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Abstract 

This paper describes the use of forecast sensitivity to observations as a diagnostic tool to monitor the observation 
impact on the quality of the short range forecasts (typically 24 hour). The forecast error is provided by a control 
experiment (using all observations available) which has been run among two series of observing system experiments 
performed at ECMWF. The observation data impact obtained with the forecast sensitivity is then compared with the 
observation data impact as classically measured in the context of observing system experiments. Differences and 
similarities between the two approaches are highlighted. Overall, the assimilated observations decrease the forecast 
error. However, locally some poor performances are detected that are related either to the data quality, the sub-
optimality of the data assimilation system or biases in the model. It is also found that some synoptic situation can 
deteriorate the quality of certain measurements or can induce some local weather variability over small areas that the 
assimilation system cannot correctly resolve. Finally, the performance of the current operational version (CY35R2) of 
the data assimilation system for the last four months of 2008 shows a consistent overall positive impact of the 
observations. 

1 Introduction 
Over the last decade, data assimilation schemes have evolved towards very sophisticated systems, such as the 
four-dimensional variational system (4D-Var) (Rabier et al. 2000) that operates at the European Centre for 
Medium-Range Weather Forecasts (ECMWF). The scheme handles a large variety of both space and 
surface-based meteorological observations. It combines the observations with prior (or background) 
information on the atmospheric state and uses a comprehensive (linearized) forecast model to ensure that the 
observations are given a dynamically realistic, as well as statistically likely response in the analysis. 
Effective performance monitoring of such a complex system, with an order of 107 degrees of freedom and 
more than 106 observations per 12-hour assimilation cycle, has become an absolute necessity.  

The assessment of each observation contribution to the analysis is among the most challenging diagnostics in 
data assimilation and numerical weather prediction. Methods have been derived to measure the observational 
influence in data assimilation schemes (Purser and Hung 1993, Cardinali et al. 2004, Fisher 2003, and 
Chapnick et al. 2004). These techniques show how the influence is assigned during the assimilation 
procedure, which partition is given to the observation and which is given to the background or pseudo-
observation. They therefore provide a indication of the robustness of the fit between model and observations 
and allow some tuning of the weights assigned in the assimilation system.  

Recently, adjoint-based observation sensitivity techniques have been used (Baker and Daley 2000, Langland 
and Baker 2004, Cardinali and Buizza, 2004, Morneau et al., 2006, Xu and Langlang, 2006, Zhu and Gelaro 
2008) to measure the observation contribution to the forecast, where the observation impact is evaluated with 
respect to a scalar function representing the short-range forecast error. In general, the adjoint methodology 
can be used to estimate the sensitivity measure with respect to any parameter of importance of the 
assimilation system. Very recently, Daescu (2008) derived a sensitivity equation of an unconstrained 
variational data assimilation system from the first order necessary condition with respect to the main input 
parameters:  observation, background and their error covariance matrices. The paper provides the theoretical 
framework for further diagnostic tool development not only to evaluate the observation impact on the 
forecast but also the impact of the other analysis parameters. Sensitivity to background covariance matrix 
can help in evaluating the correct specification of the background weight and their correlation. Limitations 
and weaknesses of the covariance matrices are well known, several assumptions and simplifications are 
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made to derive them. Desroziers and Ivanov (2001) and Chapnik et al. (2006) discussed the importance of 
diagnosing and tuning the error variances in a data assimilation scheme. 

Over the past years, Observing System Experiments (OSEs) have been the traditional tool for estimating data 
impact in a forecasting system (Bouttier and Kelly, 2001 English et al., 2004 and Lord et al., 2004, Kelly and 
Thépaut, 2007). Usually, OSEs are performed by removing subsets of observation from the assimilation 
system and the forecasts are compared against a control experiment that includes all observations.  

The value of observations in the forecast is assessed by comparing forecast skill obtained by different 
statistical measures and several independent experiments need to be performed for quite long periods (a few 
months) to ensure statistical significance to the results. The assessment of the value of a given observation 
type can become quite expensive if a full investigation of the different components of the GOS (Global 
Observing System) is performed.  

Clearly, there are some basic differences between the adjoint-based observation technique and the OSE 
technique: 

• The adjoint-based observation sensitivity technique measures the impact of observations when the 
entire observation dataset is present in the assimilation system, while the observing system is, in the 
OSE context, modified. In fact, each OSE experiment differs from the others in terms of assimilated 
observations. 

• The adjoint-based observation sensitivity technique measures the response of a single forecast metric 
to all perturbations of the observing system, while the OSE measures the effect of a single 
perturbation on all forecast metrics.  

• The adjoint-based technique is restricted by the tangent linear assumption, valid up to 3 days. 
Furthermore, a simplified adjoint model is usually used to carry the forecast error information 
backwards, which limits further the validity of the linear assumption, and therefore restricts the use 
of the diagnostic to a typical forecast range of 24-48 hours. One implication to use a simplified 
adjoint model is that the analysis uncertainties obtained throughout the adjoint integration can be 
incorrect if the propagating back signal is weak (Isakseen et al., 2005). The OSE on the other hand 
can measure data impact on long-range forecast.  

• The adjoint-based observation sensitivity technique measures the impact of all observations 
assimilated at a single analysis time while the OSE includes effect of observations assimilated at 
previous time since they compare modified Kalman gain matrices.  

The aim of this paper is twofold: illustrate the type of investigation and diagnostics that can be carried out 
with the adjoint-based observation sensitivity in an operational context, and provide the overall observation 
performance in the system. To this respect the adjoint tool is based on the forecast error of the control 
experiment of those OSEs that have recently been performed at ECMWF (Kelly and Thépaut 2007) and on 
the forecast error of the last implemented operational model. 

In this paper, the potential of estimating forecast sensitivity to observations as a diagnostic tool to investigate 
the sources of short-range forecast errors is shown and qualitatively contrasted with an Observing System 
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Experiment data impact tool. In section 2, the theoretical background of the forecast sensitivity (observation 
and background), the numerical solution and the calculation of the forecast error contribution from 
observations are shown. Also, the OSEs used in the investigation are summarized. Results are illustrated in 
section 3. Section 4 shows the performance of the ECMWF operational configuration with respect to the 
current observation network. Conclusions are given in section 5.  

2 Observation impact on the forecast 

2.1 Linear analysis equation 

Data assimilation systems for numerical weather prediction (NWP) provide estimates of the atmospheric 
state x by combining meteorological observations y with prior (or background) information xb. A simple 
Bayesian normal model provides the solution as the posterior expectation for x, given y and xb. The same 
solution can be achieved from a classical frequentist approach, based on a statistical linear analysis scheme 
providing the Best Linear Unbiased Estimate (Talagrand 1997) of x, given y and xb. The optimal general 
least square solution to the analysis problem (see Lorenc 1986) can be written 

 

b a nx = Ky + (I - KH)x  2.1 

The vector xa is called the ‘analysis’. The gain matrix K (of dimension n×p with n being the state vector and 
p the observation vector dimensions) takes into account the respective accuracies of the background vector xb 

and the observation vector y as defined by the (n×n)-dimensioned covariance matrix B and the (p×p)-
dimensioned covariance matrix R, with 

 1 1 1T 1T− − − −K = (B + H R H) H R  2.2 

Here, H is a (p×n)-dimensioned matrix interpolating the background fields to the observation locations, and 
transforming the model variables to observed quantities (e.g. radiative transfer calculations transforming the 
model’s temperature, humidity and ozone into brightness temperatures as observed by several satellite 
instruments). In the 4D-Var context, H also includes the propagation in time of the atmospheric state vector 
to the observation times using a forecast model. From (2.1) the sensitivity of the analysis system with respect 
to the observations and the background can be derived from: 

 

Ta

T Ta

b

∂
∂
∂

−
∂

x = K
y
x = I H K
x  2.3 

The analysis sensitivity with respect to the observation is a similar measure as the observation influence 
derived by Cardinali et al. (2004). The only difference to the ‘influence matrix’ is the space in which the 
solution is found. Here, the analysis sensitivity is found in the model space instead of the observation space. 

2.2 Sensitivity gradient 

Let consider two forecasts of length f starting from xa and length g starting from xb, xb being the background 

field used in the xa analysis. Both forecasts verify at time t. Following Langland and Baker (2004) and Errico 
(2007) the third order sensitivity gradient is defined as  
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f g

a a

J JJ

bx x
∂ ∂∂

= +
∂ ∂ ∂x  2.4 

Where ( ), ( )f f t f tJ = − −x x C x x 2  and ( ), ( )g g t g tJ = − −x x C x x 2 are a quadratic measure of the 

two forecast errors (xt the verifying analysis, taken here as the truth), and C is a matrix of dry energy norm 
weighting coefficients. It is clear that from (2.4) the adjoint model maps the sensitivity (with respect to the 
forecast) of Jf into f aJ∂ ∂x along the trajectory f and the sensitivity of Jg into g aJ∂ ∂x along the trajectory 

g (see Rabier et al. 1996, Gelaro et al., 1998 for the first order sensitivity gradient definition and 
computation). 

2.3 Sensitivity equation 

Baker and Daley (2000) derived the forecast sensitivity equation with respect to the observations in the 
context of variational data assimilation. Let us consider a scalar J-function of the forecast error. Then, the 
sensitivity of J with respect to the observations can be written using a simple derivative chain as: 

 

a

a

J J ∂∂ ∂
=

∂ ∂ ∂
x

y x y  2.5 

where aJ∂ ∂x is the sensitivity of the forecast error to the initial condition described in section 2.2. By using 

eq.(2.2) and (2.3) the forecast sensitivity to the observations becomes: 

 

1 1 1 1( )T T

a a

J J J− − − −∂ ∂
= = +

∂ ∂ ∂
K R H B H R H

y x
∂
x

1)−
 2.6 

where  is the analysis error covariance matrix A. 1 1( T− −+B H R H

2.4 Numerical solution 

In an optimal variational analysis scheme, the analysis error covariance matrix A is approximately the 
inverse of the matrix of second derivatives (the Hessian) of the analysis cost function Ja (Rabier et al. 2000), 
i.e. A=(Ja″)-1 (Rabier and Courtier 1992). Given the large dimension of the matrices involved, Ja″ and its 
inverse cannot be computed explicitly.  The minimization is performed in terms of a transformed variableχ, 
χ=L-1(x-xb), with L chosen such that . The transformation L thus reduces the covariance of the prior 
to the identity matrix. In variational data assimilation, L is referred to as the change-of-variable operator 
(Courtier et al. 1998). Now apply the change-of-variable in the analysis cost function and write: 

TB = LL

 

1 1

1

1 1( ) ( ) ( ) ( ) (
2 2
1 1 ( ) ( ) ( )
2 2

x x x B x x Hx y R Hx y

χ χ HLχ y R HLχ y χ

T T
a

T T
a

J b b

J

− −

−

= − − + − −

= + − − =

)

 2.7 

The Hessian becomes: 

  2.8 1''( )χ I L H R HLT T
aJ −= +
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By applying the change-of-variable in (2.7) and by using (2.8), the forecast sensitivity to the observations is 
expressed as: 

 

1 1 1( )T T T

a

J J− − −∂ ∂
=

∂
R HL I + L H R HL L

y ∂x  2.9 

Using the conjugate gradient algorithm, first the following equation for -1∂ ∂ =J y R Hz  is solved: 

 

1( )T T
a

a
a

J

−+ =

∂
=
∂

I L H R HL z Lz

z
x  2.10 

The solution z lies in the Krylov-subspace generated by the vector LTza and the matrix (I+LTHTR-1HL). The 
Krylov-subspace dimension is the degree of the minimal polynomial of (I+LTHTR-1HL).   Therefore if the 
degree is low, the Krylov-method searches the solution on a small dimensioned space. The method is very 
efficient in an iterative solution of a linear system with large and sparse matrices (Van der Vorst 2003). 

The forecast sensitivity to observations is then given by interpolating z (using the H operator) in the 
observation space and by normalizing with respect to the observation error covariance matrix R. 

2.5 Observation impact measure 

Once the forecast sensitivity is computed, the variation δJ of the forecast error expressed by J can be found 
by rearranging (2.1) and by using the adjoint property for the linear operator: 

 , , ( ) , ,T T
a b b

a a a a

J J J J JJ ,δ δ δ∂ ∂ ∂ ∂ ∂
= = − = − = =

∂ ∂ ∂ ∂ ∂
x K δy Hx K y Hx K y y

x x x x y
2.11 

where a a bδ = −x x x  are the analysis increments and bδ =y y - Hx  is the innovation vector. This is the 

first time that δJ has been computed for a 12 hour 4D-Var system; the sensitivity gradient aJ∂ ∂x is valid at 

the starting time of the 4D-Var window (typically 09 and 21 UTC for the 12h 4D-Var set-up used at 
ECMWF). As for K, its adjoint KT incorporates the temporal dimension, and the δy innovations are 
distributed over the 12-hour window. The variation of the forecast error due to a specific measurement can 
be summed up over time and space in different subsets to compute the average contribution of different 
component of the observing system to the forecast error. For example, the contribution of all AMSU-A 
satellite instruments, s, and channels, i, over time T will be:  

 

s
AMSU A it

s S i channel
t T

J Jδ δ−
∈ ∈

∈

= ∑ ∑  

The forecast error contribution can be gathered over different subsets that can represent a specific 
observation type, a specific vertical or horizontal domain, or a particular meteorological variable. 

2.6 Observation System Experiment 

A traditional way of estimating data impact in a forecasting system is to perform OSEs such as those 
illustrated by Bouttier and Kelly (2001) or Kelly and Thépaut (2007) (for other weather centres see also 
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English et al. 2004 and Lord et al. 2004). OSEs can be performed in two ways: in one way, the performance 
of a baseline (reference) experiment which uses a minimum amount of observation types is compared with 
experiments that add at least one more observation type (Kelly and Thépaut, 2007). The other way consists 
in removing one particular or various datasets from the full system over a long assimilation period and to 
then compare the performance with respect to the control experiment, which assimilates the fully available 
observations from the GOS. In either case, it has to be reminded that removing observations from the 
assimilation system will generate a different Kalman gain matrix. 

Table 1: Operational data set in the OSE control experiment for summer 2006 and winter 2007 (Kelly 
and Thépaut, 2007). T, H, RH, p, u and v stand for temperature, humidity, relative humidity, pressure and 
u and v wind components.  

Type of Data Description 
OZONE Satellite ozone retrieval 
GOES Geostationary satellite infrared sounder radiances 
METEOSAT Geostationary satellite infrared sounder radiances 
AMSU-B Satellite microwave sounder radiances related to H 
SSMI-TCWV Satellite microwave imager radiances related to clouds and precipitation 
SSMI Satellite microwave imager radiances related to H and surface wind speed 
AIRS Satellite infrared sounder radiances related to H and T 
AMSU-A Satellite microwave sounder radiances related to T 
HIRS Satellite infrared radiances 
ERS-QuikSCAT Satellite microwave scatterometer 
AMVs Atmospheric Motion Vectors derived from satellite cloud imagery  
GPS-RO Satellite GPS radio occultation 
PILOT Sondes and American, European and Japanese Wind profiler  (u,v) 
TEMP Radiosondes from land and ship measuring ps, T, RH , u and v 
AIREP Aircraft measurements of T, u and v 
DRIBU Drifting buoy measuring ps, T, RH, u and v 
SYNOP Surface Observations from land and ship stations: measuring ps, RH , u and v 

Table 2: List of OSEs. 
Name Observations assimilated 
Reference   Conventional, AMSU-A from NOAA-16. 
AMV Reference + AMVs 
SCAT  Reference + ERS scatterometer+ QuikSCAT 
Control All data without GPS-RO 
GPSRO All data with GPS-RO 

The assessment of the observation value with respect the forecast skill through OSEs is performed by e.g. 
comparing the root mean square forecast error, anomaly correlation, etc. obtained with and without the 
subset of interest. This usually involves several independent experiments over a few months. Therefore, 
OSEs can be quite costly if a comprehensive investigation of the various contributions of the elements of the 
GOS needs to be performed. In Table 1 and Table 2, the observations assimilated in the control experiment 
and the list of the OSEs used in the investigation, are summarized. Forecasts have been computed for each 
OSEs from the 00 UTC analyses only, in order to save computing time. 
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3 Results 
The forecast sensitivity to the observation (FSO) has been computed for two seasons, a winter and a summer 
period, based on the forecast error calculated for the control experiment of the OSEs performed by Kelly and 
Thépaut (2007). The FSO calculation [(2.9) and (2.10)] has been carried out on 60 model levels and with a 
horizontal truncation of T159 to match with the OSE final inner loop resolution and also based on both 00 
and 12 UTC forecast error (only the 00 impact is shown). As for the OSE, the observation departures were 
computed at T511 (model trajectory resolution, Rabier et al. 2000). All the experiments were performed 
using the third order sensitivity gradient defined in section 2(b). A comparison of the FSO using the first 

order sensitivity gradient, based on a global square dry energy norm diagnostic function 1 ,t tJ = e Ce  

(Rabier et al. 1996) with e computed at t=24,  is also shown in the following section 3(b). Sensitivity 
gradients were computed at T159 analysis resolution. 

The sensitivity to the humidity initial condition is obtained as a secondary effect due to the adjoint of the 
linearized moist physical processes used in the sensitivity gradient calculation (Lopez and Moreau 2005, 
Tompkins and Janisková 2004, Janisková et al. 2002) which accounts for the dependency of the forecast 
error at the verification time due to the humidity errors in the initial conditions. The energy norm diagnostic 
function was computed from the OSE control (using all available observations) experiment forecast error. 

In the results presented here, the potential of the FSO diagnostic tool on the contribution of the observing 
system to the short-range forecast error is investigated and contrasted with that from the OSE tool. Due to the 
fact that the OSEs medium-range forecast is computed only from the 00 UTC analyses, the FSO diagnostic, 
when compared to the OSE diagnostic, is also shown for the 00 UTC analysis cycles. 

3.1 Third order sensitivity gradient 

3.1.1 Summer 

The impact of the operational data set on the 24 hour forecast error has been investigated for the period 15 
June to 15 July 2006 at 00 and 12 UTC (summer 2006). The forecast error for which the FSO is based is 
computed from the control experiment of the OSEs (see Table 1 and Table 2). The global observation 
performance over this period, as described in eq.(2.11), is summarized in Figure 1. Negative (positive) 
values correspond to a decrease (increase) of forecast error due to a specific observation type. The range of 
the results accuracy is estimated to be ~16%, therefore small negative and small positive values should be 
regarded quantitatively as neutral observation impact. Nonetheless, degradation observed in the error range 
can bring useful information on the possible causes affecting the data performance on the forecast, as will be 
shown. 

In future, a statistical estimation of the relative observation type error, will be computed and displayed, in 
fact, a number of sufficient FSO intregrations needed for a significant estimate.  

The largest error decrease is due to AMSU-A (four satellites) and AIRS radiances followed by SYNOP 
(mainly surface pressure), AIREP and DRIBU (mainly surface pressure) conventional observations. Good 
error reduction is also observed from SCAT (Quikscat and ERS scatterometer) and AMSU-B radiance 
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observations. An increase of forecast error is caused by AMVs (Atmospheric Motion Vector) from 
geostationary satellites. Some degradation is also observed from PILOT observations. 

 
Figure 1: 24-hour forecast error contribution (third order sensitivity gradient) in J/kg of the components 
(types) of the observing system in summer 2006. Negative (positive) values correspond to a decrease 
(increase) in the energy norm of forecast error. 

 
Figure 2: Forecast error contribution (third order sensitivity gradient) of the observed u-component of 
the wind on pressure levels and grouped by satellite types: GOES (G, two satellites GOES-8 and 9), 
METEOSAT (M, two satellite METEOSAT-7 and 8) and MODIS (MO, two satellites: Terra and Aqua) 
and by frequency bands: infrared (IR), visible (V) and water vapour (WV). Negative (positive) values 
correspond to a decrease (increase) of forecast error. 

A more detailed diagnostic of the forecast error contribution from AMVs is shown in Figure 2. The 
contribution to the forecast error of the observed u-wind component is grouped by pressure levels, satellite 
types, such as GOES (G, two geostationary satellites GOES-8 and 9), METEOSAT (M, two geostationary 
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satellites METEOSAT-7 and 8) and MODIS polar instruments (MO, MODIS Terra and Aqua), and by 
frequency bands: infrared (IR), visible (V) and water vapour (WV). The largest degradation is due to the 
visible and infrared frequency band at levels below 700 hPa, (mainly at 850 hPa) from METEOSAT (to a 
larger extent) and from the GOES satellites. 

The geographical locations of the degradation are shown in Figure 3 which displays the 00 UTC forecast 
error contribution of the visible and infrared bands between 1000 and 700 hPa accumulated over the summer 
month. The largest degradation is found over the southern equatorial band, in particular over the Atlantic 
(area-1) and Indian Ocean (area-2) where the METEOSAT satellites are located, followed by the one over 
the West Pacific (area-3) where GOES is operated. In the Indian Ocean, a well established Indian Monsoon 
circulation was taking place, characterized by a strong low level wind from South-East towards the Indian 
continent. Such a situation is not well represented by the model that tends to reinforce too much the low level 
circulation. The degradation due to the AMV in the area-2 is therefore likely attributed to a model bias. On 
the contrary, over the South of the Atlantic ocean (area-1) due to the presence of semi-permanent anti-
cyclone circulation in the tropical band, the associated large scale subsidence reinforces the trade inversion 
with a subsequent suppression of deep clouds (around 30 degrees), leaving only the shallow ones. This 
synoptic situation has implication with the methodology applied by the data provider to measure the height 
of the top of the clouds, resulting in a degradation of the data quality. A modified analysis experiment by 
reassigning the height of the top of the clouds according to the model first guess instead of using the height 
assigned by the data provider (courtesy of Niels Bormann) was performed to address the point. 
Unfortunately, the FSO based on the new forecast error does not indicate a significant improvement. The 
causes of the degradations are still under investigation. Similar synoptic situation to area-2 is also noticed in 
area-3, it is therefore believed that, even for this case, the degradation is attributed to the data quality. 

 

 
Figure 3: 00 UTC forecast error contribution (J/kg) (third order sensitivity gradient) of the observed u-
component of the wind between 700 and 1000 hPa from GOES and METEOSAT visible wavelength bands 
accumulated over one month in summer 2006. Negative (positive) values correspond to a decrease 
(increase) of forecast error. 
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The impact of AMVs on the forecast has also been assessed through the OSE. Among the different OSEs 
performed at ECMWF, one in particular was performed to measure the impact of assimilated AMVs by 
comparing the reference experiment (all conventional observations plus AMSU-A radiances from NOAA-
16) with an experiment containing AMV observations in addition to the observations used in reference (see 
Table 2). Figure 4 shows the rms (root mean square) forecast error differences between Reference and AMV 
experiments for the 24-hour forecast starting at 00 UTC for the 850 hPa u-wind component. Similar 
degradation appears in area-1, area-2 and area-3 defined above  The largest degradation in the South Pacific 
(Figure 4) is supported to a lesser extent by FSO diagnostic (Figure 3). 

 
Figure 4: rms forecast error differences between AMV and Reference OSEs of the 24 hour forecast 
starting at 00UTC for the u-component of the wind at 850 hpa (m/s). Positive (negative) contours indicate 
AMV errors are larger (smaller) than Reference errors. 

 
Figure 5 Time series of averaged boundary layer top height from 21-hour forecasts valid at 15:00 local 
time of all American wind profile stations over the summer period. 
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Figure 1 shows also a forecast error increase due to PILOT observations (Table 1). The geographical display 
of the forecast error for PILOT observations (not shown) indicates that the degradation was coming from the 
American wind profilers. Problems with the American wind profilers at low levels (below 700 hPa) were 
known in spring time due to bird migration contamination (Wilczak et al. 1995). But other meteorological 
situations also produce a contamination of profiler measurements (Ackley et al. 1998), one of which is the 
limitation of the local horizontal atmospheric uniformity assumption that must be satisfied to have a correct 
mean wind measure. Meteorological conditions in which short spatial and temporal scales of variability have 
amplitudes as large as the mean, as for example in the presence of a CBL (Convective Boundary Layer) and 
severe storms, limit the horizontal wind measurement. It was effectively found that the CBL-activity was 
rather high for this period as can be see from the large height of the boundary layer at the station locations, 
averaged among all profiler stations (Figure 5).  

It was also found that both CAPE and TCWV compared with the ERA climatology (Uppala et al. 2005) 
indicated larger CAPE and humidity advection from the Golf of Mexico in areas where wind profilers are 
located (not shown). Together, high TCWV and CAPE, triggered the convection activity. The lessons learnt 
with wind profilers is that their impact on the forecast can change quite a lot given the meteorological 
situations, therefore monitoring their impact on forecast skill, on a daily basis, would allow a more efficient 
screening of the contaminated measurements.  

3.1.2 Winter 

The winter period examined in this paper ranges from 5 January to 12 February 2007. On the 24-hour 
forecast error the global observation performance (Figure 9) is very similar to the summer one shown in 
Figure 1. Again some forecast skill deteriorations are produced by METEOSAT and GOES AMVs obtained 
from the visible and infrared band and to a lesser extent from GPS-RO (Global Positioning System satellite 
Radio Occultation). Impact studies on the use of GPS-RO observations had shown a positive impact in the 
forecast (Healy and Thépaut 2006) at different ranges with the exception of the 24-hour forecast range 
(Figure 6). The OSE was performed by removing the GPS-RO observations (GPSRO experiment) from the 
operational data set (Table 2). Figure 6 shows the rmse of the temperature field at 50 hPa (about 20 km) in 
the tropical band for GPSRO (solid line) and control (dashed line) experiment (assimilating the full 
operational observation set) for the same winter period. On the 24-hour forecast the impact of GPS-RO data 
is negative (Figure 6) becoming positive only past the 48-hour forecast range. Figure 7 shows the forecast 
error contribution of GPS-RO measurements at different vertical levels (distance in km from the surface) for 
the 24-hour. The large detrimental effect on the 24 hour forecast accuracy is observed from 100 hPa upwards 
(above 17 km, Figure 7a), geographically, the increase of forecast error is more pronounced at tropical and 
subtropical latitudes (not shown). 

The comparisons with the OSE clearly indicate that the FSO diagnostic highlights already at the first 
screening (see for example Figure 1 or 9) the major forecast degradation due to the observations. FSO 
provides similar qualitative diagnostic picture as the observing system experiments, but by using OSE, more 
difficulties are encountered to identify the regions or the vertical level of the problem. According to OSE, 
GPSRO performs better than control only after day 2, and the improvement increases with forecast range (up 
to 0.3 degree in temperature at day 10). Results produced with 48 hour FSO (not shown) confirmed that a 
this range GPS-RO observations have a positive impact in the forecast, suggesting therefore that the negative 
impact substantially depends on the verifying analysis used to compute the forecast error. In the future, a 
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different objective function where the forecast error is computed by comparing the forecast with independent 
observation is planned to be also used. 

 
Figure 6: 50 hPa rmse of one month of temperature field at 50 hPa in the tropics for GPSRO (solid line) 
and control (dashed line) experiments versus forecast length. 

 
Figure 7: 24 hour Forecast error contribution (third order sensitivity gradient) of GPS-RO at different 
vertical levels, from 5 km to the surface up to 50 km. 

SYNOP surface pressure observations that are globally decreasing the forecast error (see Figure 9), 
nevertheless have a negative impact over Europe (not shown). Further investigation showed that a group of 
land stations over Germany and France were persistently increasing the forecast error. A persistent north-
westerly flow occurred over Europe for three weeks, which entailed strong near-surface pressure variations. 
The sea surface pressure ranged from 8 hPa below average in north Germany and England to 4 hPa above in 
South of Italy. The comparisons between observation and background (observation departure) indicate that 
manual SYNOP station had a positive bias (12 Pa, Figure 8 top-left panel) which was halved after the 
minimization (5 Pa, Figure 8 top-right panel). On the contrary, automatic land stations (METAR) were, on 
the monthly average, measuring lower surface pressures (-30 Pa) than the model background (Figure 8 
bottom-left panel) and the negative bias increased after the minimization (Figure 8 bottom-right panel, -35 
Pa) showing that the analysis solution was not found in the direction of deeper surface pressure 
measurements. Interestingly, the increase of forecast error was due to the stations that were instead 
measuring higher pressure than the background. The weather situation was such that the strong surface 
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pressure gradient (over the entire month) generated, in that area, a large spread of pressure measurements 
(not shown) that was not represented in the model at the used resolution. In the minimization procedure the 
direction towards those observations that were measuring higher pressure than the background was selected 
providing, later on, a negative impact in the forecast. 

 
Figure 8 Surface pressure observation minus first guess (left panel) and observation minus analysis (right 
panel) for the winter period and for the SYNOP stations in the area of forecast degradation. SYNOP 
manual (upper panel) and SYNOP METAR (bottom panel) show large opposite bias.  

3.2 First order sensitivity gradient 

Now compare the first order sensitivity gradient with the third order one. On this subject, let 1( ) ,e e CeJ =  

express the variation in the forecast error due to the assimilation of observations, which is ( ) ( )a bJ J−e e  

where the ea and eb are the analysis and the background error. Following Langland and Baker, the second (or 
third) order Taylor series decomposition (see also Errico 2007) is used to map such variation  

 
1( ) ( ) ( ) ( ) (
2a a

T T
b a b a e b a e b aJ J J J′ ′′− = − + − −e e e e e e e e )

a

ae

 (3.1) 

Because the error cost function is quadratic, (3.1) reduces to 

  (3.2) ( ) ( ) 2( ) ( ) ( )T T
b a b a a b a bJ J− = − + − −e e e e e e e e e

which at the first order is  

  (3.3) ( ) ( ) 2 T T
b aJ J− = −e e d K

In an optimal assimilation system, the right hand side of the equation is on average zero (Talagrand, 2002) 
since statistically, the innovation vector, d=y-Hxb, and the analysis error are orthogonal. The results obtained 
by using the first order sensitivity gradient, only provides the measure of the sub-optimality of the analysis 
system. Therefore, the second order term appears necessary to be included in the FSO calculation.  

Experiments (summer and winter) were also performed by using a first order sensitivity gradient. Figure 9 
shows the FSO from 24 hour first order sensitivity gradient (left panel) and from 24 hour third order 
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sensitivity gradient (right panel). It is clear that quantitatively the diagnostic based on a different order 
gradient is very different (almost a factor 3) for all the observation types.  

For the first order gradient, global negative impact is also noticed from radiance data for GOES and 
Meteosat, from AMSU-B and from AMV for GOES in the infrared band. Also, the negative impact of GPS- 
RO is larger when first order sensitivity gradient are used. A further comparison is shown for the SCAT data 
v-components (Quickscat and ERS instruments). Figure 10 shows the global distribution of the forecast error 
 

 
Figure 9 24-hour forecast error contribution in J/kg of the components (types) of the observing system in 
winter 2007. Negative (positive) values correspond to a decrease (increase) in the energy norm of 
forecast error. Left panel FSO uses a first order sensitivity gradient and right panel a third order 
sensitivity gradient. 

 
Figure 10 Forecast error contribution at 00 UTC (J/kg) of the observed v-component of the wind from 
ERS and Quikscat scatterometers. Negative (positive) values correspond to a decrease (increase) of 
forecast error. Bottom panel FSO24

1rstO and top panel FSO24
3rdO. 
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contribution at 00 UTC for the winter period for the FSO24
1stO (first order, bottom panel) and FSO24

3rdO (third 
order, top panel) below 900 hPa. The FSO24

1stO values are less than half the FSO24
3rdO values but the 

geographical pattern of positive and negative values is quite similar, e.g. over the tropical band, in particular 
at the equator over the Atlantic ocean; for the extra-tropics, in particular in the Northern Hemisphere over the 
Pacific. The SCAT OSE diagnostic also shows, on the 24 hours forecast range, similar degradation for the v-
component below 900 hPa in terms of rmse differences between SCAT and reference (not shown). The 
pattern similarity of the variation of the forecast error between the first and the third order sensitivity 
gradient is also observed for some other data types mainly satellite data which indicates that the causes are 
related with the analysis performance, in particular the sub-optimality of the analysis system. 

4 Performance of the ECMWF operational model 
In this section, the overall impact of the operational observation network on the forecast is illustrated. The 
forecast is computed at T511 resolution (T799 operationally) consequently T511TL255L91 is the FSO 
resolution used. The assimilation and forecast system are the operational (CY35R2). The investigated period 
is from September to December 2008. Figure 11 shows the total impact over the four months of the different 
components of the observation network on the 24-hour forecast. The impact is expressed in terms of 
variation of the forecast error, positive values mean the forecast error is increased, and negative values 
indicate that the forecast error is decreased due to a particular observation type. Overall, the observations all 
contribute to decrease the forecast error (Figure 11 Joule x 10-4). Ozone observations have a neutral impact. 
The largest contribution is provided by AMSU-A data, followed by IASI and AIRS. Among the conventional 
observations AIREP (aircraft data) have the most positive impact comparable with GPS-RO that shows a 
considerable improvement with respect to the previous results (model cycle CY31R2). Noticeable is also the 
impact of radiosonde and surface pressure observations (TEMP, SYNOP and DRIBU). Larger impact is also 
found for SCAT data and the performance of METEOSAT and GOES geostationary wind measurements is 
improved as well. The previous results were based on only 1 month (2 different seasons) for 2006 and 2007, 
the most recent results (4 months end of 2008) use more observations, for example GPS-RO are 8 times 
more numerous (65 million of measurements) than in 2007. 

 
Figure 11. 24-hour forecast error contribution (Joule*10-4) of the components (types) of the observing 
system during September, October, November and December 2008. Negative (positive) values correspond 
to a decrease (increase) in the energy norm of forecast error. 
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The overall larger and positive impact of all the currently assimilated observations on the short-range 
forecast also provides a clear indication that from 2006 to 2009 the assimilation and forecast system have 
improved. 

In Figure 13 the forecast error contribution of AIRS data is shown per channel assimilated. The most neutral 
results are found from channels 305 to 843 sensitive to temperature and water vapor with maximum 
sensitivity at 850 hPa. Similar neutral impact is found for IASI (Figure 14) from channel 16 to 191 that peek 
at around 50-100 hPa sensitive to temperature, and from channel 366 to 921 sensitive to water vapor at 800 
hPa and temperature at 950 hPa. The performance of GPS-RO observations is quite impressive at all levels. 
The number of observation per level is similar, but the distribution of forecast error contribution is quite 
symmetrical around 14 km from the surface (Figure 14). The distribution mimics the observation influence 
given in the analysis to radio occultation measurements at different levels in the atmosphere (not shown).  

 
Figure 12. 24-hour forecast error contribution (Joule*10-4) of AIRS with respect to all the assimilated 
channels during September, October, November and December 2008. Negative (positive) values 
correspond to a decrease (increase) in the energy norm of forecast error. 

 
Figure 13. 24-hour forecast error contribution (Joule*10-4 ) of IASI with respect to all assimilated 
channels  during September, October, November and December 2008. Negative (positive) values 
correspond to a decrease (increase) in the energy norm of forecast error. 
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Figure 14: 24 hour Forecast error contribution (Joule*10-4) of GPS-RO at different vertical levels, from 
2 km above the surface up to 50 km. 

Recent changes applied to the assimilation of GPS-RO data include the reduction of the observation error 
standard deviation and the extended usage on the vertical up to 50 km. Also in 2006, GRAS was not used 
and the number of data from this satellite counts for almost one third of the total radio occultation 
measurements amount. 

For a complete understanding of the plot diagrams shown, a significance test or error bars of the impact 
measure will be computed. A consistent statistical sample of forecast error contribution from all observation 
type and all over different seasons and months of the year need to be gathered. Anyhow, it should be kept in 
mind that with the 16% limit of the FSO solution accuracy, small negative or positive values are regarded as 
neutral impact. 

5 Conclusions 
Over the last few years, the potential of using derived adjoint-based diagnostic tools has been increasingly 
exploited. Recently, a compact derivation of the 4D-Var sensitivity equations by using the theoretical 
framework of the implicit function has been derived (Daescu 2008). The analytical formulation of the 
sensitivity equations with respect to an extended set of input parameters has been shown and numerical 
applications will soon follow. This paper illustrates the use of the forecast sensitivity with respect to time-
distributed observational data, first time in a 12-hour 4D-Var assimilation system, as a diagnostic tool to 
monitor the observation performance in the short-range forecast.  

Here, the forecast sensitivity to the observation has been based on the forecast error of the control 
experiment from observing system experiments that have been performed at ECMWF, with the intention of 
comparing the performance of the two diagnostic tools. The assessment of the value of observations for 
forecast error reduction trough the OSEs is performed by comparing the forecast skill obtained with and 
without the subset of data of interest. This usually involves large numbers of independent experiments over 
several months and is therefore quite expensive to perform and prohibitive if a detailed investigation of 
operational observing systems must be obtained. Also, any variation in the observation set that is assimilated 
through data addition or data denial modifies the Kalman gain matrix, producing therefore different solutions 
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in the minimization. However, observation forecast impact on the medium and long-range can also be 
investigated.  

Forecast sensitivity to observations can only be used to diagnose the impact on the short-range forecast, 
namely 24 to 48 hours, given the use of a simplified adjoint of the data assimilation system and the implied 
linearity assumption. On the other hand, the use of FSO allows the identification of potential problems and 
directs further investigations. It was demonstrated that, on the short-range forecast, FSO and OSE provide a 
very similar qualitative picture of improvement or degradation due to observations. The forecast degradation 
that was observed at certain pressure levels and in a number of areas in the OSE due to some observation 
type, matches well with the FSO forecast error contribution maps for the same observation type. Clearly, the 
two tools have different meaning of use. Whilst OSEs are more indicated for evaluating the longer term 
forecast impact of data, FSO should be used to investigate the reasons of short-range forecast failure due to 
the misuse of observations. Furthermore, FSO allows further granularity in the investigation (observation 
type, level, channel, etc.) at no extra cost. 

It was found that it is necessary to use the third order sensitivity gradient to fully document the forecast 
impact from the observations. The first order only represents the sub-optimality of the assimilation system. 
Quantitatively the results from the two different orders of gradients are quite different, first the forecast error 
variation is three times smaller for the first order than the third order and second, the negative impact of 
some observation type, as GOES and Meteosat radiances and atmospheric motion vectors, is only present 
when the first order gradient is used. Nevertheless, comparison on pattern variation of forecast error 
contribution shows quite large similarities for some data type, for example for the satellite motion vectors 
and the scatterometer data, which indicates that the short-range observation forecast impact is affected by the 
sub-optimality of the analysis system. It highlights the importance of performing an efficient monitoring of 
the assimilation system to objectively determine if the given scheme is optimal in terms of ‘best linear and 
unbiased estimate’ of the initial condition from all information available (Talagrand, 1999). 

Over the two months period, the global impact of observations was found to be positive and the forecast 
errors decrease for almost all data type. Problems have been noticed with Atmospheric Motion Vectors 
mainly derived from visible and infrared wavelength bands (and for low-level winds). Problems with 
conventional observations, wind profilers in summer and SYNOP Metar surface pressure observations in 
winter, was mainly due, for different reasons, to the local synoptic situation. Wind profiler measurements 
were corrupted by the presence of strong convection activity in the boundary layer, while large surface 
pressure variability that characterized the entire winter month at the surface over the small domain of eastern 
France and Germany, was not correctly solved in the minimization.  

Over the most recent four months period examined in autumn 2008, the impact of all types of observations 
on the short-range forecast has increased impressively. It has been shown that microwave satellite 
measurements (AMSU-A) are responsible for 18% of the forecast error reduction, infrared measurements 
(AIRS and IASI) for 12% and 10% of error reduction is due to radio occultation observations. Conventional 
observations (surface pressure, vertical profiler and aircraft) are as well decreasing the forecast error, being 
responsible for an average reduction of 6%. A statistical significance of the observation impact will be soon 
added once a robust statistical sample of these diagnostics is provided.  
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Given the dependency of some observation types on the meteorological situation, it is suggested to run the 
forecast sensitivity to the observation diagnostic tool on an operational basis and in relation to the 
operational suite error. A constant monitoring of the performance of the model forecast would allow the use 
of the observation network in an adaptive way where situations with negative observation impact can be 
investigated and improved or potentially denied in real time. 

FSO is ready to be implemented. Improvements to the forecast error calculation by directly comparing 
forecast fields with observations instead of analysis fields are continuing. It will better highlight the 
problems related to bias, helping thus to distinguish between biases in the model or in the observations.  
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Appendix A 
The results of a different response function can be examined in order to measure the accuracy of the solution 

in (2.10). Let define
1 ,
2test a aJ δ δ= x x . The gradient of Jtest with respect to δxa is the analysis increments 

themselves, then (2.11) becomes 
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It is clear that, although the response function is not of meteorological significance, it has the convenience 
that its gradient is equivalent to the increments themselves and their scalar product is exactly computed.  

The solution accuracy is therefore defined as  
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In Table A.1 the accuracy of the solution, in percentage, is shown for different observation types and FSO 
(Forecast Sensitivity to Observation) experiment set-up compared with the AN (Analysis) experiment set-up 
from which the forecast error is computed.  

Table A.3 FSO accuracy with respect to the observation used and the configuration adopted 
AN  FSO Observation Type 

Assimilated 
Observed 
Parameter 

Observation 
Number 

Solution 
Accuracy 
% 

T159TL159 T159TL159 Radiosonde T 24556 -0.0004 
T159TL159 T159TL159 Radiosonde U, V 42710 0.007 
T159TL159 T159TL159 SYNOP DRIBU ps 92410 -17.8 
T159TL159 T159TL159 GPS-RO Bending 

Angle 
296209 0.06 

T159TL159 T159TL159 Satellite Radiance 8163313 17.9 
T159TL159 T159TL159 All All 9156768 16 
T511TL159 T511TL159 All All 9247733 16 
T511TL95TL159TL255 T511TL255 All All 9237743 16.7 
T511TL95TL159TL255 
GPINNER=true 

T511TL255 
GPINNER=false 

All All 9237743 16.7 

T511TL95TL159TL255 
GPINNER=true 

T511TL255 
GPINNER=false 

All-SYNOP&DRIBU All-ps 9145333 16.8 

 

The accuracy depends on the observation type: surface pressure observations have the lowest accuracy (-
17%) together with satellite radiances data whilst a very good accuracy is shown for conventional radiosonde 
observation either for the u and v component of the wind or temperature and for GPS Radio-Occultation (less 
than 0.06%). However, when all the observations are assimilated the total accuracy converge to 16% for the 
same AN and FSO configuration set-up, that is, same resolution for the inner and outer loop and only one 
inner loop performed. A very small degradation (less than 1%) is added when AN has more number of inner 
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loops with respect to FSO. In particular, in the AN configuration (operational configuration) three different 
minimization (multi-incremental 4D-Var) loops at TL95, TL159 and TL255 spectral truncation are 
performed, whilst FSO solves in one go the linear equation system at the higher resolution TL255. The last 
difference between the two configurations comes from the numerical representation of the humidity field: the 
AN operational configuration handles the humidity variable on a Gaussian grid (logical switch 
GPINNER=true) during the non-linear, tangent linear and adjoint integration whilst due to the sensitivity 
gradient present form computation, FSO handles spectral representation of the humidity variable 
(GPINNER=false). However, the difference above explained does not change the FSO solution accuracy. 
The solution accuracy of 17% is a quite satisfactory result, it allows both a qualitative and quantitative 
assessment of the forecast impact. 
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Appendix B 
FSO sms (logical computational diagram) pre-operational configuration is presented in Figure B1.  

 
Figure B.1. FSO sms configuration 

The computational tree comprises few main tasks: inicond provides the initial fields for the sensitivity 
gradient and FSO calculation. The sensitivity gradient calculation (sgr) is then performed together with the 
observation retrieval (obs). In the main task the linear system is solved (LEsolver) after the sensitivity 
gradients are provided (sgr) valid at the beginning of the analysis window (09 or 21 UTC). Task sgr and 
main are valid at the same time whilst the forecast error calculation (inicond-m1) is valid 24 hour later. 
Sensitivity gradient and FSO have the same resolution of the analysis from which the forecast error is 
computed. The operational configuration will then run the forecast field (trajectory) at T799, the linear solver 
at T255 and 91 model levels. FSO computation is independent of the operational analysis computation being 
the minimum time lapse of 24 hour (necessary to compute the 24-hour forecast error). The implementation 
cost on 64MPI and 8 threads is 5644 second wall clock time for the linear equations solver task (to be 
compared with 3999 second of the minimization task in the analysis experiment) plus 284 second for the 
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trajectory task. The cost is mainly due to the number of iterations necessary to solve the linear system at the 
analysis resolution (e.g. last inner loop). The usage of less iteration is under investigation. 
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