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ABSTRACT

A radar-and-lidar reflectivity forward model is required to enable the verification and data assimilation work
planned for this project using CloudSat and CALIPSO data. At ECMWF, a radar forward operator exists,
explicitily designed for assimilation purposes. It has been used for ground-based 14 and 35 GHz radar
observations and it has been adapted for the CloudSat radar frequency of 94 GHz in this study. Also, a
recent pre-existing radar-and-lidar forward operator, called CFMIP (Cloud Feedback Model Intercompari-
son Project) Observation Simulator Package (COSP), has been implemented. This operator is being used
only for verification purposes since the assimilation system requires stringent specifications of computa-
tionally efficiency. The first part of this report compares the two forward models, shows their sensitivities
to different microphysical and sub-grid variability assumptions and describes the changes to the ECMWF
forward model for use in this project. Since CloudSat and CALIPSO observations have high vertical and
horizontal resolution, but they lack of spatial coverage, it is important to address the issue of representativity
errors. These errors are likely to form a large part of the total observation error and their magnitude varies
for different wheather regimes. The second part of this report presents a statistical approach for computing
a flow dependent estimate for the representativity error. The proposed method derives a quasi-empirical
relationship between the error and a statistical measure (”score”) which can be computed from satellite
measurements. The robustness of this method is demonstrated for observations which have larger horizontal
coverages and therefore allow a direct verification.
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1 Introduction

For Numerical Weather Prediction (NWP) systems, verification, monitoring and data assimilation require a
forward operator to generate the model equivalent to the observations. Its definition affects biases, observa-
tion and modelling errors and assimilation performance.

In the first part of the first work package (WP-1000) of the QuARL project, existing forward operators for
radar and lidar have been adapted for use in the verification and data assimilation work later in the project.
The CFMIP (Cloud Feedback Model Intercomparison Project) Observation Simulator Package (COSP)
which contains a radar simulator for CloudSat (Haynes et al., 2007) and a lidar simulator for CALIPSO
(Chiriaco et al., 2006) has been implemented at ECMWF and used for model verification. Since the assim-
ilation system requires computationally efficient operators, an ECMWF radar reflectivity model used in the
past for assimilation studies of ground-based 14 and 35 GHz radar observations (Benedetti and Janisková
2004, Janisková 2004, Lopez et al. 2006) has been adapted for the CloudSat radar frequency of 94 GHz.
Section 2 compares these radar reflectivity forward models, describes their sensitivities to different micro-
physical and sub-grid variability assumptions and recommends the appropriate forward model for use in this
project.

While the capability of a forward operators to mimic the evolution of radar or lidar rays faithfully is im-
portant, this does not guarantee an accurate comparison between model output and CloudSat or CALIPSO
observations. One error source which, indeed, is intrinsic to most model-observation comparisons stems
from the fact that measurements are generally valid on different space and time scales from those which
are represented by the model variables. For CloudSat and CALIPSO observations the corresponding rep-
resentativity (or representativeness) error is potentially very large as their horizontal coverage is very small
compared to that of a NWP model gridbox. For this reason great effort has been made to estimate this error.
As, from the beginning of the project it was recognized that the size of the representativity error is strongly
dependent on weather regime, a flow dependent error measure has been developed. Errors and biases related
to the representativity problem are discussed in Section 3.

2 Forward operator: adaptation and development

The A-Train is a constellation of five satellites flying in formation. This constitutes a unique opportunity
to provide, in a synergistic way, a multitude of measurements about aerosol, atmospheric water (in all
phases), ozone and trace gases. Among the instruments, both CloudSat radar and CALIPSO lidar have a
fundamental role in improving the understanding of the physics of clouds, through the information about
the vertical structure. CloudSat carries the Cloud Profiling Radar (CPR), a 94-GHz nadir-looking radar that
measures the power backscattered by clouds with a sensitivity threshold of -26 dBZ.

At ECMWF, a procedure has been implemented for the assimilation of radar observations (Lopez et al.,
2006). In this context, a forward operator for reflectivities (ZmVar) was designed to meet the requirements
of the assimilation system, i.e., to allow the coding of its adjoint counterpart, to be computationally efficient,
and to have a certain degree of flexibility (e.g., for the definition of the optical properties). The focus of this
study is on the adaptation of ZmVar to simulate CloudSat radar observations. For this purpose, ZmVar
will be compared with a recent forward operator developed by the Cloud Feedback Model Intercomparison
Project (CFMIP) community which is called the CFMIP Observation Simulator Package (COSP). Both
ZmVar and COSP are designed to simulate the signal (i.e. reflectivities) which CloudSat and CALIPSO
would measure if they were confronted with the atmospheric conditions obtained from a global circulation
model.

ESA contract 1-5576/07/NL/CB WP-1000 1
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For validation, the simulated CloudSat radar reflectivities from ZmVar will be compared to the correspond-
ing real observations. For this the ZmVar input profiles (which are extracted from the ECMWF integrated
forecast model IFS) have to be geographically and temporally coincident with CloudSat observations.

2.1 Reflectivity models

2.1.1 ZmVar

ZmVar was first developed at ECMWF for the Precipitation Radar on board the Tropical Rainfall Measuring
Mission satellite (Benedetti et al., 2005). First, for each hydrometeor, h, the backscattering cross section,
σh

bs(D), and the extinction cross section, σh
ext(D), are computed for a single particle (of size D) using the

Mie solution for a sphere (at the specified temperature and the given wavelength, λ ). The assumption of
sphericity for ice particles is an approximation that avoids the use of a more complex and computationally
expensive solution to the problem (e.g. Discrete Dipole Approximation). This assumption, although rather
simple, is reasonable since the corresponding errors are smaller than those resulting from the imperfect
knowledge of the ice particles’ size spectrum.

To deduce the optical properties of water or ice particles one needs a model for the interaction with the
radiative electro-magnetic field. The key quantity of such a description is the permittivity ε = ε

′
+ iε

′′
which

describes the impact that the internal distribution of charges has on an external dielectric field. Generally,
the response of the internal charges to an external field is time dependent and also a function of temperature.
As a result, the permittivity depends on the frequency of the external field as well as the temperature of
the responding medium. The real part ε

′
of ε describes the dispersion of the phase delay induced on an

electromagnetic wave passing through a medium, while ε
′′

represents the loss of energy. The complex
refractive index m = m

′− i m
′′

is related to ε through m =
√

ε . ZmVar uses the water permittivity model
of Liebe et al. (1991), while for ice the model of Mätzler and Wegmüller (1988) is implemented. Frozen
hydrometeors are modelled as particles composed of an air-ice mixture, i.e. with a density ρ lower than the
one of pure ice. The corresponding effective permittivity is evaluated using the model of Maxwell Garnett
(1904). It is also worth mentioning that ZmVar includes a model for treating melting ice particles below the
freezing level (Bauer et al., 2000). However, the modelling of the melting layer is of secondary importance
here, since the bright band phenomenon is weak at a frequency of 94 GHz due to attenuation (Kollias and
Albrecht, 2005). In addition, the melting layer is resolved only very crudely by the coarse vertical resolution
of the model.

Simulating radar reflectivity requires not only the knowledge of the single particle scattering/extinction
properties, but also the number distribution for particles of a given size D (into which the hydrometeor
content w is divided) has to be known for each hydrometeor type h. For this a particle size distribution
(PSD) Nh(D) is generally assumed from which the equivalent radar reflectivity Zh can be evaluated by
integrating over the size spectrum:

Zh =
λ 4

π5|Kw|2

Dh
max∫

Dh
min

σ
h
bs(D)Nh(D)dD (2.1)

where Dh
min and Dh

max are pre-defined values of limits for the particle size and Kw is defined as:

Kw =
m2

w−1
m2

w +2
. (2.2)
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Here mw is the water refractive index and depends on the radar frequency as well as the reference tempera-
ture. A formula similar to Eq. (2.1) can be written to evaluate the volumetric extinction β h:

β
h =

Dh
max∫

Dh
min

σ
h
ext(D)Nh(D)dD . (2.3)

For computational efficiency, ZmVar uses a pre-calculated table of hydrometeor optical properties (extinc-
tion and backscattering coefficients). This look-up table contains volumetric extinction and equivalent re-
flectivity of predefined hydrometeor types specified on a range of temperatures and hydrometeor contents
(HCs), for the relevant frequency (i.e. 94 GHz in our case). The following discretization is used:

• 70 values of temperatures, [234-303] K for liquid particles and [204-273] K for frozen particles.

• 401 values of hydrometeor content, logarithmically scaled in the range [0.0001-1] g/m3.

ZmVar has the capability to model six hydrometeor types: rain, snow, graupel, hail, cloud liquid water, and
cloud ice water. Since the ECMWF model does not directly represent the graupel and hail categories associ-
ated with deep convection, only non precipitating (cloud ice) and precipitating (snow) frozen hydrometeors
are considered in this study.

Cloud liquid and cloud ice are assumed to follow a Modified-Gamma distribution, also called the Khrgian
Mazin distribution (Deirmendjian, 1969). It prescribes the number of particles per radius r according to the
following expression:

n(r) = arαe−brγ

(2.4)

Constants a, b and γ are real and positive, while α is a positive integer.

PSDs of other hydrometeors are modelled as a Gamma distribution (and the exponential distribution is a
special case when µ = 0):

N(D) = N0Dµe−
D

Dn (2.5)

where N0 is the number concentration intercept parameter (units: m−4), µ is the shape parameter and Dn is
the characteristic diameter.

Each of these distributions has two, three or four degrees of freedom. To fully define the number of particles
per size bin, additional assumptions have to be made which specify all but one degree of freedom. This
last degree of freedom is then determined from the HC (mass) conservation. PSDs and values of their fixed
parameters for each hydrometeor type as set within ZmVar are given in Tab. 2.1.1 (second and third column).

To simulate radar measurements at 94 GHz, it is important to properly model the density ρ of frozen parti-
cles. ZmVar assigns a different density to each ice category. The value doesn’t depend on the particle size.
The forth column of Tab. 2.1.1 contains the default values of particle density originally specified in ZmVar.

ESA contract 1-5576/07/NL/CB WP-1000 3
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Hydrometeor Distribution type Distribution parameters Density [g/cm3]

Cloud Liquid Mod. Gamma
α = 2
b = 0.425
γ = 1.0

1.0

Cloud Ice (Pristine) Mod. Gamma as above 0.916

Rain Gamma
µ = 2

N0 = 0.08cm−4 1.0

Snow Exponential N0 = 0.03cm−4 0.1

Graupel Gamma
µ = 0

N0 = 0.04cm−4 0.4

Hail Gamma
µ = 0

N0 = 0.04cm−4 0.916

Table 2.1.1: Original parametrization of hydrometeor particle properties in ZmVar.

The way reflectivity is computed by ZmVar is schematically given in Fig. 2.1. First, the look-up table is
read and stored into memory. Values of reflectivity due to each single hydrometeor type are then evaluated
by means of a bilinear interpolation on the values of temperature and HC of the input profile. Equivalent
reflectivity of all hydrometeors are then combined:

Z = ∑
h=1,NHY D

Zh (2.6)

Simulated measurements are finally obtained taking into account the attenuation of the signal along the path:

Za = Z e−2τ (2.7)

where τ is the optical depth between the layer considered and the top of the atmosphere. The power emitted
and returned to the radar is attenuated by clouds above, but also by atmospheric gases. This effect is not
negligible at 94 GHz, but it was not included in the original version of ZmVar. In the context of this project,
the attenuation due to gases has been considered when evaluating the attenuated reflectivity (together to the
one due to the hydrometeors) using the model of Liebe et al. (1992). The impact on the resulting Z has been
investigated using ZmVar to simulate 94 GHz reflectivities corresponding to a set of 50 ECMWF model
profiles simulated with and without considering gas attenuation. Fig. 2.2 compares results of two runs for
three model levels (higher model levels correspond to heights closer to surface). We can note differences
from 2 to 5 dBZ, depending on the bin height.

2.1.2 COSP

The simulator of radar observations within COSP is the QuickBeam reflectivity simulator. QuickBeam has
been developed at Colorado State University in the framework of the CloudSat mission. An overview of this
software is given in Haynes et al. (2007), while an example of application can be found in Bodas-Salcedo
et al. (2008). Given a list of input variables relative to a cloud profile (namely: pressure, temperature,
humidity, and mixing ratio of hydrometeors), QuickBeam evaluates the corresponding values of equivalent
radar reflectivity at a specified radar frequency. The number and the type of hydrometeors (in liquid and
solid phases) depends on what is available from the cloud/climate model and can be specified by the user.

The way QuickBeam evaluates reflectivities closely resembles ZmVar. Hydrometeors are assumed as a col-
lection of spherical particles and therefore backscattering is evaluated using Mie theory. In QuickBeam

4 ESA contract 1-5576/07/NL/CB WP-1000
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Figure 2.1: Schematic representation of ZmVar.

−30 −25 −20 −15 −10 −5 0 5 10
−30

−25

−20

−15

−10

−5

0

5

10

Z
att−nogas

 [dBZ]

Z
at

t [
d
B

Z
]

Impact of Gas Absorption at 94 GHz

 

 

Model Level 91

Model Level 81

Model Level 71

Figure 2.2: Comparison of 94 GHz ZmVar reflectivities simulated with and without inclusion of atmospheric gas
absorption at model levels 91 (level closest to the surface), 81, and 71 corresponding approximately to 1010 hPa, 925
hPa and 700 hPa, respectively.

water permittivity is evaluated according to the model of Ray (1972), while the model of Warren (1984) is
used for ice permittivity. QuickBeam allows the user to represent a number of different forms of hydrome-
teor PSDs. The following PSDs are modelled:

• Gamma:

N(D) = Nt
1

Γ(µ)Dn

(
D
Dn

)µ−1

Dµe−
D

Dn (2.8)

where Nt , Dn (the characteristic diameter) and µ (the shape parameter) are real and positive. Note that the

ESA contract 1-5576/07/NL/CB WP-1000 5
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mean diameter D is related to Dn and µ through the following expression:

D =
Γ(µ +1)

Γ(µ)
Dn (2.9)

• Exponential:

N(D) = N0e−
D

Dn (2.10)

where N0 and Dn are real and positive.

• Power law:

N(D) = ADb (2.11)

where A and b are real and positive.

• Log normal:

n(r) =
Nt√

2π(lnσg)r
e
− ln2(r/rg)

2(lnσg)2 (2.12)

where rg is the geometric mean particle radius, Nt is the total particle number concentration, and σg is the
geometric standard deviation.

• Mono dispersed:

N(D0) = N0 (2.13)

Note that QuickBeam also allows specifying as input, beside the liquid/ice water contents, the particle
effective radius. This option is useful when working with profiles generated from models, many of which
are able to diagnose the effective radius of (non-precipitating) particles, varying along the profile.

As mentioned above, hydrometeor PSDs are input parameter to QuickBeam. The choices made in the im-
plementation of QuickBeam within COSP are summarized in the second and third columns of Table 2.1.2.
PSDs of precipitating hydrometeors (rain and snow) are modelled as exponential, a reasonable approxima-
tion of observed rain and snow size distributions. The fixed size parameter is the intercept N0, representing
the fact (characteristic in precipitation) that the number of particles with larger size tends to increase as water
content increases. For cloud liquid a lognormal distribution is used. This function has been chosen because
it represents the drop size spectra for cloud droplets observed from in situ measurements. The cloud ice
size distribution is modelled as Gamma, which has a spread wider than the lognormal. As the water content
increases, differently from the exponential, the shape of the Gamma and lognormal PSDs is unchanged.

Differently from ZmVar, in QuickBeam particle density can also be treated expressing the particle mass as
a power law function of its diameter:

m(D) = αDβ (2.14)

6 ESA contract 1-5576/07/NL/CB WP-1000
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In case of frozen particles, it has to be interpreted as a ‘mean diameter’, i.e. an average dimension of the
particle. Table 2.1.2 (forth column) contains the values of the coefficients used in COSP. Note that they are
valid when density is expressed in kgm−3 and the diameter in µm. Their values will be discussed in Section
2.1.4. Differently from ZmVar, QuickBeam doesn’t contain a specific model for melting ice particles. The
gas absorption model used in QuickBeam, which takes into account the local power absorption from oxygen
and water vapour, is also (slightly) different from ZmVar: the one of Liebe (1985) is used.

Hydrometeor Distribution Type Distribution parameters Density parameters

Cloud Liquid Lognormal
lnσg = 0.3

rg = 6 µm
α = 524
β = 3

Cloud Ice Gamma
D = 40 µm
µ = 2

α = 110.8
β = 2.91

Rain Exponential N0 = 0.08cm−4 α = 524
β = 3

Snow Exponential N0 = 0.03cm−4 ρ = 0.1gcm−3

Table 2.1.2: Parametrization of hydrometeor particle properties in COSP.

2.1.3 Differences in simulated reflectivity

In this section, ZmVar and COSP are compared simulating 94 GHz reflectivities (Zs) separately for each
hydrometeor (for a given temperature, without taking into account gas and hydrometeor attenuation). Reflec-
tivities are generated for a range of hydrometeor contents. This allows quantifying how different modelling
assumptions (made for each category) impact simulated reflectivities.

(a) Rain

In their original configurations, ZmVar and COSP make different assumptions for the rain PSD: the first uses
a Gamma distribution, while the second uses the Marshall Palmer distribution (Fig. 2.3). Corresponding
simulated reflectivities are given in Fig. 2.4. ZmVar produces higher reflectivities across the range of water
contents. The reason can be identified by the fact that the Gamma distribution puts more particles in the
range of sizes where the single particle backscattering is highest, i.e. between 0.05 and 0.15 cm (Fig. 2.5).
Fig 2.5 also highlights the different discretization of the diameters used for the Mie calculations by COSP
and ZmVar: logarithmic for COSP and linear for ZmVar. Although the linear discretization is preferable,
because it avoids possible aliasing effects for the larger drop sizes, the impact on final reflectivity values is
found to be negligible for rain. In fact, when a Marshall Palmer exponential PSD is assumed in both ZmVar
and COSP, the reflectivities are effectively the same.

(b) Cloud Liquid

As mentioned in the previous section, cloud liquid is assumed to follow a lognormal distribution in COSP.
In ZmVar instead, a Modified Gamma distribution is used, as proposed by Deirmendjian (1969). The two
PSDs are shown in Fig. 2.6. The main differences occur for diameters up to 0.01 cm, where the Modified
Gamma puts more particles. In particular, we observe that, below 0.005 cm the Modified Gamma is higher
by several orders of magnitude. Consequently, as shown in Fig. 2.7, ZmVar reflectivity for cloud liquid is
higher than the COSP one of about 8 dBZ for every value of HC.

ESA contract 1-5576/07/NL/CB WP-1000 7
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(c) Snow

In COSP and ZmVar snow properties are parametrized in a very similar way. Both assume a constant density
of 0.1 g/cm3. Also, both use a constant-intercept exponential PSD, where the concentration number N0 is
fixed to 0.03 cm−4. Corresponding reflectivities are compared in Fig. 2.8. However the ZmVar reflectivities
are lower by about 2 dBZ. This can be explained by a difference in the snow single particle backscatter-
ing efficiency. As shown in Fig. 2.9, the backscattering efficiency for ZmVar is at least 30% lower than
for COSP. The reason for this inconsistency is in the different formula used to model the permittivity of
soft ice (ice with air inclusions). ZmVar uses the formulation of Maxwell Garnett (1904), while the one of
Bruggeman (1935) is used in COSP. When the Maxwell Garnett formulation is used in COSP instead of the
original, differences disappear both in the single scattering (Fig. 2.9, black crosses) and in the simulated re-
flectivities (Fig. 2.8, black curve). As for the rain, the use of a logarithmic, rather than a linear, discretization
of diameter has little impact on the calculated reflectivities.

(d) Cloud Ice

In ZmVar the same Modified Gamma PSD used for cloud liquid is assumed for cloud ice. However, COSP
models the cloud ice PSD with a Gamma function, also shown in Fig. 2.10. A further difference in ZmVar
is that cloud ice particles are assumed to be pure ice, while in COSP a variable size density is employed
(Tab. 2.1.2) which for sizes below 0.01 cm is very close to the pure ice one. The reflectivity due to cloud
ice resulting from the two operators is plotted in Fig. 2.11. We observe that the ZmVar reflectivity is
smaller by about 12 dBZ for all water contents. This large discrepancy can be attributed primarily to the
PSD parametrization. As shown in Fig. 2.10, in ZmVar the number of particles drops sharply for diameters
above 0.005 cm, while for COSP the same happens only for sizes above 0.01 cm. Tests in the following
section will show that sensitivity to density is less than for the PSD.
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Figure 2.3: Rain PSD used in COSP and ZmVar for three values of hydrometeor content w: 0.01 gm−3 (dot-dashed
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Figure 2.4: Equivalent Reflectivity as function of rain HC obtained from COSP and ZmVar.
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Figure 2.5: Single particle rain backscattering efficiency obtained from Mie routine in ZmVar and COSP.

2.1.4 Sensitivity to microphysical assumptions

Hydrometeor PSDs and ice density are parameters required in order to simulate reflectivities. Atmospheric
models do not always explicitly provide information about them, therefore assumptions have to be made
before running the simulator. In this paragraph we investigate the impact on Zs coming from PSDs and from
ice density assumptions in the COSP simulator. The analysis is performed separately for each hydrometeor
type.

ESA contract 1-5576/07/NL/CB WP-1000 9



Forward operator developments

0 0.005 0.01 0.015

10
0

10
5

10
10

10
15

D [cm]

N
(D

) 
[m

−
3

 c
m

−
1

]

Dot−Dashed: w=0.01g/m
3
  Solid: w=0.1g/m

3
  Dashed: w=1g/m

3

 

 

ZmVar Cloud

COSP Cloud
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Figure 2.7: Equivalent Reflectivity as function of cloud liquid HC obtained from COSP and ZmVar.

2.1.4.1 Particle Size Distributions

Rain PSD

It is difficult to assign a globally valid PSD to rain since the raindrop spectrum is dependent on precipitation
regime and climate regions. In COSP, the widely used Marshall-Palmer distribution is employed. Although
this represents a good general approximation, we have investigated the sensitivity to this assumption com-
paring the simulated reflectivity with the ones obtained using two different PSDs, both Gamma with factor
parameter ν=2, but fixing a different constant particle number concentration N0. The values chosen give
spectra that are complementary to the Marshall-Palmer one. As shown in Fig. 2.12, a first PSD (PSD1,
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Figure 2.8: Equivalent Reflectivity as function of snow HC obtained from COSP, COSP using ZmVar effective permit-
tivity formulation, and ZmVar.
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Figure 2.9: Single particle snow backscattering efficiency obtained from Mie routine in ZmVar (red curve), COSP
(blue curve) and COSP using ZmVar effective permittivity formulation (cross).

blue curves) puts more particles in the lower portion of the size spectrum than the Marshall-Palmer (black
curves), while the second PSD (PSD2) behaves in the opposite way, giving particles with larger size (red
curves).

Fig. 2.13 shows the obtained Zs produced by rain, as function of HC, corresponding to the three PSDs.
Three regions can be identified: a first for HCs greater than 1 g/m3 (not shown), a second region between
0.1 and 1 g/m3, and a third one below 0.1 g/m3. In the first region PSD1 (blue curve) produces higher Zs
than the Marshall-Palmer one (black curve) while PSD2 (red curve) gives lower Zs. In second region, the
three cases are comparable. In the third region, PSD2 (red curve) gives Zs larger than the Marshall-Palmer
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Figure 2.11: Equivalent Reflectivity as function of cloud ice HC obtained from COSP (black dashed line), COSP using
ZmVar effective permittivity formulation (black solid line) and ZmVar (red line).

one, while PSD1 (blue curve) gives lower values. Comparing these results with the shapes that each PSD
assumes for different HCs, we note that Z is mainly driven by particles having a diameter below 0.2 cm (see
Fig. 2.5).

It is worth noticing that attenuation along the ray path is not taken into account into our calculations but
attenuation can be significant for millimetre-waves. For example, for typical mid-latitude precipitation
events, strong attenuation of the signal would occur for rain rates above 15− 20mm/h, i.e. a hydrometeor
content of roughly 1 g/m3 (Haynes et al., 2009).
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Cloud Liquid PSD

Sensitivity of cloud liquid to PSD has been investigated similarly as for rain, being the main source of
uncertainty also in this case. The original PSD defined in COSP for cloud liquid has been compared with
two monodisperse distributions: one for a drop diameter of 10 µm and another of 30 µm. These two values
have been chosen since they represent typical cloud droplet sizes in some cloud types (Pruppacher and Klett,
1998, Fig. 2.11 in their book). The equivalent reflectivity as function of cloud liquid amount for each PSD
is shown in Fig. 2.14. We note that the curve relative to COSP (black) lies between the ones corresponding
to the two monodisperse with a constant offset of about 8 dBZ in both cases. This difference shows the
importance of specifying a realistic PSD also for cloud liquid.

Snow PSD

The importance of PSD for snow has been investigated replacing the original one with the one assumed for
ice in Ryan (2000). The model assumes the following exponential PSD:

N(D) = N0exp(−λD) (2.15)

where the number concentration intercept N0 is constant while the inverse of the median volumetric diameter
λ (m−1) has a dependence on temperature (T , in C) given by:

λ (T ) = 1220 10−0.0245T (2.16)

The reduction of slope with increasing temperature is an implicit way of parametrizing aggregation and the
dependence of ice nucleus concentration on temperatures. Fig. 2.15 shows the shape of this PSD for two
reference values of temperature. The corresponding Zs are in Fig. 2.17. A snow density constant value
of 0.1g/m3 is assumed. Using the new PSD Zs higher than the original exponential are obtained. The
discrepancy increases as temperature decreases.

Cloud Ice PSD

Similarly to what is done for rain, the sensitivity of cloud ice to PSD has been tested slightly changing
the PSD parameters of the one used in COSP (keeping the density formulation). In a first test the shape
parameter ν has been moved from 2 to 3, and in a second test the mean diameter Dm has been increased
from 40 µm to 60 µm. The impact of these changes on the PSD is shown in Fig. 2.16 (considering a HC
of 0.1g/m3). Corresponding Zs are given in Fig. 2.17 (black curves). As expected, the increase in ν results
in a decrease in Zs, while an increase in Dm produces an increase. In spite of the small amplitude of the
changes, differences from the original setup are about 3−4dBZ.

Note on Cut off

An important difference between the two simulators is in the way particle size limits are handled. In Zm-
Var a minimum and a maximum size are defined for each hydrometeor as input. In QuickBeam (used by
COSP) the particle size is hard-coded to a range between specified minimum and maximum values which
are the same for all hydrometeor types (type-specific limits are implemented only for the power law PSD).
Therefore, in QuickBeam the PSD takes into account a wide range of particles sizes for the integration in
Eq. (2.1) and relies on values close to zero for unrealistic sizes. In ZmVar, the fact that limits have to be
specified implies that only a portion of the PSD is actually used. Consequently, care must be taken when
fixing the limits, in order to avoid an unwanted truncation of the PSD in the integration of Eq. (2.1).

ESA contract 1-5576/07/NL/CB WP-1000 13



Forward operator developments

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
10

0

10
1

10
2

10
3

10
4

10
5

10
6

D [cm]

N
(D

) 
[m

−
3

 c
m

−
1

]

Dot−Dashed: w=0.01g/m
3
  Solid: w=0.1g/m

3
  Dashed: w=1g/m

3

 

 

COSP
Gamma: ν=2 N

t
=1.0e2 kg

−1

Gamma: ν=2 N
t
=1.0e4 kg

−1

Figure 2.12: COSP rain size distribution (black lines) compared to two (blue and red) Gamma distribution with
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Figure 2.13: HC-Z relationship for rain using different PSDs as presented in Fig. 2.12.

2.1.4.2 Density of frozen particles

Ice can assume a variety of shapes/densities depending on the growing environment and on the evolution of
the single particle. Modelling of frozen particles density is therefore not easy since it is difficult to define
a unique value always appropriate. Given the complexity, many studies have tried to model the ice shape
starting from in situ measurements. One of these is the expression suggested for snow by Brown and Francis
(1995) which it is given in Fig. 2.18 together with the ones used for cloud ice and snow in COSP.
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Figure 2.15: COSP snow size distribution (black lines) compared to the distribution in Ryan (2000) for two reference
values of temperature (-20 C: blue dashed lines and -5 C: blue dot-dashed lines). Distributions are shown for three
values of hydrometeor content w: 0.01 gm−3 (dot-dashed line), 0.1 gm−3 (solid line) and 1 gm−3 (dashed line).

Snow density

For falling ice (snow), the critical parameter can be identified in its density since this is highly variable. In
COSP a size independent constant density of 0.1g/cm3 is assumed for snow. However, several expressions
have been proposed to parametrize snow density as a function of size. Widely used is the one of Brown
and Francis (1995) (red curve in Fig. 2.18) which has been derived from in situ measurements. In Fig.
2.19, Zs evaluated using COSP density are plotted together with the ones obtained using Brown and Francis
relationship. Zs using this new density expression (blue dashed line) are significantly lower than the ones
obtained using the constant value (blue solid line). Difference increases as HC increases, up to 5-8 dBZ.
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Figure 2.16: Cloud ice size distribution in the original COSP (solid line), after changing the mean diameter Dm from
40 µm to 60 µm (dot-dashed line) and after changing the shape parameter v from 2 to 3 (dashed line).
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Figure 2.17: HC-Z relationships using different PSDs presented in Figs. 2.15 and 2.16. Blue curves are for snow and
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Cloud Ice density

The density expression for cloud ice implemented into COSP is also shown in Fig. 2.18 (black line with
dots): it prescribes the value of pure ice for the smallest diameters and quickly approaches (at around 50
µm) an asymptotic value of about 0.4 g/m3. The impact of density choice on Z is investigated changing the
original with two constant values: one very high (0.91g/cm3, pure ice) and one quite small (0.25g/cm3).
Fig. 2.19 shows (black lines) that the COSP original one lies between the other two (dashed and dot-dashed
black lines), with an offset of 3−4dBZ.
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Note on Soft Ice

There is not a unique way to evaluate the optical properties of a particle having a density less than the one of
pure ice (soft ice). Within COSP/QuickBeam two alternative options are implemented. The first considers
each particle as a sphere of solid ice that has a new (smaller) effective diameter which conserves the particle
mass. The second keeps the diameter specified by the mass and assumes an effective density (lower than the
one of solid ice). Therefore each frozen (ice and snow) particle is modelled as a ‘spongy’ sphere composed
of a mixture of ice and air having an effective permittivity (e.g. Bruggeman, 1935). Fig. 2.20 shows,
for different density values, the single-particle backscattering efficiency Qbs = σbs/

(
πD2

)
as function of

diameter for the two formulations. The equivalent-solid approach (dashed lines) always provides higher
values that the soft-ice one (solid lines). Differences increase as particles become larger, in line with what
is shown in Liu (2004) for the particle (omni-directional) scattering. Interestingly, for a given diameter, Qbs
doesn’t always increases as density increases. This means that the equivalent (smaller) pure ice particle can
be a less efficient scatterer than the ‘soft’ one.

Zs resulting from using the equivalent-solid approach for snow and cloud ice are plotted in Fig.2.21. For
snow (blue lines), the simulated Zs are larger, with differences increasing as HC increases (10dBZ for HC
of 1 g/m3). For the cloud ice (black lines), Zs evaluated using the equivalent-solid method are only slightly
lower (less than 0.5dBZ) than the ones obtained using the soft-ice approach. This can be attributed to the
smaller size and higher density of cloud ice particles than the snow ones.

2.1.4.3 Summary on sensitivity tests

From the simple sensitivity tests shown above, the following quantities emerged as the main sources of
uncertainties:

• Particle size distributions for cloud liquid and rain are highly variable and therefore difficult to model.
For both, tests showed a strong sensitivity to PSD, particularly for rain.

• When considering frozen particles, there is also the uncertainty on density. Tests showed that re-
flectivity is very sensitive to snow density, while the PSD is the most important parameter for cloud
ice.

2.1.5 Changes to ZmVar and comparison with observations

The comparison of reflectivity values simulated by ZmVar with the ones from COSP separately for each type
of hydrometeor has shown non-negligible discrepancies. Differences stem from the simpler assumptions
made in ZmVar in specifying PSDs and from the differences in modelling the density of frozen particles.

The following changes are proposed for ZmVar.

• For rain, use the Marshall-Palmer PSD (as in COSP). This brings small differences in Zs, but has the
advantage of having a widely used distribution.

• For cloud liquid, use the same PSD as in COSP. In the previous section emerged that cloud liquid
reflectivities in ZmVar are much higher than COSP. Comparison with results available in the literature
(e.g. Clothiaux et al., 1995, Fig. 9) shows that the ZmVar values are too high, while the COSP ones
agree quite well.
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• For cloud ice, use the same PSD used in COSP. The original PSD, being the same as used for the
cloud liquid, resulted in very small sizes for cloud ice and therefore very small reflectivities.

• Cloud ice density as in COSP. Although not having the strongest impact, a variable density with size
(soft ice) is a better assumption than assuming solid ice and scaling the size distribution correspond-
ingly.

Fig. 2.22 shows the Z−w relationships before and after the modifications. In particular, the changes for
cloud ice bring the relationships in ZmVar for cloud ice (and also snow) closer to similar ones derived in
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Figure 2.21: HC-Z relationships using soft ice (solid lines) and equivalent solid approaches (dashed lines). Blue lines
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Hong et al. (2008) from in situ measurements.

The comparison also indicated some potential improvements for QuickBeam.

• A linear spacing for the particle size binning instead of logarithmic could avoid possible aliasing of
Mie effects (although impacts are shown to be small).

• The ice permittivity model of Warren (1984) could be update according to Warren and Brandt (2008).
In their work they included the results of Mätzler and Wegmüller (1988) which were based on newer
available measurements. In ZmVar, the latter model is already employed.
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• The gas absorption model of Liebe (1985) should be update with the one of Liebe et al. (1992) as in
ZmVar.

The impact of the modifications on the final values of simulated reflectivities can be investigated running
ZmVar using a new Mie-table generated including the proposed changes to ZmVar. For this purpose, a set of
adjacent profiles has been extracted from the ECMWF model that corresponds to a cloudy and precipitating
situation. The vertical cross section of HCs for the selected profiles is shown in Fig. 2.23. Corresponding
reflectivities generated using ZmVar with the new Mie-table are in Fig. 2.24 (top panel). The difference with
the reflectivities obtained using the original set up are plotted in the same figure (bottom panel). We note
that below the freezing level, the new setup produces always lower Zs. This is consistent with the fact that
liquid hydrometeors in the scheme give lower Zs for the same amount of content. Again consistently with
the changes to the Mie-table, we also note that larger differences (5 dBZ or more) correspond to low values
of Z, where more cloud liquid than rain is present. Above the freezing level changes are less pronounced
(between -1 and 1 dBZ). The increase in reflectivity due to the new cloud ice parametrization is hidden
almost everywhere by the co-existence with snow, having a stronger negative signal.
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Figure 2.22: HC-Z relationships for each of the hydrometeors of interest resulting from ZmVar. Dashed lines are for
the original version, solid for the updated version.

2.2 Treatment of cloud fraction

Global circulation models, given their coarse horizontal resolution, need a sub-grid (horizontal) representa-
tion of cloud fraction (while they are supposed to fill the gridbox in the vertical). Consequently, assumptions
must be made on how clouds overlap in the vertical within a grid column. The particular choice of these
assumptions has an impact on the evaluation of atmospheric radiation and on the reflectivity. In this section,
the treatment of cloud fraction in ZmVar is compared with the one implemented in COSP and the differences
of simulated Zs are evaluated.

2.2.1 ZmVar

The way ZmVar takes into account cloud fraction involves the following steps:

1) For each layer l, the model specifies the cloud fraction FC
l only for cloud liquid and cloud ice. ZmVar

assigns a precipitation fraction FP
l to rain and snow starting from FC

l and makes the assumption of random
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Figure 2.23: Cross section of cloud profiles as extracted from the global ECMWF model forecast. From top to bottom:
HC of cloud ice, cloud liquid, snow, and rain. Dashed line shows the height of the freezing level.

overlap for precipitating hydrometeors:

FP
l = 1−

l

∏
i=1

(1−FC
i ) (2.17)

2) The in-cloud value of content w′hl at layer l for hydrometeor h is evaluated from the box-average values
given by the model scaling according to the corresponding fractions:

w′hl = wh
l

Fh
l

(2.18)

where Fh
l is FC

l for cloud liquid and cloud ice and FP
l for rain and snow.

3) The in-cloud reflectivity Z′hl and extinction β ′hl are then evaluated using w′hl , as described in Section 1.1.
Grid box averages Zl and βl are then obtained ‘scaling back’ the in-cloud values according to the cloud and
precipitation fractions and summing on the total number of hydrometeors NHY D.

Zl = ∑
h=1,NHYD

Fh
l Zh

l (2.19)

βl = ∑
h=1,NHYD

Fh
l β

h
l (2.20)

It is interesting to note that the values of β h
l are very similar to the ones corresponding to the (unscaled) wh

l
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Figure 2.24: Top panel: ZmVar simulated 94 GHz radar reflectivity using the Mie look-up table with the modifications
described in the text. Bottom panel: differences with the reflectivities obtained using the original table.

since, as shown in Fig. 2.25, for all hydrometeors, extinction coefficients have a (quasi-) linear dependence
on hydrometeor content.

4) Finally, the reflectivity measured by the radar Za is evaluated taking into account the attenuation along
the path:

Za
l = Zl e−2τ̄l (2.21)

where τ̄l is the average optical depth between the l-th layer and the top of the atmosphere defined as:

τ̄l = ∑
i=1,l

∑
h=1,NHYD

Fh
i β

h
i ∆hi (2.22)

where ∆hiis the depth of the i-th layer. We note that in this approach no information is needed about the way
clouds overlap vertically within the box.

2.2.2 COSP

Cloud overlap is treated in COSP using the Subgrid Cloud Overlap Profile Sampler (SCOPS) , part of the
International Satellite Cloud Climatology Project (ISCCP) simulator (Webb et al., 2001). This package uses
a pseudo-random sampling process to generate an ensemble of sub grid clouds and precipitation profiles rep-
resenting the distribution within the model grid box. It takes vertical profiles of cloud/precipitation amount
and cloud fraction as input to generate a specified number of horizontally homogeneous cloud/precipitation
profiles.

Three schemes of cloud overlap are available within SCOPS, namely random, maximum and maximum-
random. The most basic formulations of cloud overlap are ”maximum” or ”random” and the most commonly
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Figure 2.25: Typical volumetric extinction, absorption and scattering dependence on HC for rain, snow, cloud liquid,
and cloud ice.

used overlap is ”maximum-random”. The total cloud cover described by the maximum overlap assumption is
simply the maximum cloud fraction in the column. Random overlap assumes that clouds at different levels
are randomly overlapped with each other, so the total cloud cover will be higher than for the maximum
overlap assumption. The maximum-random overlap assumption applies the maximum overlap within a
vertically coherent cloud block, but random overlap between vertically non-adjacent cloud blocks. This
assumption was the most consistent with a statistical analysis of observed cloud distributions described by
Tian and Curry (1989) and has been widely used in GCMs. A description of each scheme can be found,
among others, in Raisanen et al. (2004).

The SCOPS algorithm splits each grid column into a number of sub-columns NCOL in which each layer is
either completely filled or completely free with cloud. The cloud cover F ′Cl,k in the l-th layer of the k-th
sub-column is therefore either 0 or 1.

In the maximum random overlap case, two arrays x and y are generated containing uniformly distributed
random numbers between 0 and 1. They define the probability that cell l of sub-column k is cloudy or clear
as follows.

A threshold tl,k is first evaluated as:

tl,k =

{
xl,k if xl,k < min(FC

l ,FC
l−1)

min(FC
l ,FC

l−1)+ yl,k[1−min(FC
l ,FC

l−1)] if xl,k ≥min(FC
l ,FC

l−1)
(2.23)

The cloud cover is then assigned accordingly:

F ′Cl,k =

{
1 if FC

l > tl,k
0 if FC

l ≤ tl,k
(2.24)
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where FC
l is the grid box cloud fraction for the l−th layer. Note that tl,k is always set to zero for the top

layer (l=1). It can be shown that the average cloud fraction over the sub-columns converges to the original
grid box value:

1
NCOL

NCOL

∑
k=1

F ′Cl,k = FC
l (2.25)

The presence of precipitation in each sub-column layer FP
l,k is decided in a deterministic way from the cloud

profile as obtained with the procedure described above. For layer l of sub-column k F ′Pl,k is set to 1 if there
is some precipitation in the layer and F ′Cl,k or F ′Pl−1,k are 1. The attenuated reflectivity for layer l averaged
across all sub-columns Za

l in case of multi-columns can be written as:

(2.26)

Za
l =

1
NCOL

∑
k=1,NCOL

Za
l,k (2.27)

=
1

NCOL
∑

k=1,NCOL

(
∑

h=1,NHYD

F ′hl,k Z′hl,k

)
e−2τ ′’l,k

where :

τ
′
l,k = ∑

i=1,l
∑

h=1,NHYD

F ′hi,kβ
′h
i ∆hi

and F ′hl,k is again F ′Cl,k or F ′Pl,k .

2.2.3 Analysis of single-column and multi-column approaches

The ZmVar simulator has been extended to include the SCOPS multi-column (MC) approach as alternative
option to the original treatment single-column (SC) of cloud fraction. It is important to note that, apart
from numerical issues, the two approaches produce the same grid box average un-attenuated reflectivity.
Differences are only found for the attenuated reflectivity Za as a result of how the optical depth (from the
height bin to the top of the atmosphere) is treated.

A set of experiments were run to investigate differences in the two methods. To understand (in a qualitative
way) the consequence of using either of the two methods it is instructive to evaluate the attenuated reflectivity
in two simplified cases. In a first example, a single-layer profile of height ∆h having cloud fraction equal
to 0.5 is considered (Fig. 2.26). Panel a) shows the MC approach (performed with two sub-columns),
while Panel b) shows the SC. Z’ and β ’ are the in-cloud values of volumetric extinction and backscattering,
respectively. Applying Eqs. 2.21 and 2.22, the following expressions are obtained for Za :

Za
single = 0.5 Z’ e−β ’ ∆h (2.28)

Za
multi = 0.5 Z’ e−2β ’ ∆h (2.29)

Comparing these two expressions we see that Za
single > Za

multi , because the scaling reduces the effect of
in-box attenuation (because of the non linearity between extinction and attenuation factor) and therefore
the backscattering is enhanced. Also, we note, as a special case, that when using the multi-columns the
reflectivity Z′ (and Za) could be completely attenuated (by β ’ within the subcolumn S1).

The second schematic example is shown in Fig. 2.27. In this case the profile consists of two layers: one with
cloud fraction equal to one and a second layer on top with cloud fraction equal to 0.5. As in the previous
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case, the subgridding is performed considering two sub-columns (Panel a)). Using again Eqs. 2.21, 2.22
and 2.26, the reflectivity from the bottom layer in the two approaches is equal to:

Za
single = Z’ e−2β ’

2 ∆h2 [e−β ’
1 ∆h1 ] (2.30)

Za
multi = Z’ e−2β ’

2 ∆h2 [0.5+0.5 e−β ’
1 ∆h1 ] (2.31)

In this case Za
single < Za

multi because SC enhances the effect of attenuation (through the scaling and the total
overlap). An important special case is where Za from the SC approach is completely attenuated, but the MC
approach is able to still give a signal through the sub-column S2.

The same behaviour shown in the two examples above can be observed when considering atmospheric pro-
files extracted from the IFS model. Fig. 2.28 shows a vertical cross section used as a case study representing
light-to-moderate mid-latitude precipitation characterized by partial cloud fraction. On these profiles, Zm-
Var was run both in SC and MC modes (setting the number of subcolumns to 100). In the SC run the original
precipitation fraction (defined in Eq. 2.17) was replaced with the one produced by MC (mean value). This
makes the two experiments consistent, and therefore isolates the impact of the multi-columns or scaling
approaches on Za. Resulting differences are shown in Fig. 2.29. Panels b) and c) show that the two meth-
ods give qualitatively similar Za, but the single-column provides usually higher reflectivities. Important
differences of opposite sign are evident in the area between profiles 5 and 15 below 800 hPa: this region
corresponds to intense rain and partial precipitation fraction. As shown in Panel a) of Fig.2.29, some of the
sub-columns generated by multi-columns can be very intense and can extend very high (Za heavily attenu-
ated), but some are shorter and therefore not attenuated (high values of Za). As mentioned above, the SC
approach, using a box average attenuation can’t take into account this effect (because of the lack of overlap)
and therefore overestimates the effect of attenuation on Zs. As shown in the bottom panel of Fig. 2.29, this
occurs only when the attenuation along the path is substantial. In the same figure, comparing again panels
b) and c), we observe large regions where the opposite effect occurs: the SC approach gives slighter higher
values for Za from profile 30 onwards and between profiles 5 and 15 (above 800 hPa). In these profiles
with partial cloud fraction the total attenuation is low and the effect of the different treatment of attenuation
within the box prevails.

Another way of showing these effects is through histograms. A large dataset of cloud profiles has been
extracted from the ECMWF forecasts matching model grid box with CloudSat observations. All orbits of
one day (3 February 2007) were used. Only precipitating profiles with FP < 1 at some level were selected.
FP and not FC was considered because the contribution to the measured Z from cloud liquid and cloud ice
is small in presence of precipitation (rain or snow) and therefore the impact of their cover fraction is also
negligible. About 15000 profiles were gathered in this way, representing different typical cloud structures.
Fig. 2.30 shows the mean differences in Za using ZmVar in single-column mode and using it in multi-
columns mode (25 columns), stratified for total path attenuation and precipitation fraction. The left panel is
for model level 91 (i.e. the closest to surface), while the right one refers to model level 75, corresponding
approximately to 800 hPa. In both plots, three main regions can be identified: a first one where differences
are negligible, a second one where the SC is higher than the MC, and a third one where the opposite occurs.
The SC is higher when the total attenuation is small (difference increases as FP decreases). Conversely, MC
is higher when attenuation is high enough: in this case the total-overlap assumption plays the major role.
It occurs for FP > 0.6 because high attenuation/precipitation is usually associated with high precipitation
fraction. When considering a higher model level (right panel in Fig. 2.30), we note that there are less cases
where MC is higher and they are more moderate, while in the cases where SC is higher (low attenuation)
differences are more pronounced.

A summary of the differences between the two approaches is shown in Fig. 2.31, where the differences in Za

are plotted for each model level from top to approximately 980 hPa (level 85 of 91-level model). The mean
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difference between SC and MC is positive (Panel a)), indicating that on average the effect of the attenuation
within the same box of the reflectivity is dominating, leading to a positive bias of almost 0.4 m6mm-3 (≈ -4
dBZ) up to level 65.

Figure 2.26: Schematic representation of a single layer profile with partial cover for multi-column (a) and single-
column (b) approaches. See text for explanation.

Figure 2.27: Same as in Fig. 2.26, but for a schematic representation of a two-layer profile. See text for explanation.

2.2.4 Performance of single-column and multi-column approaches

The minimum number of sub-columns in the MC approach required to get a box-average reflectivity accurate
enough can be investigated testing the dependence of box-average reflectivity Za on the number of columns
(convergence). Fig. 2.32 shows the absolute difference between Za obtained using the number of columns
indicated in abscissa and a reference of 300 columns. The global dataset of 15000 profiles described above
has been used. In the same figure, the difference between the SC and the reference is also reported (red
line). We note that the MC method using few columns already gives two times smaller the mean difference
compared to the single-column. The difference with the reference in the MC method decreases sharply from
20 to 30 sub-columns and reaches a sort of asymptotic value around 50 columns. This result suggests 30-40
columns as reasonable number.

The corresponding computational cost is given in Tab. 2.1, which reports the CPU time (Pentium 4 @ 3.4
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Figure 2.28: Vertical cross section of IFS model profiles corresponding to a precipitation event.

GHz) for different number of sub-columns. The cost remains quite small for reasonable numbers (e.g., about
7% increase for 30 columns) then increases linearly with the number of columns.

2.2.5 Comparison with observations

In Section 2.2.3, the differences between the single-column and multi-column approach were investigated.
To demonstrate that the MC mode constitutes a better model, it is necessary to check if it brings the simu-
lations closer to real observations. The evaluation of differences between model and observations is possi-
ble using the model profiles extracted in correspondence with CloudSat observations. Reflectivity profiles
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Figure 2.29: ZmVar simulations using profiles from Fig. 2.28. From top to bottom: multi-columns reflectivity (panel
a), average multi-columns reflectivity (panel b), single-column reflectivity (panel c), single-column total attenuation
(panel d).

Figure 2.30: Mean difference between ZmVar simulated reflectivity in single-column and multi-column modes as
function of precipitation fraction and total path attenuation. Left panel refers to model level 91 (closest to the surface)
and right panel to model level 75 (about 800 hPa).
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Figure 2.31: Difference between ZmVar simulated reflectivity in single-column and multi-column modes along model
levels. Left panel contains the mean, central panel contains the standard deviation and the right panel the number of
samples.

Nr. of
subcolumns Time (sec) Incr. difference (sec) Difference (sec) Difference

(%)

1 784 - - -
10 787 3 3 +0.4
20 810 23 26 +3.0
30 838 28 54 +7.0
50 867 57 83 +10.5

Table 2.1: Computational cost of ZmVar using different numbers of subcolumns.
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Figure 2.32: Absolute mean difference between reflectivity obtained using ZmVar with the number of columns in
abscissa and a reference of 300 columns (black line). Red line indicates difference between the reflectivity obtained
using ZmVar in single-column and the reference of 300 columns.
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measured from the CloudSat radar (having a resolution of 1 km) falling within a model grid box were
horizontally and vertically averaged to match the model resolution. Fig. 2.33 shows the difference between
simulated Za and corresponding CloudSat measurements using the SC (black curve) and the MC (red curve).
Mean reflectivity differences are plotted in Panel a). Zs simulated using the MC approach are always slightly
closer to observations, except between model levels 63 and 70 (∼470 hPa and ∼670 hPa, respectively).
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Figure 2.33: Difference between ZmVar simulated reflectivity in single-column and multi-column modes and co-
located CloudSat observations along model levels. Black curves indicate ZmVar using single-column and red curves
the multi-column method. Left panel contains the mean, central panel contains the standard deviation and the right
panel the number of samples.

2.2.6 Precipitation fraction in ZmVar and SCOPS

Single-column and multi-column give different values of precipitation fraction. In case of MC the pro-
file precipitation fraction can be defined as the mean (of zeros and ones) across all the sub-columns. As
mentioned, for consistency, the comparisons described above were made replacing for the SC the original
definition in Eq. 2.17 with the mean values obtained from the MC run. However, it is also interesting to
investigate the differences between these values and to quantify the impact on Zs. Left panel of Fig. 2.34
shows the mean precipitation fraction profile evaluated on the same large dataset used. On average, the one
of ZmVar gives significantly larger values close to the surface (0.75 vs. 0.55), although difference decreases
going higher. Corresponding differences in Zs (ZmVar minus SCOPS) are shown in the right panel of Fig.
2.34, obtained running ZmVar in SC mode. ZmVar is lower below model level 65 and the difference in-
creases as altitude decreases. This is compatible with the higher precipitation fraction, which can result in
higher signal attenuation. Conversely, above model level 65, ZmVar is larger than SCOPS. This can again
be related to the larger precipitation fraction, which at these levels leads to higher Zs since the attenuation
is here usually negligible.
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Figure 2.34: Panel a): Mean precipitation fraction defined by SCOPS (blue curve) and by ZmVar (red curve) evaluated
on a large dataset of model profiles. Panel b): Differences between Z obtained using the ZmVar values and the ones
from SCOPS. Calculations were made using the single-column mode.

2.2.7 Sensitivity to cloud overlap scheme

The maximum random formulation has been used in the previous tests as cloud overlap scheme being more
realistic. It is worth however investigating what are the differences on Zs of changing cloud overlap scheme.
Using the profiles in Fig. 2.28, ZmVar has been run in MC mode using 100 subcolumns and using the
maximum-random, the random or the maximum as cloud overlap scheme. Fig. 2.35 shows the subcolumns
generated for each profile in each of the three cases. Purple colour indicates bins where both rain and cloud
are present; the orange colour represents bins with only precipitation, while cloudy-only bins are in blue.
As expected, the highest number of subcolumns with some cloud or precipitation is produced for the case
of random overlap (central panel), while the maximum overlap (bottom panel) produces the highest number
of clear sky profiles. The maximum-random overlap case (top panel) looks similar to the random one, but
with more overlap.

The decision of whether or not there is precipitation at each level depends on the presence of cloud in
the layers above. As a consequence, the different overlap schemes have a different value for the mean
precipitation fraction within the box. Fig. 2.36 shows that, with respect to the average precipitation fraction
in the maximum-random case (top panel), the random assumption (central panel) leads to a quite substantial
increase in precipitation fraction (ranging from 0.2 to 0.5). In the maximum overlap case (bottom panel),
there is, as expected, a decrease of precipitation fraction, but less pronounced (never more than 0.2).

Figure 2.37 shows differences in the simulated Zs (attenuated) using different cloud-overlap schemes within
SCOPS. Differences in the mean Zs generated are plotted in Panel b) and c) of the same figure. Panel b)
shows that random overlap usually gives higher values than the maximum-random. Random overlap (top
panel) represents the case with the lowest attenuation on the column. This translates in the highest values of
attenuated Z also in the box. Another reason can be found in the fact that the number of cloudy sub-columns
per box that the random overlap generates is larger. Therefore, similarly to what is described in Fig. 2.29,
the attenuation within the box is lower. This effect is not related to the way layers overlap and, in fact,
this is observed in regions with low attenuations, where the overlap scheme weakly influence the Z. The
opposite occurs in cases where the attenuation above the layer is important: in this case (profiles 5 to 15) the
maximum-random overlap produces heavy attenuation, while in the case of random overlap the signal keeps
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well above the minimum detectable signal. It can be shown that in these cases the maximum-random tends
to generate more sub-columns with shallow but heavy precipitation profiles. These (few) cases have high Z
because they are less affected by attenuation and therefore contribute to increase of the mean Z. Panels c)
and d) show that the maximum overlap produces Za lower of both random and maximum-random because
this case produces the smallest number of sub-columns with some cloud.

Figure 2.35: SCOPS overlap structure within grid box. Blue indicates that only cloud (liquid or ice) is present, orange
only precipitation (rain or snow), and purple for both. From top to bottom: maximum-random, random, maximum
overlap.

2.3 Conclusions

In order to use observations in NWP, a forward model is required to transform the model variables to
the observed quantity. This section has described two forward models for radar reflectivity; the CFMIP
Observation Simulator Package (COSP) radar simulator for CloudSat (Haynes et al., 2007) and an ECMWF
radar reflectivity model that has been used in the past for assimilation studies (Benedetti and Janisková
2004, Janisková 2004, Lopez et al. 2006) modified for use with CloudSat (ZmVar). The comparison has
highlighted a number of issues related to the formulation of both radar reflectivity models and has been vital
in assessing and improving the appropriate formulation for use within this project for both verification and
data assimilation.

The forward operator is required to have an appropriate formulation for application to CloudSat data, the
ECMWF model variables and the spatial resolution of the NWP model, but must also be computationally
efficient. In addition, an assessment of the uncertainties in the forward model and the understanding of the
sensitivities to these uncertainties (from both microphysics and sub-grid heterogeneity) is an important part
of quantifying the error characteristics of the forward model. There are many uncertainties, but one of the
largest sensitivities relates to uncertainties in the assumed particle size distributions (PSDs). Comparisons
with in situ observations (e.g. Hong et al., 2008) suggest the PSDs, at least for the frozen particles, are
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Figure 2.36: SCOPS precipitation fraction using different cloud-overlap schemes. Top panel: maximum-random,
central panel: random minus maximum-random, bottom panel: maximum minus maximum random.
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Figure 2.37: Differences in simulated Z using different cloud-overlap schemes within SCOPS. From top to bottom:
random minus maximum-random, maximum minus maximum-random, and maximum minus random.

improved in the updated version of ZmVar. Further comparison with observed datasets will help to narrow
down this uncertainty, but there will always be some error as hydrometeor PSDs vary considerably in space
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and time.

The NWP model contains various assumptions about sub-grid heterogeneity (cloud fraction, precipitation
fraction, cloud overlap). Although the assumptions in the forward model should reflect those in the NWP
model, it is instructive to assess the impact of different sub-grid assumptions on the modelled radar reflectiv-
ity profiles, and these are not always negligible. The sensitivity of the results to the use of a single-column or
multi-column approach is generally smaller than for the uncertainties in PSDs, but can be significant under
certain circumstances (e.g. where the signal is totally attenuated in the single column approach). The multi-
column approach removes some of these differences, but is more complex to implement. A single column
approach is adequate for data assimilation studies to avoid too much complexity for the adjoint model, but
a multi-column approach is desirable for the verification studies where only the forward model is required.

In summary, a main outcome of work package 1000 is an improved radar reflectivity forward model (Zm-
Var) for use in the assimilation and verification studies and an assessment of the main uncertainties and
sensitivities that will help to define appropriate error characteristics during the assimilation studies.
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3 Errors and biases related to the representativity problem

3.1 Introduction to the representativity problem

While CloudSat and CALIPSO observations offer an unprecedented vertical resolution of clouds and pre-
cipitation the horizontal coverage of these instruments is rather poor. Indeed, compared to the 2 dimensional
extent of the surface of a model grid box, the horizontal information of these measurements can be regarded
as quasi one dimensional. This makes a direct comparison with parameters computed by an NWP or climate
model problematic, as estimating a 2D mean value by taking averages along a 1D line generally leads to
both, systematic (i.e. biases) and random (variance) errors. A good estimate of these errors is crucial for
model-observation comparisons as well as for data assimilation.

3.1.1 The representativity problem

While great discrepancies between model and measurement scales are less problematic for sufficiently
smooth atmospheric fields, representativity issues are important for variables which exhibit strong spatial
variations on the sub-grid scale as it is typical for cloud and moisture related fields. In data assimilation the
error due to the representativity problem forms a part of the total observation error. The magnitude of the
observation error determines the weight given to the observation in the assimilation process. If the assumed
error is large this weight is small and so is the potential impact of the respective observation. An underes-
timation of the error, on the other hand, may have a detrimental impact on the assimilation process as the
analysis is drawn closer to the observation than the quality (reliability) of the measured values justifies.

Due to its important role, a lot of effort has been devoted to derive an estimate for the representativity
error (and bias) resulting from the small footprint of these measurements. More precisely, it was decided to
derive a flow dependent error estimate as the magnitude of this error is strongly dependent on the respective
weather type (this was already recognised by Miller et al., 2007).

3.1.2 General methodology

As a fully statistical solution of the representativity problem is far beyond the scope of this project, priority
was given to a more heuristic approach which includes the generation of synthetic data by stochastic mod-
elling techniques. These techniques are widely used in Geostatistics (see Chiles and Delfiner, 1999, for an
overview), e.g., for the exploration of natural resources, where direct measurements (or probes) are generally
sparse but a good estimate of the underlying geophysical situation can be of huge economic importance.

In the current project a stochastic modelling technique is used in conjunction with a measure or score
which can be computed from the data along the satellite track and which is used to differentiate regions
into different groups for which the magnitude of the representativity error is different. More precisely, the
approach taken (and described in more detail in the rest of this section) is comprised of the following steps:

1. Statistical considerations led to the choice of a measure (the “variogram maximum score”) which
differentiates between situations with different confidence levels (i.e., different representativity error
magnitudes). This statistical measure can be computed from the satellite track.

2. Statistical modelling techniques were employed (and further developed) to produce synthetic data that
share some important statistical properties (marginal probability density function and spatial covari-
ances) with the observations of interest.
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3. Combining steps 1 and 2: Applying the variogram maximum score to the synthetic data, a quasi-
empirical relationship was derived which links the score (measured along the satellite track) to the
magnitude of the representativity errors.

4. The validity of the method was tested by using observations from scanning satellite instruments
(MODIS and TRMM) for which the 2D truth is known.

3.2 Measuring flow dependency

The approach pursued in this project is to assess the representativity error from synthetic data generated with
stochastic modelling techniques. One step of this approach is to relate regions from the satellite track to cor-
responding regions of the synthetic data. To facilitate this classification we use a measure (or “score”) which
can be computed from the satellite track and which differentiates between regions in which the magnitude
of the representativity error is different. Finding a good score was crucial for the success of this project.

A simple flow dependent score is in principle readily obtained by the measured quantity itself. For example,
when measuring cloud fraction at a certain grid scale length, the size of the representativity error will
generally depend on the respective cloud fraction value computed within a given grid box. While this is
a valid way of introducing some flow dependency for the representativity error, below, a more flexible
measure is introduced which uses information not only from inside the grid box for which the cloud fraction
or another variable is computed, but also from a larger region around this grid box. The new measure will
be called “variogram maximum score” (or short “variogram score”) as it is based on the variogram function.

3.2.1 The “variogram maximum score”

The score used in most of this work has been newly developed for this project and was named “variogram
maximum score” (or short “variogram score”) as it is based on the variogram (see Eq. 3.1 below for a
definition). The variogram is a probabilistic measure which gives the decay of the covariance function
along the satellite track. As we wanted to construct a local error estimate, variogram estimators have been
computed locally, for different neighbourhoods centred around the points of interest (see Eq. 3.2). As the
optimal size for this neighbourhood may itself be flow dependent, the maximum value over neighbourhoods
of different lengths around the point of interest was taken as the actual measure. In this way the resulting
measure is sensitive to information from different scales whereby the larger errors generally correspond
to strong variations at smaller length scales (i.e., large variogram values in the smallest of the considered
neighbourhoods).

For a random field q(~x) (where ~x is the location is space), the variogram γ(~x,~h) (for a given displacement
vector~h) can be defined as follows:

γ

(
~x,~h
)

= 0.5E


[

q

(
~x+

~h
2

)
−q

(
~x−

~h
2

)]2
 (3.1)

where E{..} indicates the ensemble average. Note that for fields for which the statistical distributions are
translational invariant (i.e., γ

(
~x,~h
)

= γ

(
~h
)

is independent of~x) one has γ

(
~h
)

=C(0)−C
(
~h
)

where C
(
~h
)

is the covariance function.

From the satellite track we construct a local estimator γ (x0,h,L) for γ(~h)

γ (x0,h,L) = 0.5

〈[
q
(

x+
h
2

)
−q
(

x− h
2

)]2
〉

x∈I[x0,L]

(3.2)
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by taking the spatial average 〈..〉x∈I[x0,L] over the neighbourhood I [x0,L] = [(x0−L) ,(x0 +L)] of size 2L
around x0 (x0 corresponds to the horizontal position of the centre point of the intersect between the satellite
track and the model grid box of interest). The corresponding measure γ gives information about the vari-
ability at each point x0. It depends on two length scale h and L. The displacement length h was chosen to be
half the length of a grid box . Tests with different h seemed to indicate that the method is not very sensitive
to the particular choice of this parameter.

To construct an error discriminator which comprises information from a larger range of scales, the variogram
estimate Eq.(3.2) was computed for different neighbourhoods I [x0,L] (i.e. for different values of L, compare
Fig. 3.1) and then the maximum of all the obtained values was taken. More precisely, neighbourhoods

L = kL0 with k ∈ {1,2, ..Nmax}

have been considered, where L0 is the length of the NWP grid box and and Nmax is the maximal number of
considered grid boxes. Using this, the “variogram maximum score” sc(x0,h,L0) has been defined as

sc(x0,h,L0) = max [γ (x0,h,(k +0.5)L0) ,k ∈ {1,2, ..Nmax}] (3.3)

which turned out to be not too sensitive with respect to Nmax as long as this number was large enough
(Nmax = 10 has been chosen). It should be noted that large score values are usually obtained only from the
smaller neighbourhoods (small values of k) while contributions from larger ks are usually small (they only
become relevant in Eq. 3.3 if the contributions from smaller neighbourhoods happen to be small). This
reflects the fact that strong variations closer to a grid box have a larger impact on the representativity error
(in a probabilistic sense) than perturbations which are further away.

3 L0

   5 L     0 

2L =  L          0 
x0

Figure 3.1: Horizontal projection of the satellite track (black bold line) intersecting a grid box.
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3.3 Stochastic modelling

The stochastic modelling method used in this work generates synthetic data which have (almost) the same
marginal probability density function (PDF) and the same covariance function as the satellite observations.
It is assumed that the statistical properties are isotropic.

For Gaussian variables there are different methods to construct synthetic data with a prescribed covariance
function (see Chapter 7 of Chiles and Delfiner, 1999). Of course, most variables are not normally distributed.
As explained in more detail below, the procedure employed here for generating synthetic data consists of
several steps whereby a major part is to project non-Gaussian observations onto a Gaussian field which is
then modelled with one of the standard methods.

3.3.1 Modelling Gaussian fields

The method employed here for modelling a Gaussian field with a prescribed correlation function was taken
from Pardo-Iguzquiza and Chica-Olmo (1993) and Pardo-Igúzquiza and Chica-Olmo (1994). It is a spectral
method which generates the Fourier coefficients of the field. More precisely, the method uses the fact that the
Fourier transform of a covariance function is the power spectrum, which constrains the Fourier coefficients
and leaves only their complex phase to be determined. For Gaussian random functions the complex phase
is homogeneously distributed and can therefore easily be computed by a random number generator.

An important condition for generating synthetic data is that the employed covariance function is reasonably
smooth. It should be kept in mind that covariances “measured” from observations are always a statistical
estimate and, particularly for longer distances, the convergence of this estimate can be problematic. While
the power spectrum from true covariance functions is always positive definite, this property is generally not
true for estimated covariances. As positive definite power spectra are essential, for generating the synthetic
data, the covariances obtained from observations are replaced by a smooth analytic function fitted to the
observed covariances.

At large distances, it is crucial for the method employed, that the chosen covariance function decreases
smoothly to zero and that the model domain (i.e., the domain for which synthetic data are produced) is
chosen to be large compared to the decay rate. For data for which correlations decrease very slowly this
may pose a dilemma as large domain sizes make simulations very time consuming. As the representativity
error is most likely dominated by the short-range behaviour (unless for extremely large NWP grid box
sizes), generally, no effort was made to represent the large-scale behaviour very accurately (often this is
not possible as the measured covariances are dominated by noise in this regime). Therefore, the analytic
function mentioned above, which was fitted to the observed covariances, was optimised to fit only the short-
range behaviour of the measured covariances and the decay rate at larger distances was taken from the
short-range fitting region.

3.3.2 Variable transformations for non-Gaussian variables

As general observational data are not normally distributed, a transformation is needed which “projects” the
satellite data onto Gaussian fields.

Continuous variables

If the field of interest is continuous such a transformation is, in principle, straight forward and the employed
method to generate synthetic data takes the following steps:
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1. Computing the probability distribution function Fob (qob) for the observations qob.

2. Using Fob (qob) to construct a transformation (called the forward transform)

qga = qga (qob) (3.4)

which relates the observations qob to a field qga which is normally distributed (with variance 1).

3. Using Eq. 3.4 to transform the observed field qob (~x) and then computing the spatial covariances from
the transformed data qga (qob (~x)).

4. Using stochastic modelling techniques to generate a Gaussian field which has the spatial covariances
computed in step 3.

5. Inverting Eq. 3.4 to obtain a relation (called the back transform)

qob = qob (qga) (3.5)

which is then used to transform the modelled Gaussian field into observation space.

For a continuous variable the forward transform (Eq. 3.4) is given by

qga (qob) = F−1
ga [Fob (qob)] (3.6)

where Fob (qob) is the distribution function (i.e., the integral of the PDF) of the observations while Fga is the
corresponding distribution function of a Gaussian field. If the observed values are continuous, Eq.(3.6) can
be inverted which yields the back transform:

qob (qga) = F−1
ob [Fga (qga)] . (3.7)

Representing discrete variables

For discrete variables qob ∈
{

q(k)
ob

}
with (k = 1,2, ..Nmax) transformations 3.6 and 3.7 are only defined for

discrete values q(k)
ob and q(k)

ga with

q(k)
ga = qga

(
q(k)

ob

)
= F−1

ga

[
Fob

(
q(k)

ob

)]
(with q(Nmax)

ga = ∞). If the discrete levels are sufficiently close, a Gaussian distribution is still a good approx-
imation so that the variable can be treated as quasi continuous. In the more general case, however, i.e. for
variables with more isolated discrete levels, the discrete variable q(k)

ga produced by the forward transform 3.6
can become strongly non-Gaussian.

Also in the discrete case, however, the non-Gaussian discrete variable is, in principle, embedded in a con-
tinuous Gaussian variable qga. The idea is to represent the discrete observations q(k)

ob through this con-
tinuous field qga which can be generated by the stochastic modelling technique (provided one knows the
correct correlation function for qga whose derivation will be discussed further below). To represent the
discrete observations q(k)

ob by a continuous Gaussian variable qga we assign all values of qga in the interval
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q(k−1)
ga < qga ≤ q(k)

ga to q(k)
ob (where for the case k = 1 the definition q(0)

ga =−∞ has to be used while q(Nmax)
ga = ∞

as mentioned above). Doing this we generalise Eq. 3.7 through

qob (qga) = q(km)
ob with q(k−1)

ga < qga ≤ q(k)
ga (3.8)

which ensures that the probability pk
ob of the discrete value q(k)

ob is the same as the probability that qga is in

the interval
[
q(k−1)

ga ,q(k)
ga

]
. More generally one has

q(k)
ga∫

−∞

Pga (qga)qob (qga)dqga =
k

∑
l=0

pl
obq(l)

ob (3.9)

where Pga (..) is the Gaussian probability density function (PDF).

The problem, however, is to find the correlation function which qga has to have in order that the covariance
function of q(k)

ob corresponds to the observations. Since the field q(k)
ga generated by the forward transformation

Eq. 3.6 is not normally distributed, step 3 above does not give the correct covariance. In other words, a
Gaussian field with this covariance does not produce (when transformed back) synthetic data which have
the same covariance function as the observations. This problem led to the development of the other methods
described below.

Transforming covariances for binary variables

An extreme case of a discrete field is a binary field qbi which can be represented by a Gaussian field together
with a threshold value θ :

qbi (qga) =

{
1 qga ≥ θ

0 qga < θ
. (3.10)

Here the value of θ is readily obtained from the condition that the global mean qbi (qga) of qbi (qga) has to
be the same as for the observations. The covariances of the Gaussian field can be found by (numerically) in-
verting the relation σ̂ (σ), where σ ≡ E{qga1qga2} is the correlation of values from the Gaussian field taken
at different locations (qga1 = qga (x1) and qga2 = qga (x2)) and σ̂ ≡ E{qbi (qga1)qbi (qga2)} is an expectation
value which can be obtained from the observations. The relation σ̂ (σ) can be obtained from the general
formula for the joint probability of two correlated Gaussian fields

P [σ ] (u,v) =
1

2π
√

1−σ2
exp

[
−u2 + v2−2σuv

2(1−σ2)

]
(3.11)

where u and v are two correlated Gaussian fields (with zero mean and variance one) and σ ≡ E{uv} is their
correlation. Using this the expectation value of σ̂ ≡ E{qbi (qga1)qbi (qga2)} is given as

σ̂ (σ) =
∫

θ

−∞

∫
θ

−∞
P [σ ] (qga1,qga2)dqga1dqga2 (3.12)

This equation can then be (numerically) inverted to obtain the desired transformation σ = σ (σ̂), between
the product σ̂ ≡ E{qbi (x)qbi (x+h)} and the corresponding covariance σ of the Gaussian field (the trans-
formation has to be applied for each value of h independently).
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Generalisation to discrete and mixed variables

For modelling such type of data as the MODIS 5km cloud fraction product the standard methods described
above had to be extended. The cloud fraction values were (apparently) produced by the averaging over 5x5
binary fields. The PDF has 26 discrete levels C f rac ∈ {k ∗1/25} with k ∈ {0,1,2, ..,25}. 24 of these levels
(those with 0 < C f rac < 1) were close enough together to be treated as being continuous. Roughly 40% of
the levels had C f rac = 1 and around 20% had C f rac = 0. The challenge was to find a method which combines
the quasi-continuous with the discrete part.

As explained above, computing the covariance function of the discrete field by transforming the observed
values with Eq.(3.6) is not a valid option since the forward transformed observations are not normally
distributed. Instead, point 3 above has been replaced by several sub steps which use Eq.(3.11) in combination
with definition (3.8) to obtain the relationship for the expectation value σ̂ = σ̂ (σ):

σ̂ (σ) =
∫ +∞

−∞

∫ +∞

−∞
P [σ ] (qga1,qga2)qob (qga1)qob (qga2)dqga1dqga2 . (3.13)

Again, as for the binary case discussed above, this equation can then be (numerically) inverted to yield the
correlation for qga as a function of the expectation value σ̂ ≡ E{qob (x)qob (x+h)}.

The general method

Using Eq. 3.13 for deriving the covariances, points 1-5 above, which described the general method for
modelling continuous fields can now be generalised to discrete and mixed fields as follows:

1. Computing the probability distribution function Fob (qob) for the observations qob.

2. Using Fob (qob) to construct the forward transform.

3. a) Using Eq.3.13 to compute σ̂ (σ).
b) Computing the product σ̂ (h)≡ E{qob (x)qob (x+h)} from the observations.
c) Inverting (numerically) the relation σ̂ (σ) to obtain the correlation function
σ (σ̂ (h)) = E{qga (x)qga (x+h)} of the Gaussian field.

4. Using stochastic modelling techniques to generate a Gaussian field which has the spatial covariances
computed in step 3.

5. Using Eq. 3.8 to transform the modelled Gaussian field into observation space.

To demonstrate the usefulness of this method, it will be applied to different types of observations in the next
subsection.

3.4 Testing with observations

The statistical treatment which was outlined in the last subsection is not a mathematically rigorous method.
As explained above, the synthetic data which it creates share, within some approximation, important statis-
tical properties with the observed data. To which extent this leads to a sufficient estimate of the represen-
tativity error had to be tested. This subsection describes the tests and their results. The positive outcome
of these tests would give us some confidence for applying the method to CALIPSO and CloudSat data for
which the true representativity error is not known.
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3.4.1 Modelling the test data

The validity of the proposed method has been tested with 3 types of observed data. As these test data
are coming from a scanning satellite instrument, a direct comparison between 1D segments and 2D area
averages is possible. The following data have been selected:

• MODIS total cloud cover (5 km product)

• TRMM rain index (i.e. fraction)

• TRMM rain rate

For the purpose of this study, 5 days of data have been analysed. Data has been taken from a region in the
tropical Pacific (longitude∈ [155−256], latitude∈ [20S−20N]).

Figure 3.2 shows the distribution function of the TRMM rain rates for observed (red curve) and modelled
(black curve) data. By far the largest peak is in the zero rain-rate bin (i.e., no rain) which is for more than
96.5 % of the cases (96.51% for the observed, 96.52% for the modelled data). The number of occurrences
decreases very rapidly with increasing rain rate. The largest observed values were around 260 mm/h for the
observation period. Events with rain rates much larger than 100 mm/h were, however, relatively rare.

Figure 3.3 (bottom) shows the corresponding distribution for the MODIS cloud fraction (C f ) data. The
employed 5km product apparently stems from averaging over 25 (i.e., 5x5) binary points so that data are
distributed over 26 discrete levels. The largest sample fractions are in the C f = 1 (38.3% observed, 37.9%
modelled) and C f = 0 (18.6% observed, 19.6% modelled) bins. The top graph of Figure 3.3 shows the
corresponding 25 threshold values q(k)

ga (note that q(26)
ga = ∞) which were used for the back transformation

Eq. 3.8.
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Figure 3.2: Distribution of rain rates in observed (red curve) and synthetic (black curve) TRMM data. The left outer
bin (which is plotted against an interval of negative rain rates) corresponds to points with no rain (zero rain rate) for
which a separate bin has been assigned.

Figure 3.4, graphs a-c, show the covariance functions obtained from the observations (green curves) and the
corresponding synthetic data (black curves). For the TRMM data, synthetic rain fractions and rain rates are
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Figure 3.3: Bottom: Distribution of cloud fraction for the observed (red curve) and synthetic (black curve) MODIS
data. Top: The corresponding thresholds for back transforming the Gaussian field.

both obtained from the same Gaussian field. This field was optimised to fit the index (or rain fraction) field.
It is therefore not surprising that the fit between observed and synthetic covariance function is much better
for the rain fraction than for rain rates. It will, however, be shown below that the synthetic rain rate field
also yields reasonable estimates for the representativity error of this field.

Generally, no effort was made for the covariance functions of the synthetic data to fit the long distance
behaviour of the observed covariances. For TRMM data, covariances at distances larger than 300 mea-
surements points (from the TRMM radar) are clearly dominated by noise (i.e. insufficient convergence).
For MODIS (black curve in Figure 3.4 c) the long distance behaviour is smooth but non-monotonic (with
a strong minimum around 2000 km). As the representativity error is most likely dominated by the short-
range behaviour (unless for extremely large NWP grid box sizes) no effort was made to represent this
non-monotonic behaviour with the synthetic data.

The correlation function for the MODIS data together with the correlation function of the corresponding
Gaussian generating field (obtained by inverting Eq. 3.13) are plotted in Figure 3.4 d (black and blue
curves). As explained above, the synthetic data for the Gaussian field were generated using an analytical fit
to the covariance estimated from the observations. This analytical fit is given by the red curve in Fig. 3.4d.

3.4.2 Results

To determine the representativity error averages of different quantities (e.g., cloud fraction) have been com-
puted on (1D) line segments as well as for the corresponding (2D) grid boxes which contain the respective
line segments. The line segments have been partitioned into bins of the respective score (for most of the
results presented below the “variogram score” has been used, see subsection 3.2) and the root mean square
(rms) error has been computed as the rms difference between line and grid box averages in each bin, respec-
tively.

From the Fig. 3.5a) one finds that the employed variogram score sc(x0,h,L0) (see Eq. (3.3), here L0 = 65
and h = 35 had been chosen) is quite effective in differentiating between regions with small and large errors.
More precisely, strong differences are found in the sc interval [0,0.2] while only small changes occur for
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Figure 3.4: Graphs a)-c): Covariance functions for the observed data (black curves) with the corresponding functions
obtained from the synthetic data (green curves). Graph d) shows the correlation function for the observed MODIS
data (black curve), the corresponding values of the generating Gaussian field (blue curve, compare text) and the fitted
function (red curve) which was used to generate the synthetic data for the MODIS observations.

larger values of sc. As seen from Fig. 3.5b), a large part of the observed samples occur in the range of small
sc for which the score differentiates well, while numbers decrease dramatically for sc > 0.4 for which the
statistics become quite noisy.

Very encouraging is the excellent agreement between the rms errors obtained from observed and modelled
values. While there is a large relative error in the sc = 0 bin (the error obtained from modelled data has
about twice the magnitude of those from observations) differences are very small in absolute terms and the
strong rms error increase in the interval [0,0.2] is captured quite perfectly by the modelled data.

The peak of the number distribution is generally captured quite well, though the observed peak is a little
broader. Very significant differences between the number distributions are in the two smallest sc bins for
which the observed data have a local maximum while for the synthetic data numbers decrease monotonically
(with a strong minimum at sc = 0). This shows that the modelled data do not contain all the features of the
cloud field. The observed field apparently has strongly uniform regions (which have either cloud fractions
c f r = 1 or c f r = 0, respectively) which are not represented by the modelled data. Nevertheless the modelled
data capture the error dependence on sc quite well.
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Figure 3.5: From MODIS data: Root mean square error (RMS error, graph a) and number concentration (graph b)
for bins corresponding to different intervals of the variogram maximum score sc (see Eq. 3.3) as indicated by the
respective lower axis. The most left bin (with sc 6 0) corresponds to regions with sc = 0 for which a separate bin
has been selected. Green lines are from observations, black lines correspond to the same quantity but computed from
modelled (i.e., synthetic) data.
The RMS errors were computed as the difference between the cloud fraction value taken from a 2D square area (65
km x 65 km) and a cloud fraction estimate taken from a 1D segment of 65 km length (the 1D segments were taken
from a centre line of the 2D squares).

For TRMM precipitation fraction, the corresponding error dependencies are given by the bold curves in Fig.
3.6. While the agreement between observed and stochastically estimated error values is excellent for small
sc (sc < 0.2), for larger values the errors obtained from observations are up to 20% larger than those from
synthetic data. While this results are a little less accurate than those found for MODIS data, a 20% deviation
should still be completely acceptable for most meteorological applications.

Deviations of the same magnitude can be seen in Fig. 3.7 (left graph) for the TRMM rain rates. Only for
sc = 0 the observations differ from the modelled error value by more than a factor 2 (as the modelled value
for sc = 0 is extremely small; however, the difference between modelled and observed errors is still small
in absolute terms).
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Figure 3.6: Similar to Fig. 3.5 but for rain fractions from TRMM data. The length of the 2D square and 1D seg-
ments are 22 radar shots. Bold lines show RMS errors and thin lines with square symbols the corresponding number
concentrations. Green lines are from observed, black lines from synthetic data.
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Figure 3.7: Similar to Fig. 3.6 for TRMM rain fraction but for rain rate. The left graph shows the RMS error (RMS
difference between 1D and 2D rain rate estimates or measurements) while fraction of samples are shown on the right.
As in Figs. 3.6 and 3.5, all quantities are computed for bins corresponding to intervals of the variogram score. The
inlets magnify results for small variogram score values.

Biases and variance

For meteorological applications it is useful to partition the total RMS errors shown in Figs. 3.5, 3.6 and 3.7
into bias and variance. While for the MODIS data the bias in a given sc interval is very small (see Fig. 3.8),
substantial biases can be seen in Figs. 3.9 and 3.10 for TRMM rain fractions and rain rates. Again, values
obtained from modelled and observed data mostly seem to agree within 20%. Big relative differences are
found for the rain rate bias at comparably small values of sc (sc ∈ [3,30]). However, in this sc range biases
are generally small and can be neglected.
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For the corresponding variances (see right graphs of Figs. 3.9 and 3.10) differences between results from
synthetic and observed data are of the same magnitude as found for the corresponding RMS errors (compare
Figs. 3.6 and 3.7).
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Figure 3.8: Biases for MODIS cloud fraction. Green lines correspond to observations while black lines are derived
from synthetic data. As in Figs. 3.5 and 3.6, the bin plotted at negative sc values corresponds to sc = 0.
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Figure 3.9: Biases and variance in variogram-score bins for TRMM rain fraction. Green lines correspond to observa-
tions while black lines are derived from synthetic data. As in Figs. 3.5 and 3.6, the bin plotted at negative sc values
corresponds to sc = 0.

Scale dependency of the representativity error

In most of this section MODIS data are analysed with respect to 65km x 65km grid boxes. Of course, for
different applications NWP and general circulation models (GCMs) are run with quite different resolutions.
The operational resolution of the ECMWF deterministic forecast is about 24 km while the first inner loops of
the 4D-Var system are run with grid boxes of about 200 km. This raises the question how the representativity
error characteristics of the observed and stochastically generated data differ for different grid box sizes.
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Figure 3.10: As Figure 3.9 but for rain rate.

To address this, representativity errors for MODIS data have been computed for several gridbox sizes. As
seen in Fig. 3.11, the shape of the relationship between the variogram score sc and the RMS error varies
only slowly with grid box length. However, the correspondence between the RMS errors computed from
observations and synthetic data decreases with increasing grid box length scales. Most strikingly, for the
largest considered gridbox sizes (225 km and 445 km), error estimates from synthetic data are only available
above a certain threshold of the variogram score as the stochastically generated data have no samples in the
smallest sc bins (compare Fig. 3.12). Also, near their onset (where, for small sc, RMS error estimates from
synthetic data become first available) synthetic error estimates differ strongly from the observed errors (the
estimates exhibit a large peak). This difference near the onset is not surprising as sample sizes are still
comparably small.

These results suggest that the proposed stochastic method for estimating the representativity error will per-
form best for smaller grid box sizes while the methods reliability decreases with increasing grid box size.
When applying the method to CloudSat and CALIPSO data, it will be important to assess for which scales
the method can be trusted. Encouraging in this context is the fact that for the tests presented here, parameter
regimes where the method becomes unreliable coincide with those where the sample number distributions
(see Fig. 3.12) differ strongly between observed and synthetic data. It is therefore likely that failures of the
method can be diagnosed by comparing the correspondence between statistics of the two data sets along the
satellite track.

Using cloud cover and rain rates or fractions as score

So far this part of the report has concentrated on the newly developed variogram score which was found to be
a useful tool for differentiating regions with different error magnitudes. As mentioned above, a very simple
measure for the flow dependence of the representativity error is usually obtained by the measured quantity
itself. For comparison Figure 3.13 shows the RMS error for TRMM radar rain fraction as a function of the
rain fraction itself. Differences between results from modelled and observed data seem to be of comparable
magnitude (possibly slightly larger in some cases) as for the variogram score (compare Fig. 3.6). The same
seems to be true for the biases and variances shown in Figure 3.14 (compare Fig. 3.9).

Results for the TRMM radar rain rate shown in Figs. 3.15 and 3.16 show also good agreement apart from
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Figure 3.11: Results for grid boxes of different sizes for RMS errors of observed MODIS data (green lines) and the
corresponding synthetic data (black lines). As indicated in each graph, different graphs correspond to different model
grid length scales (65, 125, 225 or 425 km).
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Figure 3.12: As Fig.3.11 but for the corresponding normalised number of samples.
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the larger rain rate range (rainrate > 10mm/h) for which discrepancies are larger. For these comparably
large rain rates, however, the number of samples is not very big which might partly influence these results.
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Figure 3.13: The same as Fig. 3.6 but RMS errors and number concentrations are computed for bins corresponding to
rain-fraction intervals.
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Figure 3.14: The same as Fig. 3.9 but for rain-fraction bins (instead of variogram-score bins).

Which measure is better?

Above we found that both types of measures, the variogram score as well as the measured variable itself
(taking, e.g., the rain fraction for diagnosing the representativity error of the rain fraction data) seem to give
useful measures for the flow dependency of the representativity error. This raises the question which of
these scores is better? What we would like to have is a good discriminator which enables us to select as
many as possible of the regions for which the error is small (so we can give them a high weight in the data
assimilation process) and, also, to identify, as reliably as possible, those regions where the error is large.
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Figure 3.15: The same as Figure 3.13 but for rain rates (in rain-rate bins) instead of rain fraction.
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Figure 3.16: The same as Figure 3.14 but for rain rates (in rain-rate bins) instead of rain fraction.

The quality of a score therefore depends not only on how strongly the rms error varies with respect to the
score, but also on how many of the data regions are located within the parameter regime where the score has
good skill. To combine both of these aspects, we define the following variables:

rmseav (s̃c) =
s̃c∫
−∞

Pdis (šc)rmse(šc)dšc (3.14)

nbav (s̃c) =
s̃c∫
−∞

Pdis (šc)dšc . (3.15)

where Pdis (šc) is the PDF for a chosen score šc while rmseav (s̃c) is the average root mean square error for
all regions for which the obtained score is smaller or equal to s̃c. Equation 3.15 defines nbav (s̃c) as the
relative fraction of these regions.

Figure 3.17 shows rmseav (s̃c) as a function of nbav (s̃c) for different score functions (the corresponding
values of s̃c are not shown). This type of graph addresses the following question. If we use a certain score to
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select the, say, 80% grid boxes with the lowest error (i.e., if we select the 80% grid boxes which according
to this score have the lowest error), how big is the average error within these 80% selected grid boxes. If the
score was a perfect discriminator, this average error would be identical to the average error of the 80% grid
boxes which truly have the smallest errors (and not just according to some score). This true average error
has been included in Fig. 3.17 by the black curve. It gives a lower bound for the other curves.

Generally a score can be regarded as better than another score if its error in Fig. 3.17 is smaller for all
sample fractions. In this respect, however, the result for the variogram score and rain-fraction score are
mixed with the curves crossing each other (both curves are generally quite close together). The curve for the
rain-fraction score (green curve), however, starts at much higher values of nbav and rmseav which is due to
the fact that the bin with the smallest error (i.e., the bin where the precipitation fraction is zero) has a large
number of points (almost 80%). The variogram score, however, can also differentiate between different
subsets of the zero-precipitation-fraction bin and is able to identify regions where the representativity error
is substantially smaller than the average value for this bin. The reason for this is that the variogram score uses
information far beyond the grid box for which the precipitation fraction is being evaluated. This indicates
that the variogram score is a better measure for the flow dependency of the representativity error.
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Figure 3.17: The average error rmseav (s̃c) (vertical axis; see Eq. 3.14) plotted against the corresponding fraction
nbav (s̃c) (horizontal axis; see Eq. 3.15) for the observed TRMM rain fraction data. Colours red and green correspond
to different score functions as indicated in the legend. The black curve (labelled “ideal score”) gives a lower bound to
the error which could be possibly achieved by a score (see text).

3.5 Summary and conclusions

A method to obtain a flow dependent estimate of the representativity error has been developed in this project.
Tests with real world data indicate that the method gives useful estimates for data with very different statis-
tical properties and can be used to determine biases and variances separately.

To our knowledge, this is the first method which computes estimates for these important quantities and
which shows good potential for future operational use. While this is important for applications in data
assimilation, the small footprint of the active satellite measurements appears in general to be a major obstacle
for comparing them with atmospheric models. The extent to which the atmospheric modelling community
can benefit from this new data type may therefore depend quite crucially on the further development of
statistical up-scaling methods for which the work presented here is an example.

52 ESA contract 1-5576/07/NL/CB WP-1000



Forward operator developments

The method presented here is based on a quasi-empirical relationship between error characteristics and a
measure (“score”) of the variability along the satellite track. This relationship is obtained through stochastic
modelling techniques for which standard methods have been generalised to cope with more general classes
of data.

The score used in most of this work has been newly developed for this project and was named “variogram
maximum score” (or short “variogram score”) and is based on a probabilistic measure which is defined
locally and which gives the decay of the covariance function along the satellite track. This variogram
score was found to differentiate well between regions of small and large representativity error. It is more
flexible than taking, e.g., cloud fraction (i.e., the measured variable itself) as an alternative score. With its
capability to exploit information on different length scales along the satellite track, the variogram score can
differentiate regions which have the same cloud fraction but for which the representativity error has different
magnitudes.

While the work presented in this section demonstrates how the new method works for different types of
data, applying it within the ECMWF data assimilation system will require some further, mainly technical,
developments. The major part of this will be the statistical processing of the data from the active satellite
measurements in order to obtain the PDFs and covariance functions required for the creation of synthetic
data. The number of regions required will depend on how strongly the statistical properties of the cloud
field (as measured by CALIPSO and CloudSat) change over the regions for which the case studies will be
performed. A possible future operational implementation of the method would require a global coverage of
the statistical cloud field properties.

The tests presented in subsection 3.4 also showed some limitations for the use of the synthetic data generated
for this study. While the generated data proved very useful for estimating the representativity error (partic-
ularly in conjunction with the variogram score), their overall statistical distributions showed some clear
differences to those of the observations. E.g. in Fig. 3.5, the distribution of MODIS data has a local peak
for small variogram score values while the number of samples of the corresponding synthetic data decreases
rapidly with decreasing variogram maximum score. One reason for this discrepancy is quite likely the in-
sufficient representation of the covariance function for large distances (compare Figure 3.4c). Representing
covariances on a large range of scales is, however, in general not a trivial task. It can be computational very
expensive and, also, covariances measured over large distances are typically increasingly noisy. At least a
partial solution to this problem could be achieved by the use of so called “conditional modelling techniques”
(see Chiles and Delfiner, 1999, for an overview). The synthetic data generated by such techniques do not
only share important statistical properties with the observations, they also coincide with the observations
along the measurement tracks (stochastic modelling is only used to fill the gaps).

Another limitation of the stochastic modelling technique employed here is the use of a single Gaussian field
to describe a cloud field which in general comprises different synoptic regimes. Methods which involve
the combination of several Gaussian fields could lead to strong improvements. Such methods have been
developed and employed for modelling indicator fields (e.g., for describing different geological facies, see
Dowd et al., 2003). The method developed within this project has great flexibility and can, in principle, be
generalised to a multi-Gaussian approach (the central transformation 3.13 can be generalised in a straight
forward way). While the corresponding (numerical) inversion of the covariance transformation becomes
considerably more complex, such an approach seems very attractive as it could incorporate a more general
type of flow dependence.

To summarise, the method developed has shown very promising capabilities for the estimation of the repre-
sentativity errors involved with the small footprint of the new active satellite measurements. This was the
main topic for this project. The generated synthetic data appear, however, less reliable for other applications
which involve comparing more general statistical properties of NWP model data with the observations (such
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as PDFs or some aspects of these distributions, apart from the mean). Further developments and generalisa-
tions of the employed stochastic method are, however, very likely to improve these aspects considerably and
may be very important for future uses of active satellite measurements in NWP. Such improvements would,
of course, also further ameliorate the representativity error estimates discussed in this section of the report.
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A List of Acronyms

CALIPSO Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation
CFMIP Cloud Feedback Model Intercomparison Project
CloudSat NASA’s cloud radar mission
COSP CFMIP Observation Simulator Package
CPR Cloud Profiling Radar
CPU Central Processing Unit
ECMWF European Centre for Medium Range Weather Forecasts
ESA European Space Agency
GCM General (or Global) Circulation Model
GES DISC Goddard Earth Sciences Data and Information Services Center
HC Hydrometeor Content
IFS Integrated Forecasting System
ISCCP International Satellite Cloud Climatology Project
MC Multi-Column
MODIS Moderate Resolution Imaging Spectroradiometer
NASA National Aeronautics and Space Administration
NWP Numerical Weather Prediction
PDF Probability density function
PSD Particle Size Distribution
RMS root mean square error
SC Single-Column
SCOPS Subgrid Cloud Overlap Profile Sampler
TRMM Tropical Rainfall Measuring Mission
ZmVar Z (reflectivity) Model for Variational assimilation of ECMWF
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Janisková, M., 2004: Impact of EarthCARE products on Numerical Weather Prediction, Contract report to
the European Space Agency, 59 pp.

Kollias, P. and B. Albrecht, 2005: Why the melting layer radar reflectivity is not bright at 94 GHz, Geophys.
Res. Lett, 32.

56 ESA contract 1-5576/07/NL/CB WP-1000



Forward operator developments

Liebe, H. J., 1985: An updated model for millimeter wave propagation in moist air, Radio Science, 20(5),
1069–1089.

Liebe, H. J., G. A. Hufford, and T. Manabe, 1991: A model for the complex permittivity of water at fre-
quencies below 1 THz, International Journal of Infrared and Millimeter Waves, 12(7), 659–675.

Liebe, H. J., P. W. Rosenkranz, and G. A. Hufford, 1992: Atmospheric 60-GHz oxygen spectrum- New lab-
oratory measurements and line parameters, Journal of Quantitative Spectroscopy and Radiative Transfer,
48(5), 629–643.

Liu, G., 2004: Approximation of single scattering properties of ice and snow particles for high microwave
frequencies, J. Atmos. Sci., 61(20), 2441–2456.
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