from 0.342/0.323 to@®218). The mean bias is also reduced in the
analyses. One can also remark that analysis departuretsaneearly normally distributed. All this indicates
that 4D-Var succeeded in bringing the model precipitatitoser to the observations through the changes in
temperature, moisture, wind and surface pressure imposhe ianalyses.

5.2.3 Precipitation scores against NEXRAD

The NEXRAD precipitation observations that are assimilate4D-Var are expected to modify temperature,
specific humidity, wind and surface pressure analyses.elnhsenatural to verify how these 4D-Var analyses
changes feedback on subsequent precipitation forecasss, $hort-range precipitation forecasts from exper-
iments CTRL and NEW have been validated against NEXRAD ofsiens themselves, even though these
cannot be considered as independent validation data. sTatsled 3 summarize the statistical results of this
comparison computed over periods April-May 2009 and Sep&r@ctober 2009, respectively, and over the
Eastern half of the USA. Precipitation accumulations otaerftrst 6h, 12h and 24h of the forecasts started at
00Z are considered here. Displayed statistics are meanlnmmdes NEXRAD bias, root-mean-square errors
(RMSE) and correlation coefficient, computed over all poifnainy and non-rainy). Note that RMSE and cor-
relation were obtained by averaging daily values over eachmonth periods. The mean value of NEXRAD
precipitation is also given on the first row, in mm day

Apr-May 2009 RR6h RR12h RR24h
NEXRAD Mean 3.12 2.90 2.99
CTRL | NEW | CTRL | NEW | CTRL | NEW
Bias 0.15 | —-0.11| 0.28 | 0.11 | 0.48 | 0.42
RMSE 10.03| 9.09 | 741 | 681 | 573 | 555
Correlation 059 | 063 | 063 | 0.67 | 0.66 | 0.68

Table 2: Mean statistics of 6, 12 and 24-hour precipitatiact@mulations from short-range forecasts from

experiments CTRL and NEW versus NEXRAD observations iftMayi 2009 over the Eastern USA. Mean

NEXRAD observations, model minus NEXRAD bias, RMS andlatiore coefficient are computed over do-
main 25N-50°N and 105E-70°E. Mean, bias and RMS are in mm day

As a preliminary remark, it is noteworthy that the oversmstiion of RR6h found in CTRL is consistent with
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Figure 4: Histogram of observation minus background (leftd observation minus analysis (right) precipita-
tion departures (inn(RRBh+ 1) space) from 4D-Var assimilation experiments with NEXRAR dar April-
May 2009 (top) and September-October 2009 (bottom). Blaels Idisplay the histogram of bias-corrected
background departures (left panels) and analysis depasgyright panels). Red curves show the uncorrected
background departures (left panels) and the bias-coredtackground departures (right panels; i.e. a copy
of the black curve from the left panel). Green curves show3hessian distribution with the same mean and
standard deviation as the black histogram. Frequency {g)ae in % and the mean, standard deviation and
total population of the black histogram are shown at the tbpaxh panel.
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Sept-Oct 2009 RR6h RR12h RR24h
NEXRAD Mean 3.01 3.15 3.19
CTRL | NEW | CTRL | NEW | CTRL | NEW
Bias 052 | 0.22 | 046 | 0.21 | 0.63 | 0.53
RMSE 982 | 876 | 7.78 | 697 | 6.12 | 5.74
Correlation 0.57 | 0.61 | 0.62 | 0.66 | 0.65 | 0.67

Table 3: Same as in Tab® but for September-October 2009.

the results obtained in the definition of the bias-correctioocedure in sectiod.4. More importantly, both
tables give clear evidence that short-range precipitdtogcasts are better in experiment NEW than in CTRL,
for both two-month periods. The absolute magnitude of thanri®as is substantially reduced. In particular,
for the second period (Tabl®, the bias is more than halved for forecast precipitatiocuaalated over 6h
and 12h. RMSE also go down by roughly 10% for 6h and 12h accations and by around 4% for 24h
accumulations. Similarly, the correlation is increased®4 and 0.02, respectively. It is also worth stressing
that bias values in experiment NEW but also CTRL are surmglgimodest. Table and3 also suggest that
the improvement in precipitation forecasts brought by tb&railation of NEXRAD data tends to wane with
forecast range. This is confirmed by Figwhich displays similar statistics for forecast ranges leetw 6
and 72 hours (all forecasts are started at 0000 UTC). Notepteaipitation accumulations considered in this
plot only run between successive selected forecast rarfgesinstance, statistics shown at time 36h apply
to precipitation accumulations between 24h and 36h. Toexrte CST or EST (USA local time zones),
one should substract 5 or 6 hours, respectively. As a firsarienpanels (a) and (e) indicate that the model
tends to systematically overestimate daytime precipitatilhe precipitation diurnal cycle appears to be more
pronounced in both experiments than in NEXRAD observatidims could indicate that convection is triggered
too early in the model over the Eastern USA, as already ffietitin LBO7. More interestingly, panels (b-
d) and (f-h) confirm that the assimilation of NEXRAD data lgsna significant improvement in bias, RMS
difference and correlation between model and observatiotise first 12 hours of the forecast and that this
improvement vanishes for ranges beyond 24 hours. Such&hortpositive impact on precipitation forecast
is consistent with previous findings from 1D+4D-Var experints of LBO7. However, this apparent short life
of the precipitation improvement might just be an artefddtoeastward propagation out of the Eastern USA
domain considered here. Unfortunately, this assumptionatbe verified since there are currently no reliable
quantitative precipitation estimates over the North Aia®cean.

A last verification against NEXRAD observations has beeffiopered by calculating Equitable Threat Scores
(ETS) and False Alarm Rates (FAR), as defined in Appendix 3 Aigher ETS and the lower FAR are, the
better. Both scores are plotted in F&yfor 12h forecasts started at 0000 UTC from experiments CTIRL a
NEW as a function of various precipitation thresholds andlie two selected two-month periods.

Figure6 clearly demonstrates that NEXRAD observations are suftdisassimilated in 4D-Var since ETS is
systematically increased and FAR reduced, especiallyrisipitation rates higher than 3 mm day Beyond
the 12-hour range, the positive impact of NEXRAD assindlaton threat scores quickly vanishes to become
neutral beyond day 1 (not shown), consistent with previaudirigs.

5.2.4 Precipitation scores against PRISM

To complement the validation against NEXRAD data, indepehdnonthly precipitation gridded data gen-
erated from 7,000 rain-gauges over mainland USA by the PRGliMate Group (Oregon State University,
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Figure 5: Statistics of precipitation forecasts against XEAD observations for various forecast ranges from

6 to 72 hours (x-axis) and computed over the periods ApriixN809 (left) and September-October 2009

(right). Statistics include (a,e) mean precipitation f{lmmean model minus NEXRAD bias, (c,g) RMSE and (d,h)
correlation coefficient. Units are mm dayfor the first three statistical quantities. Each symbol esponds

to the end of the accumulation period running since the prevsymbol. For example, a symbol plotted at 36h
corresponds to precipitation accumulated between 24h &tdd3 the forecasts. Red (resp. blue) curve is for

CTRL (resp. NEW) experiment. Filled symbols indicate thatdifference seen between CTRL and NEW is
significant (t-test with 95% confidence level).
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Figure 6: Equitable threat scores (top) and false alarm gafbottom) computed from 12h precipitation fore-
casts from experiments CTRL (red line) and NEW (blue line)ddous precipitation thresholds (in mm dab).
Left (resp. right) panels are for April-May 2009 (resp. Sapber-October 2009).
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http://www.prismclimate.org) have been compared to @rpeants CTRL and NEW. More details on the PRISM
dataset can be found in Di Luzit al. (2008). Although the original horizontal resolution of R data is

4 km, these data were averaged over the T511 model Gaussgilgorigr to comparison. Tablé summarizes
mean, bias, RMSE and correlation of two-month precipitaa@cumulations computed from 24h forecasts
(started at 00Z) and from PRISM monthly data. Note that sdiififrences in observation coverage between

Apr-May 2009 | Sept-Oct 2009

PRISM Mean 3.21 3.74
CTRL | NEW | CTRL | NEW
Bias 042 | 0.35| 0.30 | 0.17

RMSE 091 | 0.85 | 0.91 | 0.81
Correlation 0.89 | 0.89 | 0.93 | 0.94

Table 4: Mean statistics of two-month precipitation acclatians from 24h forecasts from experiments CTRL

and NEW versus PRISM gridded rain-gauge observations iil-Maty and September-October 2009. Mean

PRISM observations, model minus PRISM bias, RMSE and atioelcoefficient are computed over domain
25°N-50°N and 105E-7C0°E. Mean, bias and RMSE are in mm day

NEXRAD and PRISM observations over the Eastern USA explandiscrepancies between the statistics re-
ported in Tabled and4. Also note that RMSE (resp. correlations) are much lowespirdnigher) for PRISM
than for NEXRAD since here the statistics were calculatednftwo-month averages instead of daily data.
Table 4 confirms that the assimilation of NEXRAD rain data improvhe agreement of 24h precipitation
forecasts with PRISM data in terms of mean bias, RMSE andmlginally correlation.

5.2.5 Atmospheric scores against verifying analyses

To verify how atmospheric variables are affected by the NBRRassimilation, anomaly correlations of 10-
day forecasts against verifying analyses were computegdopotential height, temperature, wind vector and
relative humidity on different pressure levels. Only thestgrominent changes in scores brought by the 4D-
Var assimilation of NEXRAD observations shall be summatibere. Besides, to reduce further the number
of plots, the two periods 1 April-21 May 2009 and 1 Septentie@ctober 2009 were grouped together in the
statistical calculations, yielding a total population @2Icases. The last 10 days of each experiment were not
included in the statistics since scores were computed sigii@ respective analyses of experiments CTRL and
NEW.

Figure 7 displays the impact on geopotential heigi),(temperature T) and wind vector \(VV) forecast
anomaly correlation for selected pressure levels (as wmmedi on each panel in hPa) over the Northern and
Southern Hemispheres, North America, North Pacific and itsp@s a function of forecast range from 12
hours to 10 days (all forecasts started at 00Z). Note thall @hoss, score changes are normalized by the statis-
tics from experiment CTRL and that positive (resp. negatixgdues on the y-axis indicate an improvement
(resp. a degradation) of the selected score. Furthermarplepbars highlight the level of significance of the
changes, based on a 95% confidence level. An impact valugngisant only if the associated bar does not
cross the y=0 line. Figur@ shows that scores over the Northern Hemisphere are slighplyoved for all
variables up to day 5 or 6, in a significant way up to day 3 of tiedast. They are degraded beyond day 6, sig-
nificantly for T850 around day 8. Over the southern Hemisphere, the impassihilating NEXRAD data is
positive, especially during the first three days of the fagtclt was checked that this rather unexpected impact
gradually develops during the 4D-Var cycling. Over North énica, changes in scores tend to be slightly neu-
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Figure 7: Impact of 4D-Var assimilation of NEXRAD precipitan observations on forecast anomaly correla-
tion against own analyses as a function of forecast rangeldys). Score changes for 1000 hPa geopotential
height (Z1000; left panels), 850 hPa temperature (T 850;dteighanels) and 850 hPa wind vector (WV 850;
right panels) are plotted for different regions: (a)-(c) itteern Hemisphere (N.Hem), (d)-(f) Southern Hemi-
sphere (S.Hem), (g)-(i) North America (N.Amer), (j)-()ritoPacific (N.Pac) and (m)-(n) Tropics. Note that
500 hPa Z is shown instead of 1000 hPa Z over North Americagsimany points in this regions are situated
well above sea level. Changes shown on y-axis are normaliggtie score in experiment CTRL and posi-
tive (resp. negative) values indicate an improvement (refggradation) of the score. Purple bars indicate
significance at the 95% confidence level.

16 Technical Memorandum No. 627



Direct 4D-Var assimilation of NCEP Stage IV radar and gaugeipitation data at ECMWF CECMWF

tral (for Z andT) over the first 4 days, but become negative later, thoughigoifieantly. Wind is particularly
improved close to analysis time (panel (i)) at 850 hPa but al®ther levels, especially close to the tropopause
(not shown). North Pacific scores are mostly positively ciffd at all forecats ranges, with good confidence
after day 1 and until day 3 or 4. Similarly, tropical scoresdd¢o become better especially for temperature
around days 4-5 (panel (m)). Over all these regions, scareiglaer levels were found to be either unaffected
or modified in a way consistent with Fig. Over all other sub-regions, including Europe, North Afieand
Asia, score changes turned out to be either neutral or noifisignt (not shown). Relative humidity scores,
which are now known to be more difficult to interpret when aslsiting new moisture-related observations for
reasons explained in Geeral. (2010), did not exhibit any significant changes either. @\Wé¢he assimilation

of NEXRAD precipitation observations in 4D-Var is eithemtel or slightly positive on standard atmospheric
verification scores, which is not really surprising giver timited spatial coverage of NEXRAD observations
and their competition with other observation types with kmaors, such as radiosoundings or synoptic sta-
tion measurements. These results are consistent with frmselD+4D-Var experiments in LBO7, who also
demonstrated through denial experiments that NEXRAD datiddchave a much larger positive impact if they
were assimilated as the sole source of moisture informatien the USA.

5.2.6 Verification against other observation types

Consistent with the overall small impact of NEXRAD obseimas that was found when looking at atmospheric
scores against own analyses in secBdh 5 no significant changes appear either when considering\igm-
minus-background and observation-minus-analysis degsrstatistics for all types of observations assimilated
in 4D-Var (using OBSTAT software). This remains true everewlstatistics are restricted to the Eastern USA,
as illustrated in Fig8 which compares profiles of background and analysis degastandard deviations from
experiments CTRL and NEW against all radiosonde measurtsmétemperature, relative humidity and zonal
wind assimilated in 4D-Var over this sub-domain. Thesespke for period September-October 2009. |If
anything, the standard deviation of the departures istylighduced at all levels in NEW compared to CTRL.
Similar conclusions can be drawn about period April-May 2@@r all other observation types and for mean
bias as well (not shown).

10— (b) 5.0 (C) i
100 10 /
— 20+
(C 150 © 30
QL. O 50
c 20 = 70
~~— 250+ ~ 100+
L 300 O 150+
S S 200
O 400 O 250
0 o ) 300
@ 500 O 400
5 700 E 500
o 850 7007
850
\ ] 1000 1000 : : ‘
24 3

Figure 8: Background departure (solid line) and analysigdeure (dotted line) standard deviation profiles

with respect to radiosonde observations of (a) temperatidde (b) relative humidity (%) and (c) zonal wind

(m s1) from experiments CTRL (red) and NEW (black). Statistiagwemputed over about 7,500 radiosound-
ings over the Eastern USA in September-October 2009. ®edids shows pressure in hPa.
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5.2.7 Validation against GOES-12 infrared brightness terafures

An attempt was also made to verify the impact of NEXRAD datimagation on cloud analyses and forecasts
through a comparison to geostationary infrared imagery/(ftth) from the GOES-12 satellite, overlooking the
Americas (full-disk data obtained through NOAA/CLASS). gerform this validation in 10.7#m brightness
temperature space, simulated images were computed froBGhBVF model temperature, moisture, cloud and
ozone fields using the RTTOV-9 radiative transfer modep(htesearch.metoffice.gov.uk/research/interproj/-
nwpsaf/rtm/rtmrttov9.html). Model minus GOES mean statistics computegt two months (not shown) did
not exhibit any significant change, even when focusing onetlitern half of the USA and on short-range
forecasts. This may be explained by the fact that infrared @i mainly sensitive to cloud top temperatures
only, which are not necessarily strongly correlated witbggpitation amounts, especially in stratiform cloud
systems. However, substantial positive and negative limsphct on TBs can be found when considering
individual images, as illustrated in Fi§.for 12h forecasts of two frontal situations. Here, impaatiéfined

as INEW—GOES — |[CTRL—GOES. Most of the positive and negative changes are locatededndiolidy
regions, which is understandable since NEXRAD data weng assimilated at points with precipitation both
in the model background and in the observations. Thereftwad water is simply redistributed inside the cloud
system. But again, on a monthly time scale, these positidenagative changes cancel out and the impact of
the NEXRAD assimilation on 10.7:m TBs is neutral.

| o o - a i
100°W X X Y 100°W

Figure 9: Two examples of impact of NEXRAD data assimilatiori0.7um simulated TBs from 12h forecasts

compared to GOES-12 observations (shown with black andevghiading, in K) (a) at 0000 UTC 23 October

2009 and (b) at 1200 UTC 30 October 2009. Positive (resp. tegjaimpact is shown with green (resp.
orange) contour isolines (5, 10, 20, 30 K).

6 Discussion

6.1 Minimization versus trajectory

In the course of each 4D-Var assimilation cycle, model mohservation departures evolved at lower resolution
using the linearized model in each minimization (Dgsinim = HiOXo — di = H; [xg] +HdXo —yt) should not, in
theory, differ too much from model minus observation degag evolved at high resolution with the non-linear
model in the subsequent trajectory (iB&;a; = Ht [xg + OXxo] — W1)-

In practice, however, discrepancies betwBgnim andDy4j can arise from:
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(1) the fact that the linearized modél, used in the minimizations is only a simplified version of thky-
fledged non-linear modeH, used in trajectory computations (for reasons mentionghldrintroduction),

(2) strong non-linearities iH, especially if moist processes are to be represented, whiglfes that 4D-Var's
underlying assumption of linearity is breached,

(3) resolution differences between minimizations ancetriries (see sectid).

ESSMI-TB  AAMSRE-TB +HIRS-TB  XAMSUA-TB ¥AMSUB-TB
OMHS-TB AAIRS-TB  [IASI-TB
+TEMP-q  XTEMP-uv
¥NCEP-RR3h A NCEP-RR6hX NCEP-RR12h

—10 0.5

0.1
b 030

Standard deviation ratio

Standard deviation ratio

Figure 10: Taylor diagram showing the level of agreementMeein model minus observation departures

(Dminim) computed in the first minimization using the simplifieddiied model at T95 resolution with those

(Dtraj) evolved in the following trajectory using the fully-fledgeon-linear forecast model at T799 resolution.

Azimuth shows correlation betweerd) and Dy, while radial distance measures the ratio of their standard

deviations (SDR). The black square indicates a perfecteagemt, when correlation and SDR are both equal

to unity. Each symbol corresponds to a given observatioe &gsimilated in 4D-Var, as shown in the legend at
the top. Statistics are based on a single 4D-Var 12-hourecyalid at 0000 UTC 1 April 2009.

The level of matching betwedDminim andDyraj Was assessed over a single 4D-Var cycle for each observation
type currently assimilated in the ECMWF operational sys@smwell as for NEXRAD observations. Note
that in this particular experiment, the trajectory was ruil 299 (=25 km) resolution and that statistics were
computed over the whole 4D-Var 12-hour assimilation windd®esults for the first (T95 resolution) of the
three minimizations are summarized on the Taylor diagrafidn10which displays the correlation coefficient
betweenDyraj and Dminim (@zimuth) and the associated standard deviation r&@R (radial distance). Each
symbol corresponds to a given observation type as indicatélde top legend (see Appendices 1 and 2 for
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the meaning of abbreviations). The black square symbolifiesia perfect match betwedhaj and Dminim.
Figure 10 shows that for observations that are not directly affectedlbud and precipitation process&DR
remains reasonably close to unity and the correlation hitffen 0.7. For microwave brightness temperatures
from SSM/I and AMSR-E which are highly sensitive to cloudsl aamecipitation,SDRreaches 1.7 and the
correlation drops below 0.5, consistent with Baeeral. (2010). This points towards a degradation in the
validity of the linearity hypothesis. In the case of hourlEXRAD precipitation data, the breach of linearity
becomes terrifying sincBDRreaches 5.2 and the correlation plummets to 0.2, whichofelaunting prospect
for their optimal assimilation in 4D-Var.

However, it was found that the linearity could be much imge\by assimilating precipitation observations
accumulated over several hours instead of the originallfalata. Linearity results for accumulation lengths
of 3, 6 and 12 hours are plotted in Fit0. Accumulating NEXRAD observations over 6 hours brifgSR
down to 2 (not far from SSM/I or AMSR-E) and correlation up t@® (better than for SSM/I or AMSR-E),
indicating a strong improvement in the level of linearityim8ar conclusions can be drawn for the second
and third minimizations (not shown), although the gap betwthe various NEXRAD accumulation periods is
slightly reduced and the overall agreement between miitioz and trajectory increments better than in the
first minimization.

In view of these results, it was decided to assimilate NEXRARburly accumulationdRReh), which provides
the best compromise between linearity and observationeusagy the 4D-Var 12-hour window. Therefore, the
quantity actually assimilated in the 4D-Var experiment® {&R6h + 1), whereRR6h is expressed in mmH.
The positive impact of the temporal accumulation on lingais entirely consistent with recent findings of
Mahfouf and Bilodeau (2007), Fabry and Sun (2010) and F&8¥). In terms of practical implementation, it
is worth noting that the contributions of each NEXRAD houslyservation to the adjoint sensitivitiéd {) have

to be summed up over 6-hour time slots. One can also stresthéhassimilation of temporally accumulated
observations has the advantage of reducing the occurrdri€erain” points (see sectiond.2 and6.2) as a
result of the propagation of weather systems over longeéogenof time.

6.2 "0"-rain issue

One of the major issue that remains unsolved is the so-Célleain” issue, as already introduced in sectib@
When the model background precipitation is zero, a rainy RBK observation will be unable to produce any
increment of the assimilation control vector (temperatimemidity, wind and surface pressure) as a result
of the absence of sensitivity in the adjoint moist physicsithvé two-step assimilation method such as the
1D+3D-Var of Caumontt al. (2010), it is possible to use a first-guess which is artifigiddrced towards
precipitation through a moistening of the background wattprofile. This approach may give satisfactory
results at kilometric horizontal resolutions since atniesje profiles with precipitation can be assumed to be
saturated at some vertical levels. However, even in this,cBne uncertainty remains about the exact location
of those levels, especially if only 2D precipitation obsgions are assimilated. For coarser resolutions (say
5 km or more), there is some additional uncertainty aboutkvhélative humidity values should be specified
in the modified first-guess profile, since by constructionriael can produce precipitation even if the grid
box is far from saturation. In the case of direct 4D-Var, gsinfirst-guess which is different from the model
background is theoretically possible but would requirghfer investigation with probably some additional
technical developements. Furthermore, the inclusion efif” cases would also mean to address the issues
that (1) the occurrence of non-rainy events is currentlyewestimated in the ECMWF model (too many grid
points with small precipitation amounts) and (2) NEXRAD eh&tions might not detect weaker precipitation
because of the minimum detection threshold of the radar.
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6.3 Asymmetry of analysis departures

It was found in earlier experimentation that 4D-Var couldreneasily dry the model state (when the back-
ground has more precipitation than in the observations) thaisten it (when the background is less rainy than
the observations), consistent with the findings of Gateal. (2010) for the assimilation of all-sky microwave
radiances. Removing the limitation of humidity analysisrements above saturation implemented in the stan-
dard model code (H6Im 2002) helped to reduce this asymnetayl experiments presented here. Although
radical, this measure helps to overcome the limiting efié¢he saturation threshold, especially in very moist
regions, as already identified in Hat al. (2000), for instance. However, some asymmetry remains-as il
lustrated in Fig11 which displays 4D-Var analysis-minus-observation vetsaskground-minus-observation
departures in I(RR6h+ 1) space from experiment NEW in September-October 2009. €itjliclearly shows

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
"5 L L L L "5

0.5 1 / 0.5
0.0 / 0.0

~0.5 10 r—0.5

AN Ln(RR+1) departures
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Figure 11: 2D PDF of analysis-minus-observation versuskigagund-minus-observation departures from ex-

periment NEW for September-October 2009. All departureseapressed itn(RRéh+ 1) space. Colour

shading indicate frequency (labelled 0.1, 1, 2, 3, 5, 7, 1@ &%) while the black dashed line corresponds to
the mode of the analysis departure distribution for eachkigamund departure class.

that the analysis gets closer to the observations when rbadkground is too rainy (left half of the plot) than in
the opposite case (right half of the plot). This might be thesequence of the existence of an asymmetry in the
sensitivities of the precipitation produced by the moisggits to its input variables, in particular temperature
and moisture.

6.4 Observation error statistics

it was mentioned in sectio#.3 that the error standard deviation for NEXRAD observatiorss \set to a rel-
atively arbitrary constant value of 0.18. In order to asgbssvalidity of this specification, the diagnostic
approach proposed by Desrozietsal. (2005; DZ05 hereafter) was applied to the outputs from thevab
assimilation experiments (NEW) presented in this paperoAgrother things, this method allows the a posteri-
ori estimation of observation error statistics (matxfrom background and analysis departures computed in
4D-Var. DZ05's Eq.(3) states that

R = E[d3(d))T] (4)
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wheredp anddj are respectively the observation-minus-background arsgreation-minus-analysis depar-
tures andkE is the statistical expectation operator. This computatian be applied to a selected subset of
observations, namely here all assimilated NEXRAD obsemat to diagnose the a posteriori observation er-
ror standard deviation as

p 1
% = (3 (dR)i(d)i/p)* )
£

wherep is the number of NEXRAD observations (index@d Figure12 displays the values af, diagnosed
from Eq. 6) as a function of I(RRBh+ 1). It appears that the diagnosed observation errors do rfet difo
much from the constant value of 0.18 prescribed in this s{ddghed line in Figl2). There is an indication
that o, might be slightly overestimated in this study for precipia rates lower than 0.2 mntf and under-
estimated for higher rain rates. Even though previous éxgeitation showed that results from direct 4D-Var
assimilation of NEXRAD data were not very sensitivedgvariations of such amplitude, a slight retuning of
observation errors will be considered before operationglémentation.

1.00 2009040100—-2009053112

r A
ittt Rt~ St = - -8-1

Sigma OBS Ln(RR+1)
o
o

0.01 : ‘ :
0.07 0.10 1.00
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Figure 12: Observation error standard deviations obtairfeam Desroziers et al. (2005) a posteriori diag-
nostics (solid line) as a function of precipitation rate.l dlues are inin(RRBh+ 1) space. The dashed line
corresponds to the constant valueayf=0.18 used in this study. Diagnostics are valid for April-M2G09.

7 Conclusions

Direct 4D-Var assimilation experiments using 6-hour goéation accumulations from NCEP Stage IV com-
bined ground-based radar (NEXRAD) and rain-gauge obdensbver the Eastern half of the USA have been
run over two 2-month long periods in 2009. The motivation waassess the impact of these additional data
on both 4D-Var analyses and subsequent forecasts. Paticipibbservations averaged over 6 hours were pre-
ferred to the original hourly data since this helped to redihne discrepancies between the minimizations run
at low resolution with simplified linearized physics and seduent trajectories run at high resolution with full
non-linear physics. Although observation minus backgdoorean biases turned out to be relatively small, a
simple bias correction procedure was defined as a secowed-ootiynomial function of precipitation amount.

As expected from a well behaved assimilation system, aisafigpartures turn out to be significantly reduced
compared background departures. Besides, the assimilaitihe new rain observations leads to a significant
improvement on precipitation forecasts for ranges up todizd) with respect to NEXRAD observations but
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also to independent monthly PRISM rain-gauge measureme&hts improvement quickly vanishes, which is
consistent with previous 1D+4D-Var experiments of LBO7mAspheric forecast scores are not significantly
affected in general. Even though a degradation of mid-leM@lperature scores beyond day 7 appears over
the Northern Hemisphere, a significant positive impact aaidbntified on temperature, wind and gepotential
scores over the North Pacific and the Southern Hemisphere dgyt4, and for tropospheric wind over North
America during the first day of the forecasts. The limited acipof NEXRAD observations can be explained
by their competition with all other observation types aaflié over North America.

Efforts in the near future will be devoted to the transfer bthanges required in the IFS (129 files, includ-
ing scripts and SQL requests) to the latest cycle availahteta run new tests at higher resolution (T799 or
T1279), prior to operational implementation in 2011 (as\pkd). The screening of snowy situations ought to
be revisited to try to increase the coverage of actuallynzitstied NEXRAD observations in the wintertime.
Also, to avoid the need for constantly retuning the biageagiion coefficients everytime the model is changed,
one might consider the inclusion of NEXRAD observationshia Variational bias correction framework im-
plemented in ECMWF’s operational 4D-Var system (Dee anddlip009). The planned implementation of a
new prognostic variable for cloud condensate in the 4D-¥amailation control vector might also improve the
performance of precipitation assimilation in general.tkeir work should also aim at overcoming the "0-rain”
issue which currently restricts NEXRAD observation usagené situations where both model background and
observations are rainy. Using a first-guess modified fronb#wkground at the beginning of each 4D-Var cycle
could theoretically be a solution, but this was never testdeiCMWF’s 4D-Var.

In the longer term, one could consider the assimilation afemadar networks (e.g. Europe, China, Canada,...),
once problems of data availability and homogeneity areesble.g. Lopez 2008 on OPERA data). Besides,
the new ability to assimilate accumulated precipitatiorasugements should make it possible to consider 4D-
Var assimilation of rain-gauge observations from synoptations, which are currently used for verification
purposes only, even though this would mean to address the i$their representativity, first.

Despite the rather neutral or slightly positive impact fdum traditional atmospheric scores so far, the clear
improvement of short-range precipitation forecasts ssiggthat genuine precipitation analyses can now be
obtained over the Eastern USA, which should be beneficidigajtiality of the surface analysis, in particular
of soil moisture contents. More generally, it is undeniaiblat obtaining better high-resolution precipitation
analyses over land is vital for nowcasting, hydrological alimatological applications.
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APPENDIX 1

List of abbreviations used in the text:

NOAA
NCEP
JOSS
UCAR
JMA
ECMWF
PRISM
CLASS
OPERA

SSM/I
AMSR-E
T™I
TRMM
GOES

National Oceanic And Atmospheric Administration (A5

National Centers for Environmental Prediction (USA)

Joint Office for Science Support (USA)

University Corporation for Atmospheric Research A)S
Japan Meteorological Administration

European Centre for Medium-range Weather Forecasts

Parameter-elevation Regressions on IndependepeSModel

Comprehensive Large Array-data Stewardship System

Operational Programme for the Exchange of weathataRformation (Europe)

Special Sensor Microwave Imager

Atmospheric Microwave Scanning Radiometer - E@tserving System
TRMM Microwave Imager

Tropical Rainfall Measuring Mission

Geostationary Operations Environmental Satellite

APPENDIX 2

List of abbreviations used in Fid.0:

B = Brightness temperature

HIRS = High-resolution Infrared Radiation Sounder

AMSU = Advanced Microwave Sounding Unit

AIRS Atmospheric Infrared Sounder

IASI = Infrared Atmospheric Sounding Interferometer

MHS = Microwave Humidity Sounder

QUuUIikSCAT = Quick Scatterometer

QSCAT-uv QUiIkSCAT winds

SATOB-uv = Geostationary satellite motion vectors

TEMP-T Radiosonde temperature

TEMP-q Radiosonde specific humidity

TEMP-uv = Radiosonde wind components

SYNOP-Ps = Synoptic station surface pressure

AIREP-T = Aircraft temperature reports

NCEP-RR = NCEP Stage IV hourly precipitation amounts

NCEP-RR12h = NCEP Stage IV 12-hour accumulated precipitaimounts

NCEP-RR6h = NCEP Stage IV 6-hour accumulated precipitaioounts

NCEP-RR3h = NCEP Stage IV 3-hour accumulated precipitaimounts
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APPENDIX 3

Precipitation scores used in this study are the EquitabteaitScore (ETS) and the False Alarm Rate (FAR),
defined as follows

H — He

ETS — 6
H+M+F—He ©
F

FAR — — 7
HtF @)

whereH is the number of correct hity/] is the number of misses affdis the number of false alarmble is the
number of correct hits purely due to random chance and is atedmas
(H+F)(H+M)

He = N (8)

whereN is the sample size.
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