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Direct 4D-Var assimilation of NCEP Stage IV radar and gauge precipitation data at ECMWF

Abstract

Direct four-dimensional variational (4D-Var) data assimilation of NCEP Stage IV radar and gauge precipita-
tion observations over the Eastern USA have been developed and tested in ECMWF’s Integrated Forecasting
System. This is the natural extension of earlier work using atwo-step 1D+4D-Var approach. Major aspects
of the implementation are described and discussed in this paper. In particular, it is found that assimilating
6-hour precipitation accumulations instead of the original hourly data substantially improves the behaviour
of 4D-Var, especially as regards the validity of the tangent-linear assumption.

The comparison of background and analysis precipitation departures demonstrate that most of the infor-
mation contained in the new precipitation observations is properly assimilated. Experiments run over the
periods April-May and September-October 2009 also show that local precipitation forecasts become signif-
icantly better for ranges up to 12 hours, which indicates that a genuine precipitation analysis can now be
obtained over the Eastern USA. Geopotential, temperature,moisture and wind forecast scores are generally
neutral or slightly positive for all regions of the globe andat all ranges, which is consistent with previous
1D+4D-Var results.

The most crucial issue that remains unsolved is the treatment of non-precipitating model background occur-
rences because of the corresponding absence of sensitivityin the linearized moist physics. For the moment,
only points where both model background and observations are rainy are assimilated. Operational imple-
mentation using American data is planned in 2011 and one can hope that new networks of radars (and maybe
rain-gauges) can be added in the 4D-Var assimilation process in the future.

1 Introduction

Atmospheric moist processes which govern the life cycle of clouds and precipitation and the Earth’s hydrolog-
ical cycle, currently remain one of the most uncertain components of any numerical weather prediction (NWP)
model. The main reason for this lies in the extreme complexity, diversity, strong natural variability and lack of
predictability of

(1) moist processes themselves (condensation/evaporation, heterogeneous/homogeneous nucleation, collec-
tion/aggregation, phase changes,...),

(2) the characteristics of particles involved (droplets ofvarious sizes, ice aggregates with various shapes,
sizes, densities and fall velocities),

(3) the concentration distributions of hydrometeors.

At the same time, global-scale observations that are routinely available from satellite imagers, surface space-
borne radars/lidars, ground-based radars and rain-gauge networks can only provide partial and generally tem-
porally and spatially integrated information about microphysical processes. Besides, our knowledge on clouds
and precipitation from field experiments is restricted to specific meteorological situations and regions of the
globe. As a result of all these uncertainties, current parameterizations of moist processes used in operational
NWP models remain simplified representations of the truth, based on the explicit prediction of a few categories
of particles (e.g. cloud liquid water, cloud ice, snow and rain) and with a few microphysical processes ac-
counted for. As a consequence, the forecast skill for cloudsand precipitation is often much poorer than the
skill for temperature, wind or water vapour, even after a single day of forecast. This is particularly true and
systematic over certain regions of the globe such as West Africa during the summer monsoon (Agustı́-Panareda
et al. 2010) or in specific meteorological situations such as thosecharacterized by unorganized convection or
trade-wind stratocumuli.

Another significant source of inaccuracy in NWP outputs liesin the uncertainty in the three-dimensional (3D)
atmospheric states that are provided as initial conditionsto forecast models. In the last four decades, various
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data assimilation (DA) techniques were developed and successfully used in an operational context to constrain
the initial model state towards a set of reliable observations that are available within a few hours of the analysis
time. In the variational DA approach (e.g. Le Dimet and Talagrand 1986), this optimal state (oranalysis) is
obtained by searching for the model state that best fits all the observations and some a priori (orbackground)
information from the model, in a least-square sense. Temperature, wind and surface pressure information from
radiosondes, synoptic stations and satellites which have now been operationally assimilated for several decades,
were followed by water vapour measurements and only recently by observations affected by clouds and precipi-
tation. The assimilation of observations that are stronglyaffected by moist atmospheric processes has turned out
to be extremely challenging for two main reasons. First, adequate observation operators had to be developed to
link the observable quantity (e.g. a radiance or a radar reflectivity) with the assimilation state vector which typi-
cally consists of temperature, specific humidity and wind profiles and surface pressure. Such an operator would
usually combine a parameterization of moist processes and aradiative transfer model. Secondly, since linear-
ity is one of the main underlying assumptions of the now widespread variational DA methods (such as 3D or
4D-Var), the strong non-linearities which often characterize atmospheric moist processes have to be overcome
through the design of purpose-built sets of moist physical parameterizations for both convective (subgrid-scale)
and stratiform (large-scale) processes. Indeed, any parameterization meant to be employed in the minimization
of the variational cost function has to be differentiable, smooth, computationally efficient and at the same time
as realistic as possible (e.g. Mahfouf 1999; Janiskováet al. 1999), a hard-to-reach compromise.

These issues started to be successfully (but still partially) addressed during the last decade, so that operational
3D or 4D-Var systems are now able to assimilate polar-orbiting satellite all-skies microwave radiances from
SSM/I, AMSR-E and TMI, for instance (see Appendix 1 for abbreviations). Baueret al. (2006a, 2006b)
gave an example of such operational implementation at ECMWF, using the two-step 1D+4D-Var approach
originally designed by Marécal and Mahfouf (2003; hereafter MM03). The latter was recently replaced by the
direct assimilation of all-sky microwave radiances in 4D-Var, as described in Baueret al. (2010) and Geeret
al. (2010). On-going work is also aiming at the assimilation of infrared radiances from geostationary satellites
in cloudy regions (e.g. Vukicevicet al. 2006).

As far as precipitation-related observations are concerned, some operational weather services already assim-
ilate information from ground-based weather radar networks: Macpherson (2001) implemented a latent heat
nudging technique at the UK Met Office, while Treadonet al. (2002) used NCEP’s 3D-Var and Tsuyukiet
al. (2002) JMA’s 4D-Var. Ducrocqet al. (2002) used a diabatic initialization technique based on Meteosat
infrared imagery and ground-based precipitation radar data to improve short-range high-resolution forecasts of
convective storms over France. The Ensemble Kalman Filter technique was tested by Tong and Xue (2005)
and Cayaet al. (2005) as an alternative to 4D-Var for the assimilation of simulated ground-based radar volu-
metric data on the convective scale. More recently, Caumontet al. (2010) presented some promising results
from their pre-operational 1D+3D-Var assimilation of ground-based radar reflectivity profiles at 2.5 km reso-
lution. In their approach, a Bayesian retrieval first yieldsrelative humidity profiles which are then assimilated
as pseudo-observations in their 3D-Var system. One advantage of this method is to avoid the problematic
coding of tangent-linear and adjoint versions of their complex observation operator which includes detailed
microphysics.

Lopez and Bauer (2007; LB07 hereafter) employed MM03’s 1D+4D-Var method to experimentally assimilate
hourly combined radar and gauge surface precipitation estimates from the NCEP Stage IV archive (Baldwin
and Mitchell 1996; Lin and Mitchell 2005) over the conterminous USA. Rain rates were first assimilated
through 1D-Var to produce total column water vapour (TCWV) retrievals, which were then passed as pseudo-
observations to the 4D-Var system. LB07 found that the main impact of the additional observations was to
reduce errors in short-range precipitation forecasts (up to 24 hours) over the USA. Short-range forecasts of
temperature, wind and geopotential were also improved, to alesser extent though. A hint of an eastward
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propagation of this positive impact over the North Atlanticand Europe during the forecast was also identified.
The relatively weak impact of the assimilated precipitation data was attributed to their competition with other
observation types such as radiosondes and synoptic stationdata and to shortcomings specific to the 1D+4D-
Var approach (e.g. double use of the model background). Finally, denial 1D+4D-Var experiments, in which
NCEP Stage IV precipitation estimates were the only source of moisture-related information assimilated over
mainland USA, highlighted the strong potential positive impact of these data.

As a natural evolution of LB07’s indirect 1D+4D-Var approach, the present paper describes results from new
experiments in which NCEP Stage IV precipitation data have beendirectly assimilated in ECMWF’s 4D-Var
system, which offers more consistency with the way all otherobservations are treated in daily operations. Direct
4D-Var assimilation of NCEP Stage IV data is expected to become operational at ECMWF in 2011.

The NCEP Stage IV observations to be assimilated are described in section2. Section3 introduces the 4D-
Var assimilation method in general terms while section4 provides details specific to the assimilation of NCEP
Stage IV data as implemented in this study. Results from direct 4D-Var assimilation experiments are presented
in section5, while remaining issues are discussed in section6. Section7 summarizes the main findings of this
study and gives an outlook on the future assimilation of ground-based precipitation observations at ECMWF.

2 NCEP Stage IV precipitation data

The new observations to be assimilated in this study are NCEPStage IV precipitation data which combine
precipitation estimates from about 150 Doppler NEXt-generation RADars (NEXRAD) with about 5,500 hourly
rain-gauge measurements over the conterminous USA (Baldwin and Mitchell 1996; Lin and Mitchell 2005).
Technically speaking, NEXRAD corresponds to the so-calledWSR-88D (Weather Surveillance Radar, 1988,
Doppler) (Fultonet al. 1998). Each NCEP Stage IV precipitation analysis is initiated 35 min after the end of
each hourly collection period and may be updated over a period of several hours with new data coming from
the twelve USA regional centres. A first inflow of automatically generated precipitation data is available within
a few hours after the accumulation time, while a second inflowof updated manually-quality-controlled data
becomes available later (with a delay of up to 12 hours). The spatial coverage of the early release is usually
not far away from its maximum extent. In this work, 4D-Var experiments have been performed using manually
quality controlled data obtained from the JOSS/UCAR archive (website: http://www.joss.ucar.edu/codiac/).
Even though original precipitation data are available on a 4-km resolution polar-stereographic grid, they are
averaged on the ECMWF model’s Gaussian grid prior to assimilation. Besides, although hourly precipitation
accumulations are obtained from the archive, it will be shown in section4 that it is preferable to assimilate 6
hourly accumulations. In the following, the observations used in this study will be referred to as ”NEXRAD”
observations for simplicity.

3 The 4D-Var method

The aim of 4D-Var assimilation is to find the optimal initial 3D atmospheric state (theanalysis) that leads to a
short-range model forecast that best fits a set of observations and some a priori information from the model (the
so-calledmodel backgroundor trajectory) over a certain time window (typically up to 12 hours). Formally, the
analysis corresponds to the initial model state vector,x0, which minimizes the following cost function,J,

J =
1
2
(x0−xb

0)
TB−1(x0−xb

0)
︸ ︷︷ ︸

Jb

+
1
2∑

t
(Ht(x0)−yt)

TR−1(Ht(x0)−yt)

︸ ︷︷ ︸

Jo

+ Jc (1)
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where subscriptt denotes the model time step andxb
0 is the model background state at initial time. The term

Jc corresponds to an additional weak constraint for the control of fast gravity waves using the digital filter
approach developed by Gauthier and Thépaut (2001). In ECMWF’s 4D-Var system, the model state consists
of temperature, humidity, vorticity, divergence and surface pressure.Ht is the often non-linear observation
operator used for converting the initial model state into observed equivalents at timet. All observations avail-
able in the assimilation window are gathered in vectoryt . R andB are respectively the observation and model
background error covariance matrices.B is made flow-dependent through a wavelet formulation (Fisher 2004).

In practice at ECMWF,J is re-formulated using an incremental approach (Courtieret al. 1994) as

J =
1
2

δxT
0 B−1δx0 +

1
2∑

t
(Htδx0−dt)

TR−1(Htδx0−dt) + Jc (2)

whereδx0 = x0− xb
0 are increments relative to the model background state,dt = yt −Ht(xb

0) is the so-called
innovation vector andHt is the tangent-linear version ofHt (i.e. the matrix of local derivatives of the observation
operator with respect to each variable of the model state vector). It is also essential to note that in each 4D-
Var cycle three successive minimizations are performed at T95 (≈200 km), T159 (≈130 km) and finally T255
(≈80 km) horizontal resolution. After each minimization, themodel trajectory is recomputed at high resolution
(T511≈40 km in this study; T1279≈15 km in current ECMWF operations) to update innovation vectors, dt .
Starting with the lowest resolution ensures that larger scales are adjusted first, reduces the computational cost
of 4D-Var and permits the inclusion of weak non-linearitiessuch as those inHt. The latter advantage allows to
partially overcome the rather constraining underlying assumption of linearity inherent in the variational method.

Of particular interest for the assimilation of precipitation observations, simplified paramaterizations of convec-
tion (Lopez and Moreau 2005) and large-scale moist processes (Tompkins and Janisková 2004) are used in
each minimization. Other processes also represented inHt include radiation (Janiskováet al. 2002), vertical
diffusion and gravity wave drag (Mahfouf 1999).

4 Implementation details of NEXRAD assimilation in 4D-Var

4.1 Change of variable

To better satisfy the requirement of Gaussian distributions of observation errors in 4D-Var and to avoid the sub-
optimality of the 4D-Var analysis (Erricoet al. 2000), a logarithmic transform, namely ln(RR+ 1), is applied
to observed and model equivalent precipitation amounts (RR, expressed in mm h−1) before the assimilation.
Such transform was successfully used by Mahfoufet al. (2007) to produce precipitation analyses over Canada.
Besides, in order to better satisfy the 4D-Var linearity assumption, as discussed in more details in section6.1,
it was decided to consider 6-hour precipitation accumulations (RR6h, hereafter), still expressed in mm h−1,
instead of the original hourly precipitation data. This means that all precipitation departures involved inJo (see
Eq. (2)) are expressed in terms of ln(RR6h+1).

4.2 Screening of observations

As far as screening is concerned, NEXRAD precipitation dataare rejected over steep or rugged orography to
account for the possible degradation of radar and rain-gauge measurement quality due to ground clutter, radar
beam blocking, local precipitation enhancement or poorer representativity of rain gauges. In practice, all obser-
vations located west of 105◦W are discarded to avoid the Rocky Mountains area. Over the remaining eastern
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half of the USA, NEXRAD observations are also rejected if either the orography is higher than 1500 m or if
the standard deviation of the orography is higher than 100 m (on the original NEXRAD 4-km grid). This elim-
inates data over the highest terrain of the Appalachian Mountains. NEXRAD observations are also discarded
if snowfall is expected at ground level (namely if model background 2-meter temperature is below+1◦C) to
account for the fact that radar and rain gauge measurements can become less accurate in such situations.

Despite the quality control applied by NCEP when creating the original precipitation dataset, an additional
screening is applied to points that are likely to be affectedby the occurrence of ducting in the lower troposphere.
Ducting corresponds to the anomalous propagation of electromagnetic waves in the atmosphere, which can lead
to the mis-interpretation as precipitation of ground echoes returned towards ground-based radars receivers. In
this work, ducting is assumed to be present whenever atmospheric refractivity,N, sharply decreases with height
(dN/dz< −0.157 m−1). N is diagnosed from model background profiles of temperature,T (in K), water
vapour partial pressure,e (in Pa), and total atmospheric pressure,P (in Pa), using

N =
0.776P

T
+

3730e
T2 (3)

Therefore, conditions favourable to ducting require the existence of either temperature inversions and/or sharp
negative vertical gradients of humidity. Such situations are more likely to be encountered in the lower tro-
posphere, during nighttime or over water surfaces much colder than the air above or in the outflow region of
thunderstorms. More details on this diagnostic and its applications can be found in Lopez (2009).

Another major restriction is related to what can be called the ”0-rain” issue: wherever the model background
has no precipitation while observations have, 4D-Var will be unable to correct the model towards the observa-
tions because the adjoint sensitivity of model precipitation to the 4D-Var control variables is zero. Conversely,
wherever there is no precipitation in the observations while the model background is rainy, 4D-Var can substan-
tially reduce model precipitation but a significant ambiguity remains regarding what the actual temperature and
moisture profiles should be, unless actual measurements of these are available in the vicinity (from radioson-
des, for instance). It has therefore seemed wise to restrictthe assimilation of NEXRAD data to locations where
precipitation is simultaneously higher than a small threshold (0.001 mm h−1) in the model background and in
the observations. This issue will be further discussed in section 6.2.

To illustrate the result of the screening process, an example of NEXRAD 6-hourly accumulated precipitation
data coverage is displayed in Fig.1 for a single 6-hour period ending at 0300 UTC 3 April 2009. Note the data-
void area over the Appalachian Mountains after applicationof the rugged terrain criteria. Also note the limited
number of points affected by surface snowfall and anomalouspropagation (black and grey square symbols,
respectively).

4.3 Observation errors

Matrix R in Eq. (2) is supposed to describe observation errors in terms of variances (diagonal terms) and co-
variances (off-diagonal terms). Theoretically, these should account not only for instrumental uncertainties but
also for errors associated to the observation operator usedto convert the model state into observed equivalent,
to representativity and to the mapping of observations ontothe model grid (spatial averaging for NEXRAD
observations). Since little is known about NEXRAD error statistics, several assumptions have been made here:
matrix R is supposed to be block-diagonal (i.e. no spatial correlation among NEXRAD observations) and a
constant valueσo = 0.18 has been assigned to the error standard deviation of NEXRAD 6-hourly accumu-
lated precipitation amounts in ln(RR6h+ 1) space. This constant value ofσo implies that higher precipitation
amounts are deemed to be more reliable than smaller ones in a relative sense. Earlier attempts to expressσo

as a function of precipitation itself did not lead to any improvement in experiments scores and section6.4will
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Precipitation (mm h-1)
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Figure 1: Example of NEXRAD 6-hourly accumulated precipitation data coverage at 0300 UTC 3 April 2009.
Colour squares show precipitation observations (in mm h−1) actually used in 4D-Var. Light grey (resp. black)
squares indicate points that are rejected because they are likely to be affected by anomalous propagation (resp.

surface snowfall).

provide some a posteriori verification of the above choice.

4.4 Bias-correction

Since 4D-Var relies on the assumption that both observations and model background are unbiased, statistics of
observation minus model background departures expressed in ln(RR6h+ 1) space were computed from two-
month long passive monitoring 4D-Var experiments. Severalbias correction (BC hereafter) formulations were
tested:

(1) BC=constant,

(2) BC=
2

∑
i=0

αi ln(RR6h+1)
i
with αi =constant,

(3) BC=
2

∑
i=0

αi(tobs) ln(RR6h+1)
i
whereαi is a function of observation local time,tobs.

The quantityln(RR6h+1) corresponds to the average between model background and observation. Using the
average of model and observation avoids undesirable spurious asymmetries in the BC, as demonstrated in Geer
and Bauer (2010). Preliminary experimentation suggested that option (2) leads to the largest improvements
in analyses and forecasts. Therefore, all results presented in this paper are based on this BC formulation.
Coefficientsαi of the polynomial fit were derived from statistics computed over the two-month long passive
monitoring experiments mentioned earlier. As an illustration, Fig.2 displays observation minus model back-
ground departures in ln(RR6h+ 1) space as a function ofln(RR6h+1) values for the two 2-month periods of
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2009 considered in this study (more details in section5.1). The polynomial fit used to define the bias correction
is also shown for both period. To account for the gradual reduction of class population,n, with increasing
precipitation values, a weight equal to

(
log(nmax/n)+1

)−1
was assigned to each class in the definition of the

fit, wherenmax is the maximum class population. Figure2 demonstrates that the curves are similar for both
periods with an overestimation (resp. underestimation) inthe model for 6-hour precipitation accumulations
lower (resp. higher) than 1 mm h−1 (i.e. ln(RR6h+ 1) ≈ 0.7). The overall mean bias is rather small:−0.008
and−0.016 for April-May and September-October 2009, respectively.

(a) (b)

Figure 2: Average observation minus model background departures in ln(RR6h+ 1) space (solid line) as a
function ofln(RR6h+1) for (a) April-May 2009 and (b) September-October 2009. The dash line shows the
second degree polynomial fit chosen to define the bias-correction for the direct 4D-Var NEXRAD assimilation

experiments: BC=
2

∑
i=0

αi ln(RR6h+1)
i
. Values of fit coefficients,αi , are also given.

4.5 First-guess check and variational quality control

As already implemented for all other observation types in 4D-Var, NEXRAD observations are subjected to an
a-priori first-guess check which rejects measurements thatdepart too much from the model background. In

the present case, a NEXRAD observation is rejected if|yt −Ht(xb
0)| > 4

√

σ2
o + σ2

b , whereσo andσb are the

observation and background error standard deviations in ln(RR6h+ 1) space, respectively, and are both set
equal to 0.18. In other words, all observations leading to absolute values of background departures larger than
1.02 in ln(RR6h+ 1) space are screened out. This first-guess check for NEXRAD data is only applied in the
first trajectory of each 4D-Var cycle, as for all other observation types.

In addition, in the course of each minimization, the variational quality control (VarQC; Andersson and Järvinen
1999) already applied to all other observation types is alsoapplied to NEXRAD data. Any observation which
leads to large departures that are deemed inconsistent withneighbouring measurements, has its weight in the
cost function of Eq. (2) artificially inflated, in the current minimization only.
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5 Experiments

5.1 Set-up

Two 2-month long periods have been selected for running global experiments of direct 4D-Var assimilation
with NEXRAD precipitation observations over the eastern half of USA. The version of the ECWMF Integrated
Forecasting System (IFS) employed in this study is cycle 35r2, which was used in operations between 10
March and 7 September 2009. The first period runs from 0000 UTC1 April 2009 until 1200 UTC 31 May
2009 and the second one from 0000 UTC 1 September 2009 to 1200 UTC 31 October 2009. These two
periods were chosen because they were characterized by numerous precipitating events of both convective and
stratiform nature. For each period, two 4D-Var experimentswere performed: a control run (CTRL) that uses all
standard observations available as in ECMWF’s operations and an experiment (NEW) with NEXRAD 6-hourly
precipitation accumulations also included in the 4D-Var assimilation process. All experiments were run with 91
vertical levels and with a horizontal spectral resolution of T511 (≈40 km) in the 4D-Var trajectory computations
as well as in the subsequent 10-day forecasts started from 4D-Var analyses. The coarser resolutions used in the
three successive minimizations of each 4D-Var 12-hour cycle are described in section3.

5.2 Results and validation

5.2.1 Comparison of NEXRAD with PRISM observations

A first verification of precipitation fields is provided in Fig. 3 which compares NEXRAD with PRISM obser-
vations over the Eastern USA and over the two periods April-May and September-October 2009. The PRISM
dataset consists of monthly precipitation 4-km gridded data generated from about 7,000 rain-gauges over main-
land USA by the PRISM Climate Group (Oregon State University, http://www.prismclimate.org). No temporal
resolution better than monthly was available for PRISM dataat the time of this study. More details on the
PRISM dataset can be found in Di Luzioet al. (2008). Note that both NEXRAD and PRISM were averaged
onto the same T511 model reduced Gaussian grid prior to theircomparison. Even though some rain-gauge ob-
servations are used in the production of NCEP Stage IV precipitation analyses, PRISM data can be considered
as the only nearly-independent high-quality high-resolution precipitation dataset currently available over the
USA. Figure3 shows that NEXRAD and PRISM are remarkably close to one another for both selected periods,
even though NEXRAD have a slight tendency to exhibit finer scale features.

Table1 summarizes the spatial mean values of NEXRAD−PRISM differences, root-mean-square (RMS) dif-
ferences and correlation between the maps displayed in Fig.3. Table1 confirms the excellent level of agreement

Apr-May 2009 Sept-Oct 2009
PRISM Mean 3.18 3.75

Mean NEXRAD−PRISM diff. 0.03 −0.19
RMS NEXRAD−PRISM diff. 0.49 0.56
Correlation NEXRAD/PRISM 0.96 0.97

Table 1: Statistical comparison of two-month averaged precipitation accumulations (in mm day−1) from
NEXRAD and PRISM in April-May and September-October 2009 over the domain shaded in Fig.3

.

between NEXRAD and PRISM, with very small mean differences,modest RMS values (as compared for in-
stance to those found in Table4 when comparing model with PRISM) and correlations close to unity.
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Figure 3: Comparison of NEXRAD (top) with PRISM (middle) average precipitation amounts (in mm day−1)
over the periods April-May 2009 (left) and September-October 2009 (right). Bottom panels show time-averaged
NEXRAD−PRISM differences. The white stripe over the Mississipi Valley is due to the presence of a few
missing hourly NEXRAD data which, if not rejected, might have led to a spurious mismatch between NEXRAD

and PRISM accumulations.
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5.2.2 Background and analysis precipitation departures

When assimilating a new type of observations such as NEXRAD data, it is essential to check how background
and analysis departures expressed in observation space arestatistically distributed. Their probability density
functions (PDF) in ln(RR6h+ 1) space are plotted in Fig.4 for each of the two-month periods considered
in this paper. Samples size is 86,135 in April-May 2009 (resp. 99,298 in September-October 2009), which
means that on average 706 (resp. 814) NEXRAD observations were assimilated in each 4D-Var 12h cycle.
Panels (a) and (c) show that the distribution of observationminus background departures after bias correction
(see section4.4) is not too far from Gaussian, which is desirable in the 4D-Var context. The residual bias is
rather small for both periods (−0.037 and−0.024) and reduced compared to that of uncorrected background
departures (red histogram). One should note that these biases are of course different from those derived from
the passive monitoring experiments to construct the bias correction procedure. Panels (b) and (d) demonstrate
that the observation minus analysis departures PDF becomesmuch narrower than the background departures
PDF. For both periods, the standard deviation of analysis departures is reduced by a good 33% compared to
background departures (going down from 0.342/0.323 to 0.227/0.218). The mean bias is also reduced in the
analyses. One can also remark that analysis departures are also nearly normally distributed. All this indicates
that 4D-Var succeeded in bringing the model precipitation closer to the observations through the changes in
temperature, moisture, wind and surface pressure imposed in the analyses.

5.2.3 Precipitation scores against NEXRAD

The NEXRAD precipitation observations that are assimilated in 4D-Var are expected to modify temperature,
specific humidity, wind and surface pressure analyses. It seems natural to verify how these 4D-Var analyses
changes feedback on subsequent precipitation forecasts. First, short-range precipitation forecasts from exper-
iments CTRL and NEW have been validated against NEXRAD observations themselves, even though these
cannot be considered as independent validation data. Tables 2 and3 summarize the statistical results of this
comparison computed over periods April-May 2009 and September-October 2009, respectively, and over the
Eastern half of the USA. Precipitation accumulations over the first 6h, 12h and 24h of the forecasts started at
00Z are considered here. Displayed statistics are mean model minus NEXRAD bias, root-mean-square errors
(RMSE) and correlation coefficient, computed over all points (rainy and non-rainy). Note that RMSE and cor-
relation were obtained by averaging daily values over each two-month periods. The mean value of NEXRAD
precipitation is also given on the first row, in mm day−1.

Apr-May 2009 RR6h RR12h RR24h
NEXRAD Mean 3.12 2.90 2.99

CTRL NEW CTRL NEW CTRL NEW
Bias 0.15 −0.11 0.28 0.11 0.48 0.42

RMSE 10.03 9.09 7.41 6.81 5.73 5.55
Correlation 0.59 0.63 0.63 0.67 0.66 0.68

Table 2: Mean statistics of 6, 12 and 24-hour precipitation accumulations from short-range forecasts from
experiments CTRL and NEW versus NEXRAD observations in April-May 2009 over the Eastern USA. Mean
NEXRAD observations, model minus NEXRAD bias, RMS and correlation coefficient are computed over do-

main 25◦N-50◦N and 105◦E-70◦E. Mean, bias and RMS are in mm day−1.

As a preliminary remark, it is noteworthy that the over-estimation of RR6h found in CTRL is consistent with
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(a) (b)

(c) (d)

Figure 4: Histogram of observation minus background (left)and observation minus analysis (right) precipita-
tion departures (inln(RR6h+ 1) space) from 4D-Var assimilation experiments with NEXRAD data for April-
May 2009 (top) and September-October 2009 (bottom). Black lines display the histogram of bias-corrected
background departures (left panels) and analysis departures (right panels). Red curves show the uncorrected
background departures (left panels) and the bias-corrected background departures (right panels; i.e. a copy
of the black curve from the left panel). Green curves show theGaussian distribution with the same mean and
standard deviation as the black histogram. Frequency (y-axis) are in % and the mean, standard deviation and

total population of the black histogram are shown at the top of each panel.
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Sept-Oct 2009 RR6h RR12h RR24h
NEXRAD Mean 3.01 3.15 3.19

CTRL NEW CTRL NEW CTRL NEW
Bias 0.52 0.22 0.46 0.21 0.63 0.53

RMSE 9.82 8.76 7.78 6.97 6.12 5.74
Correlation 0.57 0.61 0.62 0.66 0.65 0.67

Table 3: Same as in Table2, but for September-October 2009.

the results obtained in the definition of the bias-correction procedure in section4.4. More importantly, both
tables give clear evidence that short-range precipitationforecasts are better in experiment NEW than in CTRL,
for both two-month periods. The absolute magnitude of the mean bias is substantially reduced. In particular,
for the second period (Table3), the bias is more than halved for forecast precipitation accumulated over 6h
and 12h. RMSE also go down by roughly 10% for 6h and 12h accumulations and by around 4% for 24h
accumulations. Similarly, the correlation is increased by0.04 and 0.02, respectively. It is also worth stressing
that bias values in experiment NEW but also CTRL are surprisingly modest. Tables2 and3 also suggest that
the improvement in precipitation forecasts brought by the assimilation of NEXRAD data tends to wane with
forecast range. This is confirmed by Fig.5 which displays similar statistics for forecast ranges between 6
and 72 hours (all forecasts are started at 0000 UTC). Note that precipitation accumulations considered in this
plot only run between successive selected forecast ranges.For instance, statistics shown at time 36h apply
to precipitation accumulations between 24h and 36h. To convert to CST or EST (USA local time zones),
one should substract 5 or 6 hours, respectively. As a first remark, panels (a) and (e) indicate that the model
tends to systematically overestimate daytime precipitation. The precipitation diurnal cycle appears to be more
pronounced in both experiments than in NEXRAD observations. This could indicate that convection is triggered
too early in the model over the Eastern USA, as already identified in LB07. More interestingly, panels (b-
d) and (f-h) confirm that the assimilation of NEXRAD data brings a significant improvement in bias, RMS
difference and correlation between model and observationsin the first 12 hours of the forecast and that this
improvement vanishes for ranges beyond 24 hours. Such short-term positive impact on precipitation forecast
is consistent with previous findings from 1D+4D-Var experiments of LB07. However, this apparent short life
of the precipitation improvement might just be an artefact of its eastward propagation out of the Eastern USA
domain considered here. Unfortunately, this assumption cannot be verified since there are currently no reliable
quantitative precipitation estimates over the North Atlantic Ocean.

A last verification against NEXRAD observations has been performed by calculating Equitable Threat Scores
(ETS) and False Alarm Rates (FAR), as defined in Appendix 3. The higher ETS and the lower FAR are, the
better. Both scores are plotted in Fig.6 for 12h forecasts started at 0000 UTC from experiments CTRL and
NEW as a function of various precipitation thresholds and for the two selected two-month periods.

Figure6 clearly demonstrates that NEXRAD observations are successfully assimilated in 4D-Var since ETS is
systematically increased and FAR reduced, especially for precipitation rates higher than 3 mm day−1. Beyond
the 12-hour range, the positive impact of NEXRAD assimilation on threat scores quickly vanishes to become
neutral beyond day 1 (not shown), consistent with previous findings.

5.2.4 Precipitation scores against PRISM

To complement the validation against NEXRAD data, independent monthly precipitation gridded data gen-
erated from 7,000 rain-gauges over mainland USA by the PRISMClimate Group (Oregon State University,
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Figure 5: Statistics of precipitation forecasts against NEXRAD observations for various forecast ranges from
6 to 72 hours (x-axis) and computed over the periods April-May 2009 (left) and September-October 2009
(right). Statistics include (a,e) mean precipitation, (b,f) mean model minus NEXRAD bias, (c,g) RMSE and (d,h)
correlation coefficient. Units are mm day−1 for the first three statistical quantities. Each symbol corresponds
to the end of the accumulation period running since the previous symbol. For example, a symbol plotted at 36h
corresponds to precipitation accumulated between 24h and 36h of the forecasts. Red (resp. blue) curve is for
CTRL (resp. NEW) experiment. Filled symbols indicate that the difference seen between CTRL and NEW is

significant (t-test with 95% confidence level).
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Figure 6: Equitable threat scores (top) and false alarm rates (bottom) computed from 12h precipitation fore-
casts from experiments CTRL (red line) and NEW (blue line) for various precipitation thresholds (in mm day−1).

Left (resp. right) panels are for April-May 2009 (resp. September-October 2009).
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http://www.prismclimate.org) have been compared to experiments CTRL and NEW. More details on the PRISM
dataset can be found in Di Luzioet al. (2008). Although the original horizontal resolution of PRISM data is
4 km, these data were averaged over the T511 model Gaussian grid prior to comparison. Table4 summarizes
mean, bias, RMSE and correlation of two-month precipitation accumulations computed from 24h forecasts
(started at 00Z) and from PRISM monthly data. Note that smalldifferences in observation coverage between

Apr-May 2009 Sept-Oct 2009
PRISM Mean 3.21 3.74

CTRL NEW CTRL NEW
Bias 0.42 0.35 0.30 0.17

RMSE 0.91 0.85 0.91 0.81
Correlation 0.89 0.89 0.93 0.94

Table 4: Mean statistics of two-month precipitation accumulations from 24h forecasts from experiments CTRL
and NEW versus PRISM gridded rain-gauge observations in April-May and September-October 2009. Mean
PRISM observations, model minus PRISM bias, RMSE and correlation coefficient are computed over domain

25◦N-50◦N and 105◦E-70◦E. Mean, bias and RMSE are in mm day−1.

NEXRAD and PRISM observations over the Eastern USA explain the discrepancies between the statistics re-
ported in Tables1 and4. Also note that RMSE (resp. correlations) are much lower (resp. higher) for PRISM
than for NEXRAD since here the statistics were calculated from two-month averages instead of daily data.
Table 4 confirms that the assimilation of NEXRAD rain data improves the agreement of 24h precipitation
forecasts with PRISM data in terms of mean bias, RMSE and onlymarginally correlation.

5.2.5 Atmospheric scores against verifying analyses

To verify how atmospheric variables are affected by the NEXRAD assimilation, anomaly correlations of 10-
day forecasts against verifying analyses were computed forgeopotential height, temperature, wind vector and
relative humidity on different pressure levels. Only the most prominent changes in scores brought by the 4D-
Var assimilation of NEXRAD observations shall be summarized here. Besides, to reduce further the number
of plots, the two periods 1 April-21 May 2009 and 1 September-21 October 2009 were grouped together in the
statistical calculations, yielding a total population of 102 cases. The last 10 days of each experiment were not
included in the statistics since scores were computed against the respective analyses of experiments CTRL and
NEW.

Figure 7 displays the impact on geopotential height (Z), temperature (T) and wind vector (WV) forecast
anomaly correlation for selected pressure levels (as mentioned on each panel in hPa) over the Northern and
Southern Hemispheres, North America, North Pacific and Tropics, as a function of forecast range from 12
hours to 10 days (all forecasts started at 00Z). Note that on all plots, score changes are normalized by the statis-
tics from experiment CTRL and that positive (resp. negative) values on the y-axis indicate an improvement
(resp. a degradation) of the selected score. Furthermore, purple bars highlight the level of significance of the
changes, based on a 95% confidence level. An impact value is significant only if the associated bar does not
cross the y=0 line. Figure7 shows that scores over the Northern Hemisphere are slightlyimproved for all
variables up to day 5 or 6, in a significant way up to day 3 of the forecast. They are degraded beyond day 6, sig-
nificantly for T850 around day 8. Over the southern Hemisphere, the impact ofassimilating NEXRAD data is
positive, especially during the first three days of the forecast. It was checked that this rather unexpected impact
gradually develops during the 4D-Var cycling. Over North America, changes in scores tend to be slightly neu-
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Figure 7: Impact of 4D-Var assimilation of NEXRAD precipitation observations on forecast anomaly correla-
tion against own analyses as a function of forecast range (indays). Score changes for 1000 hPa geopotential
height (Z1000; left panels), 850 hPa temperature (T850; middle panels) and 850 hPa wind vector (WV850;
right panels) are plotted for different regions: (a)-(c) Northern Hemisphere (N.Hem), (d)-(f) Southern Hemi-
sphere (S.Hem), (g)-(i) North America (N.Amer), (j)-(l) North Pacific (N.Pac) and (m)-(n) Tropics. Note that
500 hPa Z is shown instead of 1000 hPa Z over North America, since many points in this regions are situated
well above sea level. Changes shown on y-axis are normalizedby the score in experiment CTRL and posi-
tive (resp. negative) values indicate an improvement (resp. degradation) of the score. Purple bars indicate

significance at the 95% confidence level.
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tral (for Z andT) over the first 4 days, but become negative later, though not significantly. Wind is particularly
improved close to analysis time (panel (i)) at 850 hPa but also at other levels, especially close to the tropopause
(not shown). North Pacific scores are mostly positively affected at all forecats ranges, with good confidence
after day 1 and until day 3 or 4. Similarly, tropical scores tend to become better especially for temperature
around days 4-5 (panel (m)). Over all these regions, scores at higher levels were found to be either unaffected
or modified in a way consistent with Fig.7. Over all other sub-regions, including Europe, North Atlantic and
Asia, score changes turned out to be either neutral or not significant (not shown). Relative humidity scores,
which are now known to be more difficult to interpret when assimilating new moisture-related observations for
reasons explained in Geeret al. (2010), did not exhibit any significant changes either. Overall the assimilation
of NEXRAD precipitation observations in 4D-Var is either neutral or slightly positive on standard atmospheric
verification scores, which is not really surprising given the limited spatial coverage of NEXRAD observations
and their competition with other observation types with small errors, such as radiosoundings or synoptic sta-
tion measurements. These results are consistent with thosefrom 1D+4D-Var experiments in LB07, who also
demonstrated through denial experiments that NEXRAD data could have a much larger positive impact if they
were assimilated as the sole source of moisture informationover the USA.

5.2.6 Verification against other observation types

Consistent with the overall small impact of NEXRAD observations that was found when looking at atmospheric
scores against own analyses in section5.2.5, no significant changes appear either when considering observation-
minus-background and observation-minus-analysis departures statistics for all types of observations assimilated
in 4D-Var (using OBSTAT software). This remains true even when statistics are restricted to the Eastern USA,
as illustrated in Fig.8 which compares profiles of background and analysis departure standard deviations from
experiments CTRL and NEW against all radiosonde measurements of temperature, relative humidity and zonal
wind assimilated in 4D-Var over this sub-domain. These plots are for period September-October 2009. If
anything, the standard deviation of the departures is slightly reduced at all levels in NEW compared to CTRL.
Similar conclusions can be drawn about period April-May 2009 for all other observation types and for mean
bias as well (not shown).
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Figure 8: Background departure (solid line) and analysis departure (dotted line) standard deviation profiles
with respect to radiosonde observations of (a) temperature(K), (b) relative humidity (%) and (c) zonal wind
(m s−1) from experiments CTRL (red) and NEW (black). Statistics were computed over about 7,500 radiosound-

ings over the Eastern USA in September-October 2009. Vertical axis shows pressure in hPa.
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5.2.7 Validation against GOES-12 infrared brightness temperatures

An attempt was also made to verify the impact of NEXRAD data assimilation on cloud analyses and forecasts
through a comparison to geostationary infrared imagery (10.7 µm) from the GOES-12 satellite, overlooking the
Americas (full-disk data obtained through NOAA/CLASS). Toperform this validation in 10.7-µm brightness
temperature space, simulated images were computed from theECMWF model temperature, moisture, cloud and
ozone fields using the RTTOV-9 radiative transfer model (http://research.metoffice.gov.uk/research/interproj/-
nwpsaf/rtm/rtmrttov9.html). Model minus GOES mean statistics computed over two months (not shown) did
not exhibit any significant change, even when focusing on theeastern half of the USA and on short-range
forecasts. This may be explained by the fact that infrared TBs are mainly sensitive to cloud top temperatures
only, which are not necessarily strongly correlated with precipitation amounts, especially in stratiform cloud
systems. However, substantial positive and negative localimpact on TBs can be found when considering
individual images, as illustrated in Fig.9 for 12h forecasts of two frontal situations. Here, impact isdefined
as |NEW−GOES|− |CTRL−GOES|. Most of the positive and negative changes are located inside cloudy
regions, which is understandable since NEXRAD data were only assimilated at points with precipitation both
in the model background and in the observations. Therefore,cloud water is simply redistributed inside the cloud
system. But again, on a monthly time scale, these positive and negative changes cancel out and the impact of
the NEXRAD assimilation on 10.7-µm TBs is neutral.
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Figure 9: Two examples of impact of NEXRAD data assimilationon 10.7µm simulated TBs from 12h forecasts
compared to GOES-12 observations (shown with black and white shading, in K) (a) at 0000 UTC 23 October
2009 and (b) at 1200 UTC 30 October 2009. Positive (resp. negative) impact is shown with green (resp.

orange) contour isolines (5, 10, 20, 30 K).

6 Discussion

6.1 Minimization versus trajectory

In the course of each 4D-Var assimilation cycle, model minusobservation departures evolved at lower resolution
using the linearized model in each minimization (i.e.Dminim= Htδx0−dt = Ht [xb

0]+Htδx0−yt) should not, in
theory, differ too much from model minus observation departures evolved at high resolution with the non-linear
model in the subsequent trajectory (i.e.Dtra j = Ht [xb

0 + δx0]−yt).

In practice, however, discrepancies betweenDminim andDtra j can arise from:
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(1) the fact that the linearized model,H, used in the minimizations is only a simplified version of thefully-
fledged non-linear model,H, used in trajectory computations (for reasons mentioned inthe introduction),

(2) strong non-linearities inH, especially if moist processes are to be represented, whichimplies that 4D-Var’s
underlying assumption of linearity is breached,

(3) resolution differences between minimizations and trajectories (see section3).
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Figure 10: Taylor diagram showing the level of agreement between model minus observation departures
(Dminim) computed in the first minimization using the simplified linearized model at T95 resolution with those
(Dtra j ) evolved in the following trajectory using the fully-fledged non-linear forecast model at T799 resolution.
Azimuth shows correlation between Dtra j and Dmin while radial distance measures the ratio of their standard
deviations (SDR). The black square indicates a perfect agreement, when correlation and SDR are both equal
to unity. Each symbol corresponds to a given observation type assimilated in 4D-Var, as shown in the legend at

the top. Statistics are based on a single 4D-Var 12-hour cycle valid at 0000 UTC 1 April 2009.

The level of matching betweenDminim andDtra j was assessed over a single 4D-Var cycle for each observation
type currently assimilated in the ECMWF operational systemas well as for NEXRAD observations. Note
that in this particular experiment, the trajectory was run at T799 (≈25 km) resolution and that statistics were
computed over the whole 4D-Var 12-hour assimilation window. Results for the first (T95 resolution) of the
three minimizations are summarized on the Taylor diagram inFig. 10which displays the correlation coefficient
betweenDtra j andDminim (azimuth) and the associated standard deviation ratio,SDR, (radial distance). Each
symbol corresponds to a given observation type as indicatedin the top legend (see Appendices 1 and 2 for
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the meaning of abbreviations). The black square symbol identifies a perfect match betweenDtra j andDminim.
Figure10 shows that for observations that are not directly affected by cloud and precipitation processes,SDR
remains reasonably close to unity and the correlation higher than 0.7. For microwave brightness temperatures
from SSM/I and AMSR-E which are highly sensitive to clouds and precipitation,SDRreaches 1.7 and the
correlation drops below 0.5, consistent with Baueret al. (2010). This points towards a degradation in the
validity of the linearity hypothesis. In the case of hourly NEXRAD precipitation data, the breach of linearity
becomes terrifying sinceSDRreaches 5.2 and the correlation plummets to 0.2, which offers a daunting prospect
for their optimal assimilation in 4D-Var.

However, it was found that the linearity could be much improved by assimilating precipitation observations
accumulated over several hours instead of the original hourly data. Linearity results for accumulation lengths
of 3, 6 and 12 hours are plotted in Fig.10. Accumulating NEXRAD observations over 6 hours bringsSDR
down to 2 (not far from SSM/I or AMSR-E) and correlation up to 0.72 (better than for SSM/I or AMSR-E),
indicating a strong improvement in the level of linearity. Similar conclusions can be drawn for the second
and third minimizations (not shown), although the gap between the various NEXRAD accumulation periods is
slightly reduced and the overall agreement between minimization and trajectory increments better than in the
first minimization.

In view of these results, it was decided to assimilate NEXRAD6-hourly accumulations (RR6h), which provides
the best compromise between linearity and observation usage over the 4D-Var 12-hour window. Therefore, the
quantity actually assimilated in the 4D-Var experiments isln(RR6h+1), whereRR6h is expressed in mm h−1.
The positive impact of the temporal accumulation on linearity is entirely consistent with recent findings of
Mahfouf and Bilodeau (2007), Fabry and Sun (2010) and Fabry (2010). In terms of practical implementation, it
is worth noting that the contributions of each NEXRAD hourlyobservation to the adjoint sensitivities (HT) have
to be summed up over 6-hour time slots. One can also stress that the assimilation of temporally accumulated
observations has the advantage of reducing the occurrence of ”0-rain” points (see sections4.2 and6.2) as a
result of the propagation of weather systems over longer periods of time.

6.2 ”0”-rain issue

One of the major issue that remains unsolved is the so-called”0-rain” issue, as already introduced in section4.2.
When the model background precipitation is zero, a rainy NEXRAD observation will be unable to produce any
increment of the assimilation control vector (temperature, humidity, wind and surface pressure) as a result
of the absence of sensitivity in the adjoint moist physics. With a two-step assimilation method such as the
1D+3D-Var of Caumontet al. (2010), it is possible to use a first-guess which is artificially forced towards
precipitation through a moistening of the background vertical profile. This approach may give satisfactory
results at kilometric horizontal resolutions since atmospheric profiles with precipitation can be assumed to be
saturated at some vertical levels. However, even in this case, some uncertainty remains about the exact location
of those levels, especially if only 2D precipitation observations are assimilated. For coarser resolutions (say
5 km or more), there is some additional uncertainty about which relative humidity values should be specified
in the modified first-guess profile, since by construction themodel can produce precipitation even if the grid
box is far from saturation. In the case of direct 4D-Var, using a first-guess which is different from the model
background is theoretically possible but would require further investigation with probably some additional
technical developements. Furthermore, the inclusion of ”0-rain” cases would also mean to address the issues
that (1) the occurrence of non-rainy events is currently underestimated in the ECMWF model (too many grid
points with small precipitation amounts) and (2) NEXRAD observations might not detect weaker precipitation
because of the minimum detection threshold of the radar.
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6.3 Asymmetry of analysis departures

It was found in earlier experimentation that 4D-Var could more easily dry the model state (when the back-
ground has more precipitation than in the observations) than moisten it (when the background is less rainy than
the observations), consistent with the findings of Geeret al. (2010) for the assimilation of all-sky microwave
radiances. Removing the limitation of humidity analysis increments above saturation implemented in the stan-
dard model code (Hólm 2002) helped to reduce this asymmetryin all experiments presented here. Although
radical, this measure helps to overcome the limiting effectof the saturation threshold, especially in very moist
regions, as already identified in Houet al. (2000), for instance. However, some asymmetry remains as il-
lustrated in Fig.11 which displays 4D-Var analysis-minus-observation versusbackground-minus-observation
departures in ln(RR6h+1) space from experiment NEW in September-October 2009. Figure 11clearly shows

Figure 11: 2D PDF of analysis-minus-observation versus background-minus-observation departures from ex-
periment NEW for September-October 2009. All departures are expressed inln(RR6h+ 1) space. Colour
shading indicate frequency (labelled 0.1, 1, 2, 3, 5, 7, 10 and 15%) while the black dashed line corresponds to

the mode of the analysis departure distribution for each background departure class.

that the analysis gets closer to the observations when modelbackground is too rainy (left half of the plot) than in
the opposite case (right half of the plot). This might be the consequence of the existence of an asymmetry in the
sensitivities of the precipitation produced by the moist physics to its input variables, in particular temperature
and moisture.

6.4 Observation error statistics

it was mentioned in section4.3 that the error standard deviation for NEXRAD observations was set to a rel-
atively arbitrary constant value of 0.18. In order to assessthe validity of this specification, the diagnostic
approach proposed by Desrozierset al. (2005; DZ05 hereafter) was applied to the outputs from the 4D-Var
assimilation experiments (NEW) presented in this paper. Among other things, this method allows the a posteri-
ori estimation of observation error statistics (matrixR) from background and analysis departures computed in
4D-Var. DZ05’s Eq.(3) states that

R = E[do
a(d

o
b)

T ] (4)
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wheredo
b and do

a are respectively the observation-minus-background and observation-minus-analysis depar-
tures andE is the statistical expectation operator. This computationcan be applied to a selected subset of
observations, namely here all assimilated NEXRAD observations, to diagnose the a posteriori observation er-
ror standard deviation as

σo =
( p

∑
j=1

(do
a) j(do

b) j/p
) 1

2 (5)

wherep is the number of NEXRAD observations (indexedj). Figure12 displays the values ofσo diagnosed
from Eq. (5) as a function of ln(RR6h+ 1). It appears that the diagnosed observation errors do not differ too
much from the constant value of 0.18 prescribed in this study(dashed line in Fig.12). There is an indication
thatσo might be slightly overestimated in this study for precipitation rates lower than 0.2 mm h−1 and under-
estimated for higher rain rates. Even though previous experimentation showed that results from direct 4D-Var
assimilation of NEXRAD data were not very sensitive toσo variations of such amplitude, a slight retuning of
observation errors will be considered before operational implementation.

Figure 12: Observation error standard deviations obtainedfrom Desroziers et al. (2005) a posteriori diag-
nostics (solid line) as a function of precipitation rate. All values are inln(RR6h+ 1) space. The dashed line
corresponds to the constant value ofσo =0.18 used in this study. Diagnostics are valid for April-May2009.

7 Conclusions

Direct 4D-Var assimilation experiments using 6-hour precipitation accumulations from NCEP Stage IV com-
bined ground-based radar (NEXRAD) and rain-gauge observations over the Eastern half of the USA have been
run over two 2-month long periods in 2009. The motivation wasto assess the impact of these additional data
on both 4D-Var analyses and subsequent forecasts. Precipitation observations averaged over 6 hours were pre-
ferred to the original hourly data since this helped to reduce the discrepancies between the minimizations run
at low resolution with simplified linearized physics and subsequent trajectories run at high resolution with full
non-linear physics. Although observation minus background mean biases turned out to be relatively small, a
simple bias correction procedure was defined as a second-order polynomial function of precipitation amount.

As expected from a well behaved assimilation system, analysis departures turn out to be significantly reduced
compared background departures. Besides, the assimilation of the new rain observations leads to a significant
improvement on precipitation forecasts for ranges up to 12 hours, with respect to NEXRAD observations but
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also to independent monthly PRISM rain-gauge measurements. This improvement quickly vanishes, which is
consistent with previous 1D+4D-Var experiments of LB07. Atmospheric forecast scores are not significantly
affected in general. Even though a degradation of mid-leveltemperature scores beyond day 7 appears over
the Northern Hemisphere, a significant positive impact can be identified on temperature, wind and gepotential
scores over the North Pacific and the Southern Hemisphere up to day 4, and for tropospheric wind over North
America during the first day of the forecasts. The limited impact of NEXRAD observations can be explained
by their competition with all other observation types available over North America.

Efforts in the near future will be devoted to the transfer of all changes required in the IFS (129 files, includ-
ing scripts and SQL requests) to the latest cycle available and to run new tests at higher resolution (T799 or
T1279), prior to operational implementation in 2011 (as planned). The screening of snowy situations ought to
be revisited to try to increase the coverage of actually assimilated NEXRAD observations in the wintertime.
Also, to avoid the need for constantly retuning the bias-correction coefficients everytime the model is changed,
one might consider the inclusion of NEXRAD observations in the variational bias correction framework im-
plemented in ECMWF’s operational 4D-Var system (Dee and Uppala 2009). The planned implementation of a
new prognostic variable for cloud condensate in the 4D-Var assimilation control vector might also improve the
performance of precipitation assimilation in general. Further work should also aim at overcoming the ”0-rain”
issue which currently restricts NEXRAD observation usage to the situations where both model background and
observations are rainy. Using a first-guess modified from thebackground at the beginning of each 4D-Var cycle
could theoretically be a solution, but this was never testedin ECMWF’s 4D-Var.

In the longer term, one could consider the assimilation of more radar networks (e.g. Europe, China, Canada,...),
once problems of data availability and homogeneity are solved (e.g. Lopez 2008 on OPERA data). Besides,
the new ability to assimilate accumulated precipitation measurements should make it possible to consider 4D-
Var assimilation of rain-gauge observations from synopticstations, which are currently used for verification
purposes only, even though this would mean to address the issue of their representativity, first.

Despite the rather neutral or slightly positive impact found on traditional atmospheric scores so far, the clear
improvement of short-range precipitation forecasts suggests that genuine precipitation analyses can now be
obtained over the Eastern USA, which should be beneficial to the quality of the surface analysis, in particular
of soil moisture contents. More generally, it is undeniablethat obtaining better high-resolution precipitation
analyses over land is vital for nowcasting, hydrological and climatological applications.
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APPENDIX 1

List of abbreviations used in the text:

NOAA = National Oceanic And Atmospheric Administration (USA)
NCEP = National Centers for Environmental Prediction (USA)
JOSS = Joint Office for Science Support (USA)
UCAR = University Corporation for Atmospheric Research (USA)
JMA = Japan Meteorological Administration
ECMWF = European Centre for Medium-range Weather Forecasts
PRISM = Parameter-elevation Regressions on Independent Slopes Model
CLASS = Comprehensive Large Array-data Stewardship System
OPERA = Operational Programme for the Exchange of weather RAdar information (Europe)

SSM/I = Special Sensor Microwave Imager
AMSR-E = Atmospheric Microwave Scanning Radiometer - EarthObserving System
TMI = TRMM Microwave Imager
TRMM = Tropical Rainfall Measuring Mission
GOES = Geostationary Operations Environmental Satellite

APPENDIX 2

List of abbreviations used in Fig.10:

TB = Brightness temperature
HIRS = High-resolution Infrared Radiation Sounder
AMSU = Advanced Microwave Sounding Unit
AIRS = Atmospheric Infrared Sounder
IASI = Infrared Atmospheric Sounding Interferometer
MHS = Microwave Humidity Sounder
QuikSCAT = Quick Scatterometer
QSCAT-uv = QuikSCAT winds
SATOB-uv = Geostationary satellite motion vectors
TEMP-T = Radiosonde temperature
TEMP-q = Radiosonde specific humidity
TEMP-uv = Radiosonde wind components
SYNOP-Ps = Synoptic station surface pressure
AIREP-T = Aircraft temperature reports
NCEP-RR = NCEP Stage IV hourly precipitation amounts
NCEP-RR12h = NCEP Stage IV 12-hour accumulated precipitation amounts
NCEP-RR6h = NCEP Stage IV 6-hour accumulated precipitationamounts
NCEP-RR3h = NCEP Stage IV 3-hour accumulated precipitationamounts
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APPENDIX 3

Precipitation scores used in this study are the Equitable Threat Score (ETS) and the False Alarm Rate (FAR),
defined as follows

ETS =
H −He

H +M +F −He
(6)

FAR =
F

H +F
(7)

whereH is the number of correct hits,M is the number of misses andF is the number of false alarms.He is the
number of correct hits purely due to random chance and is computed as

He =
(H +F)(H +M)

N
(8)

whereN is the sample size.
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